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GETTING A FEEL FOR PARTIAL GROUPS

Example
[−3, 3] ∩ ℤ:

+(1, −2) = −1 +(2, −1, 2) = 3
+(2, 2) = ? +(−1, 2, 2) = ?

Example (Adem, Cohen, Torres Giese)
𝐺 group⇝ 𝐺com partial group with same elements

•(𝑔1, … , 𝑔𝑛) = {𝑔1 ⋯𝑔𝑛 if 𝑔𝑖𝑔𝑘 = 𝑔𝑘𝑔𝑖 for all 𝑖, 𝑘
? otherwise



THE NERVE THEOREM FOR CATEGORIES

The nerve functor 𝑁∶ Cat→ sSet is fully faithful.

Moreover, the following are equivalent for 𝑋 ∈ sSet:
1. 𝑋 ≅ 𝑁𝐶 for some 𝐶 ∈ Cat
2. the Segal map sp𝑛 ∶ 𝑋𝑛 → 𝑋1 ×𝑋0 𝑋1 ×𝑋0 ⋯ ×𝑋0 𝑋1 is a
bijection for all 𝑛 ≥ 2

3. 𝑋𝑛 𝑋𝑛−1

𝑋𝑛−1 𝑋𝑛−2

𝑑𝑛

𝑑0 𝑑0

𝑑𝑛−1

is a pullback for all 𝑛 ≥ 2



THE SEGAL MAP

sp𝑛 ∶ 𝑋𝑛 →𝑋{0,1} ×𝑋{1} 𝑋{1,2} ×𝑋{2} ⋯ ×𝑋{𝑛−1} 𝑋{𝑛−1,𝑛}

= 𝑋1 ×𝑋0 𝑋1 ×𝑋0 ⋯ ×𝑋0 𝑋1 ≕ 𝐖𝑋𝑛 ⊆
𝑛
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𝑛-ary composition: 𝐖𝑋𝑛
≅←− 𝑋𝑛 → 𝑋1



THE NERVE THEOREM FOR GROUPOIDS

𝚺 has objects [𝑛] = {0, 1, … , 𝑛} for 𝑛 ≥ 0, all functions as maps.
With [𝑛] considered as a chaotic groupoid, 𝚺 ⊆ Gpd.
Sym = Fun(𝚺op, Set) = category of symmetric (simplicial) sets.

The nerve functor 𝑁∶ Gpd→ Sym is fully faithful.

Moreover, the following are equivalent for 𝑋 ∈ Sym:
1. 𝑋 ≅ 𝑁𝐶 for some 𝐶 ∈ Gpd
2. the Segal map sp𝑛 ∶ 𝑋𝑛 → 𝑋1 ×𝑋0 𝑋1 ×𝑋0 ⋯ ×𝑋0 𝑋1 is a
bijection for all 𝑛 ≥ 2



WHY ARE SYMMETRIC SETS A GREAT HOME FOR GROUPOIDS?

Finding inverse:

[1] [1] 𝑋1 𝑋1

0 0 𝑓 𝑓−1

1 1

flip

⇝

Checking it works:

[2] [1] 𝑋1 𝑋2

0 0 𝑦
1 1 𝑓 ↦
2 𝑦 𝑥

fold

⇝

𝑓−1

id 𝑓



PARTIAL GROUPS

Definition
A symmetric set 𝑋 is spiny if the Segal maps

sp𝑛 ∶ 𝑋𝑛 → 𝐖𝑋𝑛 ⊆ 𝑋×𝑛
1

are injections for all 𝑛 ≥ 2. Also say 𝑋 is a partial groupoid.

Example
A symmetric subset of the nerve of a groupoid is spiny.

Definition/Theorem (Chermak, González, H–Lynd)
A partial group is a reduced partial groupoid (i.e. 𝑋0 = ∗).



NOT EVERY PARTIAL GROUP EMBEDS IN A GROUP



PLATONICALLY NON-ASSOCIATIVE PARTIAL GROUPOID

0 1

23

0 1

23

glue together to obtain a 2-dimensional partial groupoid:
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𝑔ℎ



ACTION OF PARTIAL GROUP: MOTIVATION

A functor 𝐸 𝑝−→ 𝐵 between categories is a discrete opfibration if:

𝑒 𝑒 𝑒′

𝑝(𝑒) 𝑏 𝑝(𝑒) 𝑏
⇝

∃!

