Enrichment and families over a virtual double category

Soichito Fujii (Masaryk University)

Stephen Lack (Macquarie University)

[Fujii and Lack, The familial nature of enrichment over virtual double categories, arxiv: 2507.05529]

· V-categories

· V-categories

Instead of hom-sets, have hom-objects $C(\alpha, 4) \in \mathcal{V}$

- · V-categories
- V-functors
- U-natural transformations

Instead of hom-sets, have hom-objects $C(x, y) \in T$

- V-categories
- V-functors
- U-natural transformations

Instead of hom-sets, have hom-objects $C(\alpha, 4) \in V$.

V-Cat: 2-category

- · V-categories
- V-functors
- U-natural transformations

Instead of hom-sets, have hom-objects $C(x,y) \in \mathcal{V}.$ $\mathcal{V}-Cat: 2-category$

- V-categoriesV-functors
- U-Tunctors
 U-natural transformations

Instead of hom-sets. have hom-objects $C(x,y) \in V$. V-Cat: 2-category

- · V-categories
- V-functors
- U-natural transformations

Instead of hom-sets. have hom-objects $C(x,y) \in V.$ V-Cat: 2-category

0. What properties does Enr have?

becomes a parametric right 2-adjoint

becomes a parametric right 2-adjoint provided that we extend its domain appropriately.

becomes a parametric right 2-adjoint provided that we extend its domain appropriately. Enrichment over

virtual double categories [Leinster 2002]

K: 2-category with a terminal obj. 1

K: 2-category with a terminal obj. 1 L: 2-category

K: 2-category with a terminal obj. 1 L: 2-category K: 2-category K: 2-functor $K: R \to L$ is a parametric right $L: R \to L$ is a parametric right $L: R \to L$

K: 2-category with a terminal obj. 1 L: 2-category A 2-functor $K \xrightarrow{R} L$ is a parametric right 2-adjoint if (strict) slice 2-cat.

K: 2-category with a terminal obj. 1 L: 2-category A 2-functor $K \xrightarrow{R} L$ is a parametric right 2-adjoint if (strict) slice 2-cat.

K: 2-category with a terminal obj. 1 L: 2-category A 2-functor $K \xrightarrow{R} L$ is a parametric right 2-adjoint if (strict) slice 2-cet. is a right 2-adjoint.

K: 2-category with a terminal obj. 1 L: 2-category A 2-functor K R is a parametric right 2-adjoint if (strict) slice 2-cot. is a right 2-adjoint.

Enlarging the class of enrichment bases

monoidal categories

Enlarging the class of enrichment bases

```
monoidal categories | multicategories |
    bicategories
          [Betti, Carboni, Street, Walters,...
1980s - ]
Preudo double cotegories
(Used by e.g.
    [Cockett-Garner, 2014])
```

Enlarging the class of enrichment bases

```
monoidal cotegories
                                   > I multicategories
    l'bicategories !
               [Betti, Carboni, Street, Walters,...
1980s - ]
pseudo double cotegories | virtual double categories |
(Used by e.g.
                                           Leinster 2002]
    [Cockett-Garner, 2014])
```

Main Theotem [Fujii-Lack 2025]

Main Theotem [Fujii-Lack 2025] The 2-functor VDBL Enr 2-CAT A - Cat

is a parametric right 2-adjoint.

Main Theotem [Fujii-Lack 2025]

The 2-functor

is a parametric right 2-adjoint.

Def. [Burroni 1971] A virtual double category A consists of

Def. [Burroni 1971] A virtual double category A consists of - objects A, B, ...

- objects A, B, ...

 vertical morphisms Ju, ...

- objects A, B, ...

 vertical morphisms Ju, ...

 horizontal morphisms A T A', ...

- objects A, B, ...

 vertical morphisms Ju, ...

 horizontal morphisms A T A', ...
- multicells up α Ju',...

- objects A, B, ...

 vertical morphisms Ju, ...

 horizortal morphisms A T A', ...
- multicells up a ju', ...

 + operations

- objects A, B, ...

 vertical morphisms Ju, ...

 B vertical category Alvert
- horizontal morphisms A T A', ...
- multicells $a \downarrow \alpha \qquad \downarrow a' , ...$ + operations

- objects A, B, ...

 vertical morphisms Ju, ...

