A Categorical Framework for Generalized Compactness

David Forsman

UCLouvain

July 15, 2025

Many areas of mathematics rely on fundamental finiteness conditions.

Many areas of mathematics rely on fundamental finiteness conditions.

Algebraic Finiteness

- Noetherian (ACC)
- Artinian (DCC)
- Objects both Artinian and Noetherian

Based on chains.

Many areas of mathematics rely on fundamental finiteness conditions.

Algebraic Finiteness

- Noetherian (ACC)
- Artinian (DCC)
- Objects both Artinian and Noetherian

Based on chains.

Topological Finiteness

- Compactness
- Lindelöfness
- Countable compactness

Based on subcovers.

Many areas of mathematics rely on fundamental finiteness conditions.

Algebraic Finiteness

- Noetherian (ACC)
- Artinian (DCC)
- Objects both Artinian and Noetherian

Based on chains.

Topological Finiteness

- Compactness
- Lindelöfness
- Countable compactness

Based on subcovers.

Core Question

Is there a single, underlying notion of compactness that unifies these concepts in a general categorical setting?

Proposal: These conditions can be seen as the **stabilization** of a process.

Proposal: These conditions can be seen as the **stabilization** of a process.

Proposal: These conditions can be seen as the **stabilization** of a process.

Proposal: These conditions can be seen as the **stabilization** of a process.

• A process over an object c is a functor $F: I \to C/c$. The functor F can be of mixed variance.

 The domain I is a part of a Diagram Type, which encodes the variance of F and the 'small' objects of I.

Proposal: These conditions can be seen as the **stabilization** of a process.

- The domain I is a part of a Diagram Type, which encodes the variance of F and the 'small' objects of I.
 - ▶ $I = (\mathbb{N}, \leq)$ and covariant functors for ascending chains (Noetherian).

Proposal: These conditions can be seen as the **stabilization** of a process.

- The domain I is a part of a Diagram Type, which encodes the variance of F and the 'small' objects of I.
 - ▶ $I = (\mathbb{N}, \leq)$ and covariant functors for ascending chains (Noetherian).
 - lacksquare $I=(\mathbb{N},\leq)$ and contravariant functors for descending chains (Artinian).

Proposal: These conditions can be seen as the **stabilization** of a process.

- The domain I is a part of a Diagram Type, which encodes the variance of F and the 'small' objects of I.
 - ▶ $I = (\mathbb{N}, \leq)$ and covariant functors for ascending chains (Noetherian).
 - ▶ $I = (\mathbb{N}, \leq)$ and contravariant functors for descending chains (Artinian).
 - ▶ $I = \mathcal{P}(X)$, for an X-indexed covers (Compactness).

Proposal: These conditions can be seen as the **stabilization** of a process.

- The domain I is a part of a Diagram Type, which encodes the variance of F and the 'small' objects of I.
 - ▶ $I = (\mathbb{N}, \leq)$ and covariant functors for ascending chains (Noetherian).
 - lacksquare $I=(\mathbb{N},\leq)$ and contravariant functors for descending chains (Artinian).
 - ▶ $I = \mathcal{P}(X)$, for an X-indexed covers (Compactness).
- Stabilization means the process trivializes early at $i \in \text{Obj}(I)$;
 - ► This object i must be from a pre-chosen class **designated small** objects and F(k) must be an isomorphism for morphisms $i \stackrel{k}{\rightarrow} j$ in I.

Diagram Type

A tuple (I, A, K, L) where:

- I is a small category.
- $A \subseteq \text{Obj}(I)$ is the set of **designated small objects**.
- (K, L) is a **variance** on I (defining covariant/contravariant parts).

Diagram Type

A tuple (I, A, K, L) where:

- I is a small category.
- $A \subseteq \text{Obj}(I)$ is the set of **designated small objects**.
- (K, L) is a **variance** on I (defining covariant/contravariant parts).

Coverage τ

A choice of pullback stable **coverings** ($F: I \rightarrow C/c, A, K, L$) for each object c in C.

Diagram Type

A tuple (I, A, K, L) where:

- I is a small category.
- $A \subseteq \text{Obj}(I)$ is the set of **designated small objects**.
- (K, L) is a **variance** on I (defining covariant/contravariant parts).

