

CENTRO DE INVESTIGACIÓN
E TECNOLOXÍA MATEMÁTICA
DE GALICIA

Categorical-algebraic characterisations of Lie algebras

Xabier García Martínez

Joint work with Vladimir Dotsenko (Université de Strasbourg)

CT 2025 13th-19th of July, 2025

Ministerio de Ciencia e Innovación PID2021-127075NA-I00 Agencia Estatal de Investigación

Motivating question

What makes Lie algebras so special?

Categorical characterisations of Lie algebras

Theorem (GM-Van der Linden, 2019)

Let V be a non-trivial variety of non-associative algebras over an infinite field.

If V satisfies the following property:

• It is LACC

Categorical characterisations of Lie algebras

Theorem (GM-Tsishyn-Vienne-Van der Linden, 2021)

Let V be a non-trivial variety of non-associative algebras over an infinite field.

If V satisfies the following property:

It's actions (or representations) are representable

Categorical characterisations of Lie algebras

Theorem (Deval-GM-Van der Linden, 2024)

Let V be a non-trivial variety of non-associative algebras over an infinite field.

If V satisfies the following property:

• It admits a universal (split) Kaluzhnin-Krasner embedding theorem

Main Theorem

Let V be a non-trivial variety of non-associative algebras over a field of characteristic zero.

If V satisfies the following two properties:

- It is a 2-variety
- It is Nielsen-Schreier

Main Theorem

Let V be a non-trivial variety of non-associative algebras over a field of characteristic zero.

If V satisfies the following two properties:

- It is a 2-variety
- It is Nielsen-Schreier

Main Theorem

Let V be a non-trivial variety of non-associative algebras over a field of characteristic zero.

If V satisfies the following two properties:

- It is a 2-variety
- It is Nielsen-Schreier

Main Theorem

Let V be a non-trivial variety of non-associative algebras over a field of characteristic zero.

If $\mathcal V$ satisfies the following two properties:

- It is a 2-variety
- It is Nielsen-Schreier

Main Theorem

Let V be a non-trivial variety of non-associative algebras over a field of characteristic zero.

If $\mathcal V$ satisfies the following two properties:

- It is a 2-variety
- It is Nielsen-Schreier

Main Theorem

Let V be a non-trivial variety of non-associative algebras over a field of characteristic zero.

If V satisfies the following two properties:

- It is a 2-variety
- It is Nielsen-Schreier

Main Theorem

Let V be a non-trivial variety of non-associative algebras over a field of characteristic zero.

If $\mathcal V$ satisfies the following two properties:

- It is a 2-variety
- It is Nielsen-Schreier

then, V is the variety of Lie algebras.

Main Theorem

Let V be a non-trivial variety of non-associative algebras over a field of characteristic zero.

If V satisfies the following two properties:

- It is a 2-variety
- It is Nielsen-Schreier

then, V is the variety of Lie algebras.

Main Theorem

Let V be a non-trivial variety of non-associative algebras over a field of characteristic zero.

If V satisfies the following two properties:

- It is a 2-variety
- It is Nielsen-Schreier

then, V is the variety of Lie algebras.

Definition

A variety of non-associative algebras is the class of all vector spaces equipped with a binary multiplication satisfying a certain set of polynomial identities.

Definition

A variety of non-associative algebras is the class of all vector spaces equipped with a binary multiplication satisfying a certain set of polynomial identities.

$$xy + yx = 0,$$
 x

$$xy + yx = 0,$$
 $x(yz) + y(zx) + z(xy) = 0$

Definition

A variety of non-associative algebras is the class of all vector spaces equipped with a binary multiplication satisfying a certain set of polynomial identities.

- Lie algebras xy + yx = 0, x(yz) + y(zx) + z(xy) = 0
- Associative algebras x(yz) (xy)z = 0

Definition

A variety of non-associative algebras is the class of all vector spaces equipped with a binary multiplication satisfying a certain set of polynomial identities.

• Lie algebras
$$xy + yx = 0$$
, $x(yz) + y(zx) + z(xy) = 0$

- Associative algebras x(yz) (xy)z = 0
- Commutative associative algebras

Definition

A variety of non-associative algebras is the class of all vector spaces equipped with a binary multiplication satisfying a certain set of polynomial identities.