 Vertical category Alvert
- horizontal morphisms A T A', ...

$$A \xrightarrow{T} A'$$

$$\parallel i d_{T} \parallel$$

$$A \xrightarrow{T} A'$$

Det. [Burroni 1971]

A virtual double category A consists of

- objects A, B, ...

 vertical morphisms Ju, ...

 Vertical category Alvert
- horizontal morphisms A T A',...
- multicells

 Ao Ti Ao Ti An

 The An

$$\begin{array}{cccc}
A & \xrightarrow{T} & A' \\
\parallel & & \downarrow & \downarrow \\
A & \xrightarrow{T} & A'
\end{array}$$

$$A_{0} \xrightarrow{\Gamma_{1}} A_{1} \xrightarrow{\Gamma_{2}} A_{2} \xrightarrow{\Gamma_{3}} A_{3}$$

$$A_{0} \xrightarrow{\Gamma_{1}} A_{1} \xrightarrow{\Gamma_{2}} A_{2} \xrightarrow{\Gamma_{3}} A_{3} \xrightarrow{\Gamma_{1}} A_{2} \xrightarrow{\Gamma_{2}} A_{3} \xrightarrow{\Gamma_{2}} A_{4} \xrightarrow{\Gamma_{3}} A_{4} \xrightarrow{\Gamma_{1}} A_{4} \xrightarrow{\Gamma_{2}} A$$

$$A_{0} \xrightarrow{\Gamma_{1}} A_{1} \xrightarrow{\Gamma_{2}} A_{2} \xrightarrow{\Gamma_{3}} A_{3}$$

$$\exists A_{1} \xrightarrow{\Gamma_{2}} A_{2} \xrightarrow{\Gamma_{3}} A_{3}$$

$$\exists A_{2} \xrightarrow{\Gamma_{3}} A_{3} \xrightarrow{\Gamma_{3}} A_{3}$$

$$\exists A_{1} \xrightarrow{\Gamma_{2}} A_{2} \xrightarrow{\Gamma_{3}} A_{3}$$

$$\exists A_{2} \xrightarrow{\Gamma_{3}} A_{3} \xrightarrow{\Gamma_{3}} A_{3}$$

$$C \xrightarrow{\square} C'$$

Al: virtual double category
An Al-category C consists of:

Al: virtual double category
An Al-category C consists of:
- a set ob C of objects

All-category C consists of:

- · a set ob C of objects
- a function ob C i-1c ob Al The extent

 x | x|c of x.

Al : virtual double category
An Al-category C consists of:

- a set ob C of objects
- a function ob C i-1° ob Al The extent
- Yz. yeC, a horiz. mor.

(x)c C(x,y) (y)c m A

Al: virtual double category

An Al-category C consists of:

- a set ob C of objects
- a function ob C 1-1° ob Al The extent

 x 1x1° of x.
- Yz. y E C, a horiz. mor.

- mutticells

$$|x|_{C} \xrightarrow{|x|_{C}} |x|_{C} \xrightarrow{|x|_{C}} |x|_{C} \xrightarrow{C(x,3)} |x|_{C}$$

Al: virtual double category

An Al-category C consists of:

- a set ob C of objects
- a function ob C i-1° ob Al The extent
- Yz, y E C, a horiz. mor.

- mutticells

$$|x|_{C} \xrightarrow{(x'x)} |x|_{C} \xrightarrow{(x'y)} |x|_$$

satisfying the category axioms.

Al: virtual double category An Al-category C consists of: - a set ob C of objects - a function ob C i-1° ob At the extent of x. - 42. yeC, a horiz. mor. IxIc C(x, y) IXIc m A - mutticells IXIC ((x'9) IRIC ((9'5) ISIC satisfying the category axioms.

An Al-functor C FD consists of:

Al: virtual double category An Al-category C consists of: - a set ob C of objects - a function ob C i-1° ob At the extent of x. - 4x, yeC, a horiz. mor. IXIC C(x, y) IXIC on A - mutticells Pric (24) Alc (19'5) (31c satisfying the category axioms.

An Al-function C = D consists of:

- a function ob C = bD

= Fx

An Al-category C consists of:

- a set ob C of objects

- a function ob C - 1-1° ob Al the extent

x | x1° of x.

