ACTIONS OF PARTIAL GROUPS AND THE HIGHER SEGAL CONDITIONS

Philip Hackney (& Justin Lynd)

University of Louisiana at Lafayette CT2025

July 18, 2025

GETTING A FEEL FOR PARTIAL GROUPS

Example

 $[-3, 3] \cap \mathbb{Z}$:

$$+(1,-2) = -1$$
 $+(2,-1,2) = 3$ $+(2,2) = ?$ $+(-1,2,2) = ?$

Example (Adem, Cohen, Torres Giese)

G group $\rightsquigarrow G_{com}$ partial group with same elements

•
$$(g_1, ..., g_n) = \begin{cases} g_1 \cdots g_n & \text{if } g_i g_k = g_k g_i \text{ for all } i, k \\ ? & \text{otherwise} \end{cases}$$

THE NERVE THEOREM FOR CATEGORIES

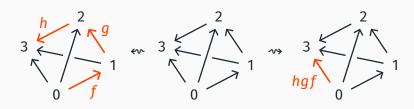
The nerve functor $N: Cat \rightarrow sSet$ is fully faithful.

Moreover, the following are equivalent for $X \in SSet$:

- 1. $X \cong NC$ for some $C \in Cat$
- 2. the Segal map $\operatorname{sp}_n: X_n \to X_1 \times_{X_0} X_1 \times_{X_0} \cdots \times_{X_0} X_1$ is a bijection for all $n \ge 2$
- 3. $X_n \xrightarrow{d_n} X_{n-1}$ is a pullback for all $n \ge 2$ $\begin{array}{cccc} d_0 \downarrow & & \downarrow d_0 \\ X_{n-1} & \xrightarrow{d_{n-1}} X_{n-2} \end{array}$

THE SEGAL MAP

$$\begin{split} \operatorname{sp}_n : X_n \to X_{\{0,1\}} \times_{X_{\{1\}}} X_{\{1,2\}} \times_{X_{\{2\}}} \cdots \times_{X_{\{n-1\}}} X_{\{n-1,n\}} \\ = X_1 \times_{X_0} X_1 \times_{X_0} \cdots \times_{X_0} X_1 =: \mathbf{W} X_n \subseteq \prod_{i=1}^n X_1 \end{split}$$



n-ary composition: $\mathbf{W}X_n \stackrel{\tilde{=}}{\leftarrow} X_n \to X_1$

THE NERVE THEOREM FOR GROUPOIDS

 Σ has objects $[n] = \{0, 1, ..., n\}$ for $n \ge 0$, all functions as maps. With [n] considered as a chaotic groupoid, $\Sigma \subseteq Gpd$. Sym = Fun(Σ^{op} , Set) = category of symmetric (simplicial) sets.

The nerve functor $N: \mathsf{Gpd} \to \mathsf{Sym}$ is fully faithful.

Moreover, the following are equivalent for $X \in Sym$:

- 1. $X \cong NC$ for some $C \in Gpd$
- 2. the Segal map $\operatorname{sp}_n: X_n \to X_1 \times_{X_0} X_1 \times_{X_0} \cdots \times_{X_0} X_1$ is a bijection for all $n \ge 2$

WHY ARE SYMMETRIC SETS A GREAT HOME FOR GROUPOIDS?

Finding inverse:

$$[1] \xrightarrow{\text{flip}} [1] \qquad X_1 \longrightarrow X_1$$

$$0 \longrightarrow 0 \qquad \rightsquigarrow f \longmapsto f^{-1}$$

Checking it works:

$$[2] \xrightarrow{\text{fold}} [1] \qquad X_1 \longrightarrow X_2$$

$$0 \longrightarrow 0 \\ 1 \longrightarrow 1 \qquad \text{id} \nearrow f$$

$$y \longrightarrow f^{-1} \longrightarrow X_2$$

PARTIAL GROUPS

Definition

A symmetric set X is spiny if the Segal maps

$$\operatorname{sp}_n: X_n \to \mathbf{W} X_n \subseteq X_1^{\times n}$$

are injections for all $n \ge 2$. Also say X is a partial groupoid.

