# Pretorsion Theories on $(\infty, 1)$ -catégories

# L. Grossman<sup>1</sup> lucy.grossman@uclouvain.be

<sup>1</sup>Institut de recherche en mathématiques et physique Université Catholique de Louvain, Louvain-la-Neuve, Belgique

International Category Theory Conference CT2025, July 14, 2025, Brno, Czechia

# Our plan and similar work in the literature

In this talk, we will discuss a generalization of the notion of *pretorsion* theory to the context of infinity categories (here quasi-catégories). Many crucial ideas, including the following, have already been discussed in the literature.

- The concept of *pretorsion theory* as a generalization of Dickson's *torsion theories* (see [2]) has been developed extensively for 1-categories by Facchini, Finocchiaro, Gran, and others. See, for instance, [3] and [4].
- There is a notion of torsion theory, based on factorization systems, for stable  $(\infty, 1)$ -categories introduced in [5].
- In [7], there is a notion of torsion theory for bicategories under consideration.

## Pretorsion Theories

#### Definition

(Definition 2.6 of [4]) Let C be a category. A pretorsion theory (T,F) on C consists of a pair of full, replete subcategories T and F such that for  $Z := T \cap F$ , the following conditions are satisfied:

- ${\mathbb P}_{{\mathsf L}} \ \mathit{hom}_{{\mathsf C}}(T,F) = \mathit{Triv}_{{\mathsf Z}}(T,F)$  for every object  $T \in {\mathsf T}$  and  $F \in {\mathsf F}$ .
- Por each object  $B \in \mathbf{C}$  there exists a short  $\mathbf{Z}$ —exact sequence

$$A \xrightarrow{f} B \xrightarrow{g} C$$

with  $A \in \mathbf{T}$  and  $C \in \mathbf{F}$  (in other words, f is a  $\mathscr{Z}$ -kernel of g and g a  $\mathscr{Z}$ -cokernel of f).

#### Remark

• If  $\mathbf{Z} = \emptyset$ , this structure is that of a torsion theory (see [2]),

Cs CT2025

# (00, 1)-Pretorsion Theories

We state the direct analogue for  $(\infty, 1)$ -categories, where all components are replaced by their  $(\infty, 1)$  counterparts.

#### Definition:

Let  $\mathscr C$  be an  $(\infty,1)$ -category. A *pretorsion theory* on  $\mathscr C$  is a triple of full, replete subcategories  $(\mathscr T,\mathscr F,\mathscr Z)$  such that:

- 1  $Hom_{\mathscr{C}}(T,F)=\mathscr{Z}$ -Triv(T,F),  $\forall T\in\mathscr{T}$ ,  $F\in\mathscr{F}$ , and
- $\begin{tabular}{ll} \begin{tabular}{ll} \textbf{2} & \textbf{To every object } X \in \mathscr{C}, \mbox{ one can associate a short } \mathscr{Z}-\mbox{exact sequence} \\ & TX \xrightarrow{\epsilon} X \xrightarrow{\eta} FX. \end{tabular}$

#### Remarks:

- One usually takes  $\mathscr{Z} := \mathscr{T} \cap \mathscr{F}$ .
- If  $Z = \emptyset$ , this structure is that of a torsion theory (see [2]).

This all seems well and good, but the devil lies in the details.

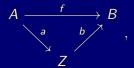


# $(\infty,1)$ -Pretorsion Theories - $\mathscr{Z}$ -triviality

Fundamental challenge: defining  $\mathscr{Z}$ -triviality. In principle,

#### Definition:

A morphism  $f: A \to B$  in  $\mathscr C$  is  $\mathscr Z$ -trivial if, for  $Z \in \mathscr Z$  the following diagram commutes:



i.e.  $f \cong b \circ a$ .

Our naïve attempt to lift this to  $(\infty, 1)$ -catégories was to define  $\mathscr{Z}$ -triv(-,-) as a certain subfunctor of Hom(-,-).