- Yz. y e C, a horiz. mor.

- mutticells

$$|x|_{C} \xrightarrow{|x|_{C}} |x|_{C} |x|_$$

satisfying the category axioms.

Al : virtual double category
An Al-category C consists of:

- a set ob C of objects
- a function ob C i-1c ob Al The extent

 x |x|c of x.
- Yz. y e C, a horiz. mor.

- mutticells

$$|x|_{C} \xrightarrow{C(x^{2})} |x|_{C} \xrightarrow{C(x^{2})} |x|_$$

satisfying the category axioms.

An Al-functor $C \xrightarrow{F} D$ consists of:

- a function $C \xrightarrow{dF} C \xrightarrow{dF} C \xrightarrow{dF} C$ - $C \xrightarrow{T} C \xrightarrow{T} C \xrightarrow{T} C$ - $C \xrightarrow{T} D \xrightarrow{T} C \xrightarrow{T} C \xrightarrow{T} C$ - $C \xrightarrow{T} D \xrightarrow{T} C \xrightarrow{T} C \xrightarrow{T} C$ - $C \xrightarrow{T} C \xrightarrow{T} C \xrightarrow{T} C \xrightarrow{T} C$ - $C \xrightarrow{T} C \xrightarrow{T} C \xrightarrow{T} C \xrightarrow{T} C$ - $C \xrightarrow{T} C$ - C

- $\forall x, y \in C$, a multicell $|x|^{C} \xrightarrow{C(x,y)} |y|^{C}$ $|x|^{C} \xrightarrow{F_{xy}} |F_{y}|^{F_{y}} = m \text{ A}$ $|F_{x}|^{D} \xrightarrow{F_{xy}} |F_{y}|^{D}$

Al : virtual double category

An Al-category C consists of:

- a set ob C of objects
- a function ob C i-1c ob Al The extent
- Yz. y e C, a horiz. mor.

- mutticells

$$|x|_{C} \xrightarrow{C(x^{2}x)} |x|_{C} \qquad |x|_{C} \xrightarrow{C(x^{2}y)} |x|_{C} \xrightarrow{C(x^{2}y$$

satisfying the category axioms.

- YzeC, a vertical mor. IFz in Al

· 47, y ∈ C, a multicell

$$|x|^{c} \xrightarrow{C(x,y)} |y|^{c}$$

$$|x|^{c} \xrightarrow{F_{xy}} |F_{y}|^{F_{y}} \Rightarrow A$$

$$|F_{x}|^{D} \xrightarrow{D(F_{x},F_{y})} |F_{y}|^{D}$$

salisfying the functor axioms.

Al : virtual double category
An Al-category C consists of:

- a set ob C of objects
- a function ob C 1-1° ob Al The extent
- 42. JEC, a horiz. mor.

- multicells

$$|x|_{C} \xrightarrow{|x|_{C}} |x|_{C} \xrightarrow{|x|_{C}} |x|_{C} \xrightarrow{C(x,g)} |x|_{C}$$

satisfying the category axioms.

An Al-functor $C \xrightarrow{F} D$ consists of:

- a function $D \subset C \xrightarrow{DF} D \subset D$ - $\nabla_{x} \in C$, a vertical mor. $|x|^{C}$ $|x|^{C}$

|x|c C(x,y) |y|c
|Fx| Fxy |Fy m A

|Fx| Fxy |Fy| m A

|Fx| D(Fx,Fy) |Fy|P

Saliefying the functor axioms.

=> Al-Cot: 2-cotegory

Al : virtual double category

An Al-category C consists of:

- a set ob C of objects
- a function ob C 1-1° ob Al The extent

 x 1x1° of x.
- Yz. y e C, a horiz. mor.

- mutticells

$$|x|_{C} \xrightarrow{|x|_{C}} |x|_{C} \xrightarrow{|x|_{C}} |x|_{C} \xrightarrow{C(x,3)} |x|_{C}$$

satisfying the category axioms.