Category of elements / Grothendieck construction:

∫∶ Fun(𝐵, Set) ≃ dOpFib(B) ⊆ Cat/𝐵
objects (𝑏 ∈ 𝐵, 𝑥 ∈ 𝐹(𝑏))
morphisms 𝑓𝑥 ∶ (𝑏, 𝑥) → (𝑏′, 𝐹(𝑓)𝑥) for 𝑓 ∶ 𝑏 → 𝑏′



ACTION OF PARTIAL GROUP (OR PARTIAL GROUPOID)

Definition
For 𝑋 ∈ Sym and 𝑥 ∈ 𝑋0, let★(𝑥) be the collection of all
simplices that start at 𝑥:

★(𝑥)𝑛 𝑋𝑛

{𝑥} 𝑋0

⌟
start

Definition
A map 𝑝∶ 𝐸 → 𝐵 in Sym is star injective if

★(𝑒) → ★(𝑝(𝑒))

is injective for each 𝑒 ∈ 𝐸0



STAR INJECTIVE MAPS AS ACTIONS

Lemma
If 𝐵 is spiny and 𝑝∶ 𝐸 → 𝐵 is star injective, then 𝐸 is spiny.

Think of 𝑝 as a (partial) action of 𝐵 on the set 𝐸0:

𝑓 = (𝑏0 𝑏1 ⋯ 𝑏𝑛
𝑓1 𝑓2 𝑓𝑛 ) ∈ 𝐵𝑛 𝑒 = 𝑒0 ∈ 𝑝−1(𝑏0)

𝑒0 𝑒1 ⋯ 𝑒𝑛

𝑏0 𝑏1 ⋯ 𝑏𝑛

̃𝑓1 ̃𝑓2 ̃𝑓𝑛

𝑓1 𝑓2 𝑓𝑛
𝑓 ⋅ 𝑒 ≔ {𝑒𝑛?



PARTIAL ACTIONS OF GROUPS

Example (Exel, Kellendonk–Lawson)
𝐺 group, 𝑆 a 𝐺-set, and 𝑈 ⊆ 𝑆 a subset.
This is a partial action of 𝐺 on 𝑈.

𝐸 𝐸′ 𝐺
ob𝐸 = 𝑈 ob𝐸′ = 𝑆

f.f. dopfib

𝐸 → 𝐺 is a star injective map of groupoids.

Example
Passing to symmetric sets via the nerve, let 𝐿𝑈(𝐺) ⊆ 𝐺 be the
image of the above map in Sym.
If 𝑈 ≠ ∅ then 𝐿𝑈(𝐺) is a partial group, and 𝐸 → 𝐿𝑈(𝐺) is star inj.



EXAMPLE: PUNCTURED P-LOCAL GROUPS

𝐺 group with nontrivial Sylow 𝑝-subgroup 𝑆 for some prime 𝑝.
𝑈 = nontrivial elements of 𝑆 with partial conjugation action.

𝐿𝑈(𝐺) is a 𝑝-local punctured group (Henke–Libman–Lynd).

The localities of Chermak are partial groups generalizing this.



CHARACTERISTIC ACTIONS

Definition
A star injective map 𝑝∶ 𝐸 → 𝐵 is characteristic if

• 𝑝 is surjective
• 𝐸 is a groupoid

Example
𝐸 → 𝐿𝑈(𝐺) is characteristic

Theorem
Every partial groupoid admits a characteristic action.

Proof.
∐
𝑛≥0

∐
nd𝐿𝑛

hom𝚺(−, [𝑛]) → 𝐿 is characteristic.