#### Remark:

In this definition, the  $\mathscr{Z}$ -kernels are epimorphisms and the  $\mathscr{Z}$ -cokernels are monomorphisms, severely restricting the collection of potential examples.

# Pretorsion theories on QCs - sought-after example

Generalizing the example from [1], we consider the following.

### Proposition:

Let  $\mathscr C$  be an  $(\infty,1)$ -category. Denote by  $Seg(\mathscr C)$  the Segal space objects of  $\mathscr C$ , by  $GpdSeg(\mathscr C)$  the Segal space groupoid objects of  $\mathscr C$ , by  $SegGpd(\mathscr C)$  the complete Segal space groupoid objects of  $\mathscr C$ , and  $Seg(\mathscr C)$  the complete Segal space objects of  $\mathscr C$ .

Then,  $(\mathscr{T}, \mathscr{F}, \mathscr{Z}) = (SegGpd(\mathscr{C}), \hat{Seg}(\mathscr{C}), SegGpd(\mathscr{C})$  forms a pretorsion theory on  $Seg(\mathscr{C})$ .

#### Remark:

This does not hold using our previous definition, as namely the short exact sequence associated to an object  $X \in Seg(\mathscr{C})$  is of the form

$$X^c \xrightarrow{core} X \xrightarrow{cmpl.} \bar{X},$$

with core the Segal core functor and cmpl. that of Segal completion.

s sur  $(\infty,1)$ -Cs CT202

# Problem and Potential Fix:

The map  $X \xrightarrow{cmpl.} \bar{X}$  is not an epimorphism. We would like this to be an example of an  $(\infty, 1)$ -pretorsion theory, so we shall adapt the definition to accommodate this.

One Potential Fix:

Define  $\mathscr{Z}-\text{triviality}$  instead in terms of the coend

$$\int^{z\in\mathscr{Z}} Hom_{\mathscr{C}}(X,Z)\times Hom_{\mathscr{C}}(Z,Y).$$

This at least encapsulates the factorization that  $\mathscr{Z}-$ triviality implies.

#### Remarks:

- This makes the proposed PTT on  $Seg(\mathscr{C})$  an actual example.
- Another option is to define  $\mathscr{Z}$ -Triv(-,-) as some other functor.

# Remarks:

- Our original definition of PTT on an  $(\infty,1)$ -category was developed to directly lift the 1-categorical notion to that setting. It does this, and once one passes to  $h\mathscr{C}$ , one obtains the classical 1-categorical notion and its properties.
- In the case that one takes  $\mathscr{Z} = \varnothing$  and works in a stable category, one arrives at a notion of torsion theory. This will be coherent with the notion developed in [5].
- By truncating our  $(\infty,1)$ -pretorsion theories using the original definition, we obtain the bicategorical ones of [7] up to a uniqueness condition.

#### References

- Francis Borceux, Federico Campanini, Marino Gran, and Walter Tholen.
  Groupoids and skeletal categories form a pretorsion theory in Cat, 2023.
- Spencer E. Dickson.

A torsion theory for abelian categories.

Transactions of the American Mathematical Society, 121:223-235, 1966.

- Alberto Facchini and Carmelo Finocchiaro.
  - Pretorsion theories, stable category and preordered sets, 2019.
- Alberto Facchini, Carmelo Finocchiaro, and Marino Gran.

Pretorsion theories in general categories.

Journal of Pure and Applied Algebra, 225(2):106503, 2021.

- D. Fiorenza and F. Loregian.
  - t-structures are normal torsion theories.

Applied Categorical Structures, 24(2):181-208, Apr 2016.

Lucy Grossman.

Théories de prétorsion sur les quasi-catégories. forthcoming.

- \_\_\_\_
- Mariano Messora and Enrico Vitale.

Bi-torsion theories - slides on an ongoing project, 2024.