An Al-functor C = D consists of:

- a function ob C = bF = bD

|x|C|
|x|C|

- YzeC, a vertical mor. IFz in Al

· ^V2, y ∈ C, a multicell

$$|x|^{c} \xrightarrow{C(x,y)} |y|^{c}$$

$$|x|^{c} \xrightarrow{F_{xy}} |F_{y}|^{F_{y}} \in A$$

$$|F_{x}|^{D} \xrightarrow{D(F_{x},F_{y})} |F_{y}|^{D}$$

salisfying the functor axioms.

=> Al-Cot : 2-cotegory

VDBL Enr 2-CAT: 2-functor
A) - A)-Cat

what is VDBL = 2-CAT(Enr(1)?

What is VDBL = 2-CAT(Enr(1)?

Enr(1) = "1-Cal"

What is VDBL = 2-CAT (Enr(1)? f(=))3

Enr(1) = "1-Cad" = Set le: locally chaotic 2-category whose underlying category is Set.

What is VDBL = 2-CAT (Enr(1)? f(3)) 8

Enr(1) = "1-Cat" = Set le: locally chaotic ?-category whose underlying category is Set.

$$Enr_{i}(A) = \begin{pmatrix} Enr(A) \\ Enr(A) \end{pmatrix}$$

$$Enr_{i}(A) = \begin{pmatrix} Enr(A) \\ Enr(A) \end{pmatrix}$$

What is VDBL = 2-CAT (Enr(1)? f(==))3

Enr(1) = "1-Cat" = Setle: locally chaotic 2-category whose underlying category is Set.

$$Enr_{1}(A) = \begin{pmatrix} Enr(A) \\ Enr(A) \end{pmatrix} = \begin{pmatrix} A - Cat \\ Lab \\ Sellc \end{pmatrix}.$$

What is VDBL = 2-CAT(Enr(1)? f(=1)g Enr(1) = "1-Cad" = Set le: locally chaotic 2-category whose

underlying category is Set.

$$Enr_{1}(A) = \begin{pmatrix} Enr(A) \\ Enr(A) \end{pmatrix} = \begin{pmatrix} A - Cat \\ Lab \end{pmatrix}$$

$$Enr_{1}(A) = \begin{pmatrix} Enr(A) \\ Enr(A) \end{pmatrix} = \begin{pmatrix} A - Cat \\ Lab \end{pmatrix}$$

$$Sell_{c}$$

Given (JK) LG E 2-CAT (Setle, LG E VDBL is... Setle)

What is VDBL = 2-CAT(Enr(1)? f(=))8

Enr(1) = "1-Cad" = Set le: locally chaotic 2-category whose $Enr_{1}(A) = \begin{pmatrix} Enr(A) \\ Lenr(A) \end{pmatrix} = \begin{pmatrix} Al-Cod \\ Lob \\ Soll_{c} \end{pmatrix}.$ $(-)_{0}$ $(-)_{1}$ $(-)_{1}$ $(-)_{1}$ $(-)_{2}$ $(-)_{2}$ $(-)_{2}$ $(-)_{3}$ $(-)_{4}$ $(-)_{5}$ $(-)_{4}$ $(-)_{5}$ $(-)_{5}$ $(-)_{5}$ $(-)_{6}$ $(-)_{6}$ $(-)_{6}$ $(-)_{7}$ $(-)_{8}$ underlying category is Set. Given (K) E 2-CAT (Setle, LGEVDBL is...

What is VDBL = 2-CAT(Enr(1)? f(=))8

Enr(1) = "1-Cad" = Set le: locally chaotic 2-category whose $Enr_{1}(A) = \begin{pmatrix} Enr(A) \\ Lenr(A) \end{pmatrix} = \begin{pmatrix} A-Cat \\ Lab \\ Set_{1c} \end{pmatrix}$ $= \begin{pmatrix} A-Cat \\ Lab \\ Set_{1c} \end{pmatrix}$ underlying category is Set. Given (JG) & 2-CAT/Setle, LG & VDBL is...

-obj. (KEK, z∈GK)

What is VDBL
$$\stackrel{\perp}{=}$$
 2-CAT (Enr(1)? f_{3}^{3}) g_{3}^{3}

Enr(1) = "1-Cad" = Set Re: locally chaotic 2-category whose underlying category is Set.