HIGHER SEGAL CONDITIONS AND THE DISCRETE
GEOMETRY OF ACTIONS



HIGHER SEGAL SPACES (DYCKERHOFF & KAPRANOV; WALDE)

𝑋𝑛 𝑋𝑛−1

𝑋𝑛−1 𝑋𝑛−2

⌟

𝑑0

𝑑𝑛 𝑑𝑛−1 lower 1-Segal

𝑑0

𝑋𝑛 𝑋𝑛−1 𝑋𝑛 𝑋𝑛−1

𝑋𝑛−1 𝑋𝑛−2 𝑋𝑛−1 𝑋𝑛−2

⌟
𝑑𝑖

𝑑0 𝑑0
⌟

𝑑𝑗

𝑑𝑛 𝑑𝑛−1

𝑑𝑖−1 𝑑𝑗

2 ≤ 𝑖 ≤ 𝑛 − 1 1 ≤ 𝑗 ≤ 𝑛 − 2
upper 2-Segal lower 2-Segal



HIGHER SEGAL SPACES (DYCKERHOFF & KAPRANOV; WALDE)

lower 3-Segal:

𝑋𝑛 𝑋𝑛−1

𝑋𝑛−1 𝑋𝑛−2

𝑋𝑛−1 𝑋𝑛−2

𝑋𝑛−2 𝑋𝑛−3

𝑑𝑛

𝑑0
𝑑𝑖

𝑑0
𝑑𝑖

𝑑𝑛−1

𝑑0
𝑑𝑛−1

𝑑𝑖−1

𝑑𝑖−1
𝑑𝑛−2

𝑑0
2 ≤ 𝑖 ≤ 𝑛 − 2

Theorem
For symmetric sets, the lower (2𝑘−1)-Segal, lower 2𝑘-Segal,
upper 2𝑘-Segal, and upper (2𝑘+1)-Segal conditions coincide.



THE DEGREE

Theorem
For symmetric sets, the lower (2𝑘−1)-Segal, lower 2𝑘-Segal,
upper 2𝑘-Segal, and upper (2𝑘+1)-Segal conditions coincide.

Definition
The degree of a symmetric set 𝑋 is the least 𝑘 ≥ 1 such that 𝑋
is lower (2𝑘−1)-Segal.

Example
Degree one partial groupoids are just groupoids.



CLOSURE SPACE OF ACTION

Definition
𝑝∶ 𝐸 → 𝐵 characteristic
𝐸0 is a closure space with generating closed sets

𝐷(𝑓) = {𝑥 ∈ 𝐸0 ∣ 𝑓 ∈ 𝐵𝑛 acts on 𝑥}.
Arbitrary closed sets are intersections of these

Definition
The Helly number of 𝑝∶ 𝐸 → 𝐵 is the Helly number of 𝐸0
i.e. ℎ(𝑝) = sup(𝑛) ranging over those 𝑛 ∈ ℕ for which there is a
family (𝐴1, … , 𝐴𝑛) of closed sets with

𝑛

𝑖=1

𝐴𝑖 = ∅ 
𝑖≠𝑘

𝐴𝑖 ≠ ∅ 𝑘 = 1,… , 𝑛



MAIN THEOREM

Definition
The degree of a symmetric set 𝑋 is the least 𝑘 ≥ 1 such that 𝑋
is lower (2𝑘−1)-Segal.

Theorem
𝑝∶ 𝐸 → 𝐵 characteristic

• If 𝐵 is not a groupoid, then deg(𝐵) ≤ ℎ(𝑝)
• If additionally 𝐸0 is artinian, then ℎ(𝑝) = deg(𝐵)



CALCULATIONS: PUNCTURED WEYL GROUPS

Φ a root system
𝑊 = 𝑊(Φ) the Weyl group
Γ ⊂ Φ a set of positive roots
𝐿 = 𝐿Γ(𝑊) (punctured Weyl group: 𝐿1 = 𝑊 ⧵ {𝑤0})

Φ deg(𝐿) Φ deg(𝐿)
𝐴𝑛 ⌊(𝑛 + 1)2/4⌋ 𝐵𝑛/𝐶𝑛 (𝑛2) + 1
𝐷𝑛 (𝑛2) 𝐹4 6
𝐸6 16 𝐺2 2
𝐸7 27 𝐼2(𝑚) 2
𝐸8 36


	Higher Segal conditions and the discrete geometry of actions