Example

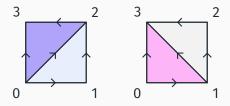
A symmetric subset of the nerve of a groupoid is spiny.

Definition/Theorem (Chermak, González, H-Lynd)

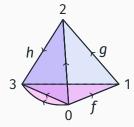
A partial group is a reduced partial groupoid (i.e. $X_0 = *$).

NOT EVERY PARTIAL GROUP EMBEDS IN A GROUP

PLATONICALLY NON-ASSOCIATIVE PARTIAL GROUPOID



glue together to obtain a 2-dimensional partial groupoid:



ACTION OF PARTIAL GROUP: MOTIVATION

A functor $E \stackrel{p}{\rightarrow} B$ between categories is a discrete opfibration if:

$$\begin{array}{ccccc} e & & & e & \stackrel{\exists!}{\rightarrow} e' \\ \vdots & & \rightsquigarrow & \vdots & \vdots \\ p(e) \rightarrow b & & p(e) \rightarrow b \end{array}$$

Category of elements / Grothendieck construction:

$$\int$$
: Fun(B, Set) \simeq dOpFib(B) \subseteq Cat_{/B}

objects $(b \in B, x \in F(b))$ morphisms $f_x : (b, x) \to (b', F(f)x)$ for $f : b \to b'$

ACTION OF PARTIAL GROUP (OR PARTIAL GROUPOID)

Definition

For $X \in \text{Sym}$ and $x \in X_0$, let $\bigstar(x)$ be the collection of all simplices that start at x:

$$\begin{array}{ccc} \bigstar(x)_n & \longrightarrow & X_n \\ \downarrow & & \downarrow & \text{start} \\ \{x\} & \longrightarrow & X_0 \end{array}$$

Definition

A map $p: E \rightarrow B$ in Sym is star injective if

$$\bigstar(e) \rightarrow \bigstar(p(e))$$

is injective for each $e \in E_0$

STAR INJECTIVE MAPS AS ACTIONS

Lemma

If B is spiny and $p: E \rightarrow B$ is star injective, then E is spiny.

Think of p as a (partial) action of B on the set E_0 :

$$f = \left(b_0 \xrightarrow{f_1} b_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} b_n\right) \in B_n \qquad e = e_0 \in p^{-1}(b_0)$$

$$e_0 \xrightarrow{\tilde{f}_1} e_1 \xrightarrow{\tilde{f}_2} \cdots \xrightarrow{\tilde{f}_n} e_n$$

$$\vdots$$

$$b_0 \xrightarrow{f_1} b_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} b_n$$

$$f \cdot e \coloneqq \begin{cases} e_n \\ ? \end{cases}$$

PARTIAL ACTIONS OF GROUPS

Example (Exel, Kellendonk-Lawson)

G group, S a G-set, and $U \subseteq S$ a subset. This is a partial action of G on U.

$$E \leftarrow \xrightarrow{\text{f.f.}} E' \xrightarrow{\text{dopfib}} G$$

$$obE = U \qquad obE' = S$$

 $E \rightarrow G$ is a star injective map of groupoids.

Example

Passing to symmetric sets via the nerve, let $L_U(G) \subseteq G$ be the image of the above map in Sym.

If $U \neq \emptyset$ then $L_U(G)$ is a partial group, and $E \rightarrow L_U(G)$ is star inj.

EXAMPLE: PUNCTURED P-LOCAL GROUPS

G group with nontrivial Sylow p-subgroup S for some prime p. U = nontrivial elements of S with partial conjugation action.

 $L_{II}(G)$ is a p-local punctured group (Henke-Libman-Lynd).

The *localities* of Chermak are partial groups generalizing this.