• Lie algebras
$$xy + yx = 0$$
, $x(yz) + y(zx) + z(xy) = 0$

- Associative algebras x(yz) (xy)z = 0
- Commutative associative algebras
- Jordan algebras

Main Theorem

Let V be a non-trivial variety of non-associative algebras over a field of characteristic zero.

If V satisfies the following two properties:

- It is a 2-variety
- It is Nielsen-Schreier

then, V is the variety of Lie algebras.

Definition

A variety of non-associative algebras is the class of all vector spaces equipped with a binary multiplication satisfying a certain set of polynomial identities.

$$xy + yx = 0,$$
 $x(yz) + y(zx) + z(xy) = 0$

$$x(yz) - (xy)z = 0$$

- Commutative associative algebras
- Jordan algebras
- Trivial algebras

$$xy = 0$$

Main Theorem

Let V be a non-trivial variety of non-associative algebras over a field of characteristic zero.

If V satisfies the following two properties:

- It is a 2-variety
- It is Nielsen-Schreier

then, V is the variety of Lie algebras.

Characteristic zero

Over characteristic zero, every set of algebraic identities is equivalent to a multilinear one (all the monomials of the relations have exactly one x, one y, etc.)

Characteristic zero

Over characteristic zero, every set of algebraic identities is equivalent to a multilinear one (all the monomials of the relations have exactly one x, one y, etc.)

A variety of non-associative algebras is isomorphic to the class of algebras over a quotient of the free operad generated by a binary operation.

Main Theorem

Let $\mathcal V$ be a non-trivial variety of non-associative algebras over a field of characteristic zero.

If V satisfies the following two properties:

- It is a 2-variety
- It is Nielsen-Schreier

then, V is the variety of Lie algebras.

Definition

A variety $\mathcal V$ is a 2-variety if for any $\mathit I$ ideal of any algebra $\mathit A$, $\mathit I^2$ is also an ideal.

Definition

A variety $\mathcal V$ is a 2-variety if for any $\mathit I$ ideal of any algebra $\mathit A$, $\mathit I^2$ is also an ideal.

Theorem (GM-Van der Linden, 2019)

Let ${\mathcal V}$ be a variety of non-associative algebras. TFAE:

V is a 2-variety

Definition

A variety $\mathcal V$ is a 2-variety if for any $\mathit I$ ideal of any algebra $\mathit A$, $\mathit I^2$ is also an ideal.

Theorem (GM-Van der Linden, 2019)

Let V be a variety of non-associative algebras. TFAE:

- V is a 2-variety
- ullet ${\cal V}$ is algebraically coherent

Definition

A variety V is a 2-variety if for any I ideal of any algebra A, I^2 is also an ideal.

Theorem (GM-Van der Linden, 2019)

Let ${\cal V}$ be a variety of non-associative algebras. TFAE:

- V is a 2-variety
- ullet ${\cal V}$ is algebraically coherent
- ullet ${\cal V}$ is an Orzech-category of interest

Definition

A variety V is a 2-variety if for any I ideal of any algebra A, I^2 is also an ideal.

Theorem (GM-Van der Linden, 2019)

Let V be a variety of non-associative algebras. TFAE:

- V is a 2-variety
- ullet ${\cal V}$ is algebraically coherent
- ullet ${\cal V}$ is an Orzech-category of interest
- there exist $\lambda_1, \ldots, \lambda_{16}$ in \mathbb{K} such that

$$z(xy) = \lambda_1 y(zx) + \lambda_2 x(yz) + \lambda_3 y(xz) + \lambda_4 x(zy)$$
$$+ \lambda_5 (zx) y + \lambda_6 (yz) x + \lambda_7 (xz) y + \lambda_8 (zy) x$$

and

$$(xy)z = \lambda_9 y(zx) + \lambda_{10} x(yz) + \lambda_{11} y(xz) + \lambda_{12} x(zy)$$

$$+ \lambda_{13}(zx)y + \lambda_{14}(yz)x + \lambda_{15}(xz)y + \lambda_{16}(zy)x$$

Main Theorem

Let V be a non-trivial variety of non-associative algebras over a field of characteristic zero.