Coverage τ

A choice of pullback stable **coverings** ($F: I \rightarrow C/c, A, K, L$) for each object c in C.

au-Compactness

An object c is τ -compact if every covering $(F: I \to C/c, A, K, L) \in \tau_c$ of c stabilizes; there is a designated small object $i_0 \in A$ where F(k) is an isomorphism for every $i_0 \to i \xrightarrow{k} j$ in I.

By choosing the Diagram Type, we recover many classical notions.

By choosing the Diagram Type, we recover many classical notions.

Algebraic Finiteness

Let M be a stable system of morphisms of C.

By choosing the Diagram Type, we recover many classical notions.

Algebraic Finiteness

Let M be a stable system of morphisms of C.

• *M*-Noetherian: τ_c consists of all covariant functors $F: \mathbb{N} \to C/c$, where all elements of \mathbb{N} are designated small and $F(n) \in M$.

By choosing the Diagram Type, we recover many classical notions.

Algebraic Finiteness

Let M be a stable system of morphisms of C.

- *M*-Noetherian: τ_c consists of all covariant functors $F: \mathbb{N} \to C/c$, where all elements of \mathbb{N} are designated small and $F(n) \in M$.
- *M*-**Artinian:** Exchange the covariant functors to contravariant.

By choosing the Diagram Type, we recover many classical notions.

Algebraic Finiteness

Let M be a stable system of morphisms of C.

- *M*-Noetherian: τ_c consists of all covariant functors $F: \mathbb{N} \to C/c$, where all elements of \mathbb{N} are designated small and $F(n) \in M$.
- *M*-**Artinian:** Exchange the covariant functors to contravariant.
- J, M-compact: τ_c consists of all tuples $(F: I \to C/c, A, K, L)$, where $(I, A, K, L) \in J$ and J is a chosen class of diagram types.

By choosing the Diagram Type, we recover many classical notions.

Algebraic Finiteness

Let M be a stable system of morphisms of C.

- *M*-Noetherian: τ_c consists of all covariant functors $F: \mathbb{N} \to C/c$, where all elements of \mathbb{N} are designated small and $F(n) \in M$.
- *M*-**Artinian:** Exchange the covariant functors to contravariant.
- J, M-compact: τ_c consists of all tuples $(F: I \to C/c, A, K, L)$, where $(I, A, K, L) \in J$ and J is a chosen class of diagram types.

Topological Finiteness

• **Compact:** τ_c consists of covariant functors $F: \mathcal{P}(I) \to C/X$ induced from open covers $(U_i)_{i \in I}$ of the space X with designated small objects as finite subsets of I.

By choosing the Diagram Type, we recover many classical notions.

Algebraic Finiteness

Let M be a stable system of morphisms of C.

- *M*-Noetherian: τ_c consists of all covariant functors $F: \mathbb{N} \to C/c$, where all elements of \mathbb{N} are designated small and $F(n) \in M$.
- M-Artinian: Exchange the covariant functors to contravariant.
- J, M-compact: τ_c consists of all tuples $(F: I \to C/c, A, K, L)$, where $(I, A, K, L) \in J$ and J is a chosen class of diagram types.

Topological Finiteness

- Compact: τ_c consists of covariant functors $F: \mathcal{P}(I) \to C/X$ induced from open covers $(U_i)_{i \in I}$ of the space X with designated small objects as finite subsets of I.
- **Lindelöf:** Choose countable subsets of *I* instead of finite.

Application: Protomodularity & Closure Properties

This general framework allows us to prove powerful theorems.

Application: Protomodularity & Closure Properties

This general framework allows us to prove powerful theorems.

Compactness is preserved under appropriate quotients

Let C be a category with pullbacks, a stable left-cancelable system M and a coverage τ subordinated to M^a . Let $f: x \to y$ be stably M-extremal epimorphism in C. If x is τ -compact, then so is y.

 ${}^aF(i)\in M \text{ for } F\colon I\to C/c\in au_c \text{ and } i\in \mathrm{Obj}(I)$

Application: Protomodularity & Closure Properties

This general framework allows us to prove powerful theorems.

Compactness is preserved under appropriate quotients

Let C be a category with pullbacks, a stable left-cancelable system M and a coverage τ subordinated to M^a . Let $f: x \to y$ be stably M-extremal epimorphism in C. If x is τ -compact, then so is y.

 ${}^aF(i)\in M$ for $F\colon I\to C/c\in au_c$ and $i\in \mathrm{Obj}(I)$

The Role of Protomodularity

Protomodularity provides the good behavior needed for stronger results. We use the tool of a **protomodular pre-factorization system**.