CHARACTERISTIC ACTIONS

Definition

A star injective map $p: E \rightarrow B$ is characteristic if

- p is surjective
- E is a groupoid

Example

 $E \rightarrow L_{II}(G)$ is characteristic

Theorem

Every partial groupoid admits a characteristic action.

Proof.

$$\coprod_{n\geq 0} \coprod_{n \neq L_n} \mathsf{hom}_{\Sigma}(-,[n]) \to L \text{ is characteristic.}$$

HIGHER SEGAL CONDITIONS AND THE DISCRETE GEOMETRY OF ACTIONS

HIGHER SEGAL SPACES (DYCKERHOFF & KAPRANOV; WALDE)

$$X_{n} \xrightarrow{d_{0}} X_{n-1}$$

$$d_{n} \downarrow \qquad \downarrow d_{n-1} \quad \text{lower 1-Segal}$$

$$X_{n-1} \xrightarrow{d_{0}} X_{n-2}$$

$$X_{n} \xrightarrow{d_{i}} X_{n-1}$$

$$d_{0} \downarrow \qquad \downarrow d_{0}$$

$$X_{n-1} \xrightarrow{d_{i-1}} X_{n-2}$$

$$2 \le i \le n-1$$

$$\text{upper 2-Segal}$$

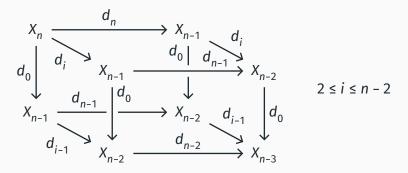
$$X_{n-1} \xrightarrow{d_{j}} X_{n-2}$$

$$1 \le j \le n-2$$

$$\text{lower 2-Segal}$$

HIGHER SEGAL SPACES (DYCKERHOFF & KAPRANOV; WALDE)

lower 3-Segal:



Theorem

For symmetric sets, the lower (2k-1)-Segal, lower 2k-Segal, upper 2k-Segal, and upper (2k+1)-Segal conditions coincide.

THE DEGREE

Theorem

For symmetric sets, the lower (2k-1)-Segal, lower 2k-Segal, upper 2k-Segal, and upper (2k+1)-Segal conditions coincide.

Definition

The degree of a symmetric set X is the least $k \ge 1$ such that X is lower (2k-1)-Segal.

Example

Degree one partial groupoids are just groupoids.

CLOSURE SPACE OF ACTION

Definition

 $p: E \to B$ characteristic E_0 is a closure space with generating closed sets

$$D(f) = \{x \in E_0 \mid f \in B_n \text{ acts on } x\}.$$

Arbitrary closed sets are intersections of these

Definition

The Helly number of $p: E \to B$ is the Helly number of E_0 i.e. $h(p) = \sup(n)$ ranging over those $n \in \mathbb{N}$ for which there is a family $(A_1, ..., A_n)$ of closed sets with

$$\bigcap_{i=1}^{n} A_{i} = \emptyset \qquad \bigcap_{i \neq k} A_{i} \neq \emptyset \quad k = 1, \dots, n$$

MAIN THEOREM

Definition

The degree of a symmetric set X is the least $k \ge 1$ such that X is lower (2k-1)-Segal.

Theorem

 $p: E \rightarrow B$ characteristic

- If B is not a groupoid, then $deg(B) \le h(p)$
- If additionally E_0 is artinian, then h(p) = deg(B)

CALCULATIONS: PUNCTURED WEYL GROUPS

 Φ a root system $W = W(\Phi)$ the Weyl group $\Gamma \subset \Phi$ a set of positive roots $L = L_{\Gamma}(W)$ (punctured Weyl group: $L_1 = W \setminus \{w_0\}$)

Φ	deg(L)	Ф	deg(L)
A _n D _n E ₆ E ₇ E ₈		$ \begin{array}{c} B_n/C_n \\ F_4 \\ G_2 \\ I_2(m) \end{array} $	$\binom{n}{2} + 1$ 6 2 2