If V satisfies the following two properties:

- It is a 2-variety
- It is Nielsen-Schreier

then, V is the variety of Lie algebras.

Definition

A variety ${\cal V}$ is Nielsen-Schreier if all subalgebras of all free algebras are also free.

Definition

A variety ${\cal V}$ is Nielsen-Schreier if all subalgebras of all free algebras are also free.

Theorem (Dotsenko-Umirbaev, 2023)

Suppose that the operad $\mathcal O$ encoding a variety of algebras $\mathcal V$ satisfies the following two properties:

- for the reverse graded path-lexicographic ordering, each leading term of the reduced Gröbner basis of the corresponding shuffle operad \mathcal{O}^f has the minimal leaf directly connected to the root,
- there exists an ordering for which each leading term of the reduced Gröbner basis of the corresponding shuffle operad \mathcal{O}^f is a left comb whose second smallest leaf is a sibling of the minimal leaf.

then, V is Nielsen-Schreier.

Definition

A variety ${\cal V}$ is Nielsen-Schreier if all subalgebras of all free algebras are also free.

Corollary

A Nielsen-Schreier variety of non-associative algebras cannot have an identity where x is the inner bracket in all monomials.

Definition

A variety ${\cal V}$ is Nielsen-Schreier if all subalgebras of all free algebras are also free.

Corollary

A Nielsen-Schreier variety of non-associative algebras cannot have an identity where x is the inner bracket in all monomials.

Corollary

The variety of associative algebras is not Nielsen-Schreier

$$y(xz) - (yx)z$$

Main Theorem

Let V be a non-trivial variety of non-associative algebras over a field of characteristic zero.

If V satisfies the following two properties:

- It is a 2-variety
- It is Nielsen-Schreier

then, V is the variety of Lie algebras.

Proof

Both properties are kind of a Sandwhich to each other.

The 2-variety condition *likes* identities, while the Nielsen-Schreier *doesn't like* identities.

Proof

Both properties are kind of a Sandwhich to each other.

The 2-variety condition *likes* identities, while the Nielsen-Schreier *doesn't like* identities.

Both criteria meet in a thin line, and, with the help of some computational algebra, we end up realising that Lie algebras is the only possibility.

Final considerations

The condition (LACC) can be encoded as the preservation of coproducts of the $B \flat$ —functor, i.e. a category is LACC if the canonical morphism

$$B\flat X + B\flat Y \to B\flat (X + Y)$$

is an isomorphism.

Final considerations

The condition (LACC) can be encoded as the preservation of coproducts of the $B \flat-$ functor, i.e. a category is LACC if the canonical morphism

$$B\flat X + B\flat Y \to B\flat (X + Y)$$

is an isomorphism.

We know that it is a surjection if and only if it is algebraic coherent. The obvious question is, is the injectivity of this morphism related to Nielsen-Schreier?

Final considerations

The condition (LACC) can be encoded as the preservation of coproducts of the $B \flat-$ functor, i.e. a category is LACC if the canonical morphism

$$B\flat X + B\flat Y \to B\flat (X + Y)$$

is an isomorphism.

We know that it is a surjection if and only if it is algebraic coherent. The obvious question is, is the injectivity of this morphism related to Nielsen-Schreier?

Both proofs have some similarities but they are not equivalent to each other.

References

Deval, GM, Van der Linden.

A universal Kaluzhnin–Krasner embedding theorem. *Proc. Amer. Math. Soc.* 152(12), 5039–5053, (2024).

Dotsenko, GM.

A characterisation of Lie algebras using ideals and subalgebras. *Bull. Lond. Math. Soc.* 56(7), 2408–2423, (2024).

Dotsenko, Umirbaev.

An effective criterion for Nielsen–Schreier varieties. *Int. Math. Res. Not.* 23, 20385–20432, (2023).

GM, Tsishyn, Van der Linden, Vienne. Algebras with representable representations. *Proc. Edinb. Math. Soc.* 64(3), 555–573, (2021).

GM, Van der Linden.

A characterisation of Lie algebras via algebraic exponentiation. *Adv. Math.*, 341, 92–117, (2019).