Enr(A) = $\begin{pmatrix} Enr(A) \\ Enr(A) \end{pmatrix} = \begin{pmatrix} Al-Cad \\ Ich \end{pmatrix}$

Enr(A) = $\begin{pmatrix} F_{0} \\ F_{0} \end{pmatrix} = \begin{pmatrix} F_{0} \\ IG \end{pmatrix}$

Given $\begin{pmatrix} F_{0} \\ IG \end{pmatrix} \in 2$ -CAT (Sate, LG & VDBL is...

- obj. (KeK, $x \in G_{0}$)

-v.mor.
$$(k,z)$$
 $= k$ $= f m K s.t. (Gf)z = y.$ (L,y)

What is VDBL
$$\stackrel{\perp}{\underset{Enr_1}{\longleftarrow}} 2\text{-CAT}(\text{Enr}(1) ? f(\overset{!}{\underset{!}{\Longrightarrow}})3$$
 $Enr(1) = \text{"1-Cad"} = \text{Set}_{Rc} : \text{locally chaotic } 2\text{-category whose underlying category is Set.}$
 $Enr_1(A) = \begin{pmatrix} \text{Enr}(A) \\ \text{Enr}(1) \end{pmatrix} = \begin{pmatrix} \text{Al-Cad} \\ \text{Lob} \end{pmatrix} \begin{pmatrix} \text{Ko} \\ \text{Lob} \end{pmatrix} \text{by } 2\text{-CAT} \stackrel{(-)o}{\underset{(-)_{Rc}}{\longleftarrow}} \text{CAT}$
 $Given \begin{pmatrix} \text{K} \\ \text{LG} \end{pmatrix} \in 2\text{-CAT}(\text{Sot}_{Rc}), \text{LG} \in \text{VDBL is ...}$
 $-\frac{\text{cbj}}{\text{chien}} (\text{Ke}, \text{K}, \text{Ke}, \text{Ke})$
 $-\frac{\text{cbj}}{\text{chien}} (\text{Ke}, \text{Ke})$
 $-\frac{\text{Ke}}{\text{chien}} (\text{Ke}, \text{Ke})$
 $-\frac{\text{Ke}}{\text{chien}} (\text{Ke}, \text{Ke})$
 $-\frac{\text{Cot}}{\text{chien}} (\text{Ke}, \text{Ke})$
 $-\frac{\text{Cot}}{\text{chien}} (\text{Ke}, \text{Ke})$
 $-\frac{\text{Cot}}{\text{Cot}} (\text{Cot})$
 $-\frac{\text{Cot}}{\text{Cot}} (\text$

What is VDBL
$$\stackrel{L}{\underset{Enr_1}{\longleftarrow}}$$
 2-CAT (Enr(1)? $f(\frac{3!}{3!})$) 8

Enr(1) = "1-Cad" = Setle: locally chaotic 2-category whose underlying category is Set.

Enr(A) = $\begin{pmatrix} Enr(A) \\ Enr(A) \end{pmatrix} = \begin{pmatrix} Al-Cad \\ Lab \\ Setle \end{pmatrix}$ (Ko) by 2-CAT $\stackrel{(-)o}{\underset{(-)le}{\longleftarrow}}$ CAT Given (K) $\begin{pmatrix} K_{0} \\ LG \end{pmatrix}$ by 2-CAT $\stackrel{(-)o}{\underset{(-)le}{\longleftarrow}}$ CAT $\begin{pmatrix} K_{0} \\ LG \end{pmatrix}$ by 2-CAT $\stackrel{(-)o}{\underset{(-)le}{\longleftarrow}}$ CAT $\begin{pmatrix} K_{0} \\ LG \end{pmatrix}$ by 2-CAT $\stackrel{(-)o}{\underset{(-)le}{\longleftarrow}}$ CAT $\begin{pmatrix} K_{0} \\ LG \end{pmatrix}$ by 2-CAT $\stackrel{(-)o}{\underset{(-)le}{\longleftarrow}}$ CAT $\begin{pmatrix} K_{0} \\ LG \end{pmatrix}$ by 2-CAT $\stackrel{(-)o}{\underset{(-)le}{\longleftarrow}}$ CAT

- obj.
$$(K \in K, x \in GK)$$

- v. mor. (k, z) K
 $\downarrow m LG = \downarrow f m K s.t. (Gf) z = y.$
 $(k,z) \mapsto (k',z')! = (L,y)$

What is VDBL
$$\stackrel{\perp}{=}$$
 2-CAT (Enr(1)? $f(\frac{3!}{3!})g$

Enr(1) = "1-Cad" = Set le: locally chaotic 2-category whose underlying category is Set.

