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Our plan and similar work in the literature

In this talk, we will discuss a generalization of the notion of pretorsion
theory to the context of infinity categories (here quasi-catégories). Many
crucial ideas, including the following, have already been discussed in the
literature.

The concept of pretorsion theory as a generalization of Dickson’s
torsion theories (see [2]) has been developed extensively for
1-categories by Facchini, Finocchiaro, Gran, and others. See, for
instance, [3] and [4].

There is a notion of torsion theory, based on factorization systems, for
stable (∞, 1)−categories introduced in [5].

In [7], there is a notion of torsion theory for bicategories under
consideration.

Grossman, Lucy (UCLouvain) PTTs sur (∞, 1)-Cs CT2025 2 / 9



Pretorsion Theories

Definition

(Definition 2.6 of [4]) Let C be a category. A pretorsion theory (T,F) on
C consists of a pair of full, replete subcategories T and F such that for
Z := T ∩ F, the following conditions are satisfied:

1 homC(T ,F ) = TrivZ(T ,F ) for every object T ∈ T and F ∈ F.

2 For each object B ∈ C there exists a short Z−exact sequence

A
f−→ B

g−→ C

with A ∈ T and C ∈ F (in other words, f is a Z -kernel of g and g a
Z -cokernel of f ).

Remark

If Z = ∅, this structure is that of a torsion theory (see [2]).
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(∞, 1)-Pretorsion Theories

We state the direct analogue for (∞, 1)-categories, where all components
are replaced by their (∞, 1) counterparts.

Definition:

Let C be an (∞, 1)-category. A pretorsion theory on C is a triple of full,
replete subcategories (T ,F ,Z ) such that:

1 HomC (T ,F ) = Z -Triv(T ,F ), ∀T ∈ T , F ∈ F , and

2 To every object X ∈ C , one can associate a short Z −exact sequence
TX

ϵ−→ X
η−→ FX .

Remarks:

One usually takes Z := T ∩ F .

If Z = ∅, this structure is that of a torsion theory (see [2]).

This all seems well and good, but the devil lies in the details.
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(∞, 1)-Pretorsion Theories - Z -triviality

Fundamental challenge: defining Z -triviality. In principle,

Definition:

A morphism f : A → B in C is Z -trivial if, for Z ∈ Z the following
diagram commutes:

A B

Z

a

f

b ,

i.e. f ∼= b ◦ a.

Our näıve attempt to lift this to (∞, 1)-catégories was to define
Z -triv(−.−) as a certain subfunctor of Hom(−,−).

Remark:

In this definition, the Z -kernels are epimorphisms and the Z -cokernels are
monomorphisms, severely restricting the collection of potential examples.
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Pretorsion theories on QCs - sought-after example

Generalizing the example from [1], we consider the following.

Proposition:

Let C be an (∞, 1)-category. Denote by Seg(C ) the Segal space objects
of C , by GpdSeg(C ) the Segal space groupoid objects of C , by

ˆSegGpd(C ) the complete Segal space groupoid objects of C , and ˆSeg(C )
the complete Segal space objects of C .
Then, (T ,F ,Z ) = (SegGpd(C ), ˆSeg(C ), ˆSegGpd(C ) forms a pretorsion
theory on Seg(C ).

Remark:

This does not hold using our previous definition, as namely the short exact
sequence associated to an object X ∈ Seg(C ) is of the form

X c core−−→ X
cmpl .−−−→ X̄ ,

with core the Segal core functor and cmpl . that of Segal completion.
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Problem and Potential Fix:

The map X
cmpl .−−−→ X̄ is not an epimorphism. We would like this to be an

example of an (∞, 1)-pretorsion theory, so we shall adapt the definition to
accomodate this.

One Potential Fix:

Define Z −triviality instead in terms of the coend∫ z∈Z

HomC (X ,Z )× HomC (Z ,Y ).

This at least encapsulates the factorization that Z −triviality implies.

Remarks:

This makes the proposed PTT on Seg(C ) an actual example.

Another option is to define Z -Triv(−,−) as some other functor.
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Remarks:

Our original definition of PTT on an (∞, 1)-category was developed
to directly lift the 1−categorical notion to that setting. It does this,
and once one passes to hC , one obtains the classical 1−categorical
notion and its properties.

In the case that one takes Z = ∅ and works in a stable category, one
arrives at a notion of torsion theory. This will be coherent with the
notion developed in [5].

By truncating our (∞, 1)−pretorsion theories using the original
definition, we obtain the bicategorical ones of [7] up to a uniqueness
condition.
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