Protomodularity ensures:

- Closure of τ -compact objects under **extensions**.
- Closure under **products** in pointed settings.
- The Hopfian property for Noetherian objects.

Our main application combines all these tools.

Our main application combines all these tools.

Main Theorem

In a **regular protomodular category** with an **initial object**, the classes of **Noetherian** and **Artinian** objects are closed under:

Our main application combines all these tools.

Main Theorem

In a **regular protomodular category** with an **initial object**, the classes of **Noetherian** and **Artinian** objects are closed under:

① Subobjects: $a \hookrightarrow b$ with τ -compact b implies a τ -compact.

Our main application combines all these tools.

Main Theorem

In a **regular protomodular category** with an **initial object**, the classes of **Noetherian** and **Artinian** objects are closed under:

- **9 Subobjects:** $a \hookrightarrow b$ with τ -compact b implies $a \tau$ -compact.
- **2** Regular Quotients: $a \rightarrow b$ and $a \tau$ -compact implies $b \tau$ -compact.

Our main application combines all these tools.

Main Theorem

In a **regular protomodular category** with an **initial object**, the classes of **Noetherian** and **Artinian** objects are closed under:

- **9 Subobjects:** $a \hookrightarrow b$ with τ -compact b implies $a \tau$ -compact.
- **Quotients:** $a \rightarrow b$ and $a \tau$ -compact implies $b \tau$ -compact.
- **§** Extensions: $a \to b \to c$ is a weak extension problem with a, c τ -compact $\Rightarrow b$ is τ -compact.

^aThe morphism $a \rightarrow b$ is a pullback along $b \rightarrow c$.

Our main application combines all these tools.

Main Theorem

In a **regular protomodular category** with an **initial object**, the classes of **Noetherian** and **Artinian** objects are closed under:

- **1 Subobjects:** $a \hookrightarrow b$ with τ -compact b implies $a \tau$ -compact.
- **2** Regular Quotients: $a \rightarrow b$ and $a \tau$ -compact implies $b \tau$ -compact.
- **Solution Extensions:** $a \to b \to c$ is a weak extension problem with a, c τ -compact $\Rightarrow b$ is τ -compact.

Key Consequences

• **Hopfian Property:** If $x \xrightarrow{f} x$ is a regular epi and x is a Noetherian object, then f is an isomorphism.

^aThe morphism $a \rightarrow b$ is a pullback along $b \rightarrow c$.

Our main application combines all these tools.

Main Theorem

In a **regular protomodular category** with an **initial object**, the classes of **Noetherian** and **Artinian** objects are closed under:

- **Quantificity Subobjects:** $a \hookrightarrow b$ with τ -compact b implies a τ -compact.
- **Quotients:** $a \rightarrow b$ and $a \tau$ -compact implies $b \tau$ -compact.
- **3 Extensions:** $a \to b \to c$ is a weak extension problem with a, c τ -compact $\Rightarrow b$ is τ -compact.

Key Consequences

- **Hopfian Property:** If $x \xrightarrow{f} x$ is a regular epi and x is a Noetherian object, then f is an isomorphism.
- **Abelian Categories:** The full subcategory of *J*-compact objects in an abelian category form a an exact subabelian category.

^aThe morphism $a \rightarrow b$ is a pullback along $b \rightarrow c$.

• We introduced a general notion of **compactness via coverages** that unifies diverse finiteness conditions from algebra and topology.

- We introduced a general notion of compactness via coverages that unifies diverse finiteness conditions from algebra and topology.
- This framework was used to prove strong closure properties for Noetherian and Artinian objects in the broad context of regular protomodular categories.

- We introduced a general notion of compactness via coverages that unifies diverse finiteness conditions from algebra and topology.
- This framework was used to prove strong closure properties for Noetherian and Artinian objects in the broad context of regular protomodular categories.
- The work highlights the deep interplay between covering properties, factorization systems, and protomodularity.

- We introduced a general notion of compactness via coverages that unifies diverse finiteness conditions from algebra and topology.
- This framework was used to prove strong closure properties for Noetherian and Artinian objects in the broad context of regular protomodular categories.
- The work highlights the deep interplay between covering properties, factorization systems, and protomodularity.

Thank you!

Preprint soon available david.forsman@uclouvain.be

This research is supported by the Belgian Fund for Scientific Research (FNRS).