Enr₁(A) = $\begin{pmatrix} Enr(A) \\ Enr(A) \end{pmatrix} = \begin{pmatrix} A - Cad \\ Cad \end{pmatrix}$

Enr₁(A) = $\begin{pmatrix} Far(A) \\ Far(A) \end{pmatrix} = \begin{pmatrix} A - Cad \\ Cad \end{pmatrix}$

Given $\begin{pmatrix} Far(A) \\ Far(A) \end{pmatrix} = \begin{pmatrix} Far(A) \\ Far(A) \end{pmatrix} = \begin{pmatrix}$

Given (JG) & 2-CAT/Setle, LG & VDBL is...

- abj.
$$(K \in K, x \in GK)$$
- v. mor. (k, z)

$$\downarrow m LG = \{f m K s.t. (Gf) x = y.\}$$

$$(L, y) \qquad \downarrow (k, x') \} = \begin{cases} 1 & \text{if } k = k' \\ (k, x) \mapsto (k', x') \} = \begin{cases} 1 & \text{if } k = k' \end{cases}$$

$$\frac{hotiz.mor}{\{(k,z)\to (k',z')\}} = \begin{cases} 1*1 & \text{if } k=k' \\ 1 & \text{if } k=k' \end{cases}$$

What is VDBL
$$\stackrel{\leftarrow}{=}$$
 2-CAT (Enr(1)? $f(\frac{3!}{3!})g$

Enr(1) = "1-Cad" = Set le: locally chaotic 2-category whose underlying category is Set.

Enr(A) = $\begin{pmatrix} Enr(A) \\ Enr(A) \end{pmatrix} = \begin{pmatrix} A - Cad \\ Cad \end{pmatrix}$

Enr₁ (A) = $\begin{pmatrix} Enr(A) \\ Enr(A) \end{pmatrix} = \begin{pmatrix} A - Cad \\ Cad \end{pmatrix}$

Calc $\begin{pmatrix} K_0 \\ LG \end{pmatrix}$ by 2-CAT $\stackrel{\leftarrow}{\leftarrow}$ CAT

Given $\begin{pmatrix} K_1 \\ K_2 \end{pmatrix}$ CAT $\begin{pmatrix} K_1 \\ K_2 \end{pmatrix}$ CAT

Given (JG) & 2-CAT/Setle, LG & VDBL is...

- obj.
$$(K \in K, x \in GK)$$
- u. mor. (k, z)

$$\downarrow m LG = \{f m K s.t. (Gf) x = y.$$

$$(L, y)$$

$$\downarrow (k, z) \mapsto (k', z') = \begin{cases} f \neq f \\ g \neq f \end{cases} f \neq k'.$$

Sparam. night 2-adj. 1 is

sparam. right 2-adj. 1 is closed under composition

sparam. right 2-adj. [is closed under composition and contains fright 2-adj. [and spolynomial 2-functors].

sparam. right 2-adj. [is closed under composition and Contains fright 2-adj. [and spolynomial 2-structures].

Ent is the composite

Sparam. right 2-adj. [is closed under composition and Contains fright 2-adj. [and spolynomial 2-functors].

Enr is the composite

polynomial 2-functor

right 2-adjoints [Cruttwell-Shulman,
2010]

VDBL Mat VDBL Mod UVDBL 2-CAT

sparam. right 2-adj. [is closed under composition and contains fright 2-adj. [and spolynamial 2-functors].

Enr is the composite

polynomial 2-functor

VDBL Mat VDBL Mod UVDBL 2-category of

unital v.dbl. cats.

sparam. right 2-adj. [is closed under composition and Contains fright 2-adj. [and spolynomial 2-functors].

VDBL Mod VDBL

A - Mod

Obj. (I:son, (Ai eA) ieI)

VDBL Most

A-Most

$$\frac{\text{dij.}}{A}$$
 (T: Set, $(A_i \in A_i)_{i \in I}$)

 $\frac{\text{u.mor.}}{(J, (A_i)_i)}$ $\frac{\text{I}}{J}$ $(A_i \in A_i)_{i \in I}$
 $\frac{\text{u.mor.}}{(J, (B_i)_i)}$ $\frac{\text{I}}{J}$ $(A_i \in A_i)_{i \in I}$

VDBL Mot
$$A$$
-Mot $\frac{\text{cbj.}}{A}$: $(T:\text{Sot.}, (A_i \in A_i)_{i \in I})$ $\frac{\text{cbj.}}{u.\text{mor.}}$: $(I, (A_i)_i)$ I A_i A_i

VDBL Most

A-Most

$$\frac{\text{dj.}}{\text{di.}} (T: \text{Sd.}, (A_i \in A_i)_{i \in I})$$
 $\frac{\text{u.mor.}}{\text{u.mor.}} (I, (A_i)_i) \qquad I \qquad A_i \qquad A_$

VDBL
$$\xrightarrow{\text{Mod}}$$
 VDBL $\xrightarrow{\text{CSt}_{k}}$ $\xrightarrow{\text{Nor}}$ $\xrightarrow{\text{CI}_{k}}$ $\xrightarrow{\text{CSt}_{k}}$ $\xrightarrow{\text{CI}_{k}}$ $\xrightarrow{\text{CSt}_{k}}$ $\xrightarrow{\text{CST}_{k}$

The discrete optibration (Set*)hc P Sethc is induced by Set* trigated Set via CAT - VDBL.

The discrete optibration (Set*) he P Sethe is induced by Set* through Set via CAT (-) vDBL.

Now:

- Set* forgetful Set 15 a universal disc. optib. (w/ small fibers) in CAT.

The discrete optibration (Set*) he P Sethe is induced by Set* targetful Set via CAT (-) he VDBL.

Now:
- Set* targetful Set is a universal disc. optib. (w/ small fibers)

- 1 = Set * forgetful Set ! induces CAT From CAT,

in CAT.

The discrete optib	ration (Set,	E)hc P Seth	ic is induced by
Set* targetful Set	ria CAT (-) vert VDBL	•
Now:			
- Set* torgetful Set	15 a universal o	disc. optib. (w	small fibers)
in CAT. - 1 <- Set * Torgetful Set			
	CATIFO	m(1) = CAT(S	A
	EH / Fam,	forgetful	(See e.g. [Johnson 1987])
	CAT Fam	→ CAT	[Johnson 1987])

The discrete optibration (Set*)he P Sethe is induced by Set* targetful Set via CAT (-)vert VDBL. Now: - Set* torgetful Set 13 a universal disc. optib. (w/ small fibers) - 1 = Set * forgetful Set !) I induces CAT from CAT, with EH(F) — Sot *

EH / Fam, forgetful (See e.g.

CAT(Form(i) = CAT(Set

Fam, forgetful (See e.g.

CAT — CAT [Johnson 1987])

- VDBL has a universal disc. optib.:

- VDBL has a universal disc. optib.:

<u>not</u> (Set*)he P Sethe (for Mat), but

- VDBL has a universal disc. optib.:

not (Set*)he P Sethe (for Mat), but

Span* - Span

- VDBL has a universal disc. optib.:

not (Set*) he P Sether (for Mat), but

Span & Span & cat. w/pb.

Span (Set*) Span (Set) = Span (E): v. dbl. cat.

- VDBL has a universal disc. eptib.:

not (Set*)he P Sethe (for Mat), but

Span & Span & cat. w/pb.

Span (Setx) Span (Set) = Span (E): v. dbl. cat.

- Span* - Span induces

VDBL Fam VDBL, generalizing [Paré 2009, Patterson 2024].

- VDBL has a universal disc. optib.:

not (Set*) he P Sether (for Mat), but

Span* - Description C: cat. w/pb. $Span(Set_*)$ Span(Set) \Rightarrow Span(Set): v. dbl. cat.

- Span* - Span induces

VDBL Fam VDBL, generalizing [Paré 2009, Patterson 2024].

Generalizes > Elt / Fam. Pargetful
[Paré 2011]. VDBL Fam. VDBL