Unfolding of symmetric monoidal (∞, n) -categories

Rune Haugseng

Norwegian University of Science and Technology (NTNU), Trondheim

CT2025, Brno 16 July 2025

Work in progress with Thomas Nikolaus.

Work in progress with Thomas Nikolaus.

Goal: Give a simplified description of symmetric monoidal (∞, n) -categories with duals and certain adjoints as "chain complexes" of symmetric monoidal $(\infty, 1)$ -categories.

Work in progress with Thomas Nikolaus.

Goal: Give a simplified description of symmetric monoidal (∞, n) -categories with duals and certain adjoints as "chain complexes" of symmetric monoidal $(\infty, 1)$ -categories.

Work in progress with Thomas Nikolaus.

Goal: Give a simplified description of symmetric monoidal (∞, n) -categories with duals and certain adjoints as "chain complexes" of symmetric monoidal $(\infty, 1)$ -categories.

To give a better idea of the result need to introduce:

• (∞, n) -categories

Work in progress with Thomas Nikolaus.

Goal: Give a simplified description of symmetric monoidal (∞, n) -categories with duals and certain adjoints as "chain complexes" of symmetric monoidal $(\infty, 1)$ -categories.

- (∞, n) -categories
- symmetric monoidal (∞, n) -categories

Work in progress with Thomas Nikolaus.

Goal: Give a simplified description of symmetric monoidal (∞, n) -categories with duals and certain adjoints as "chain complexes" of symmetric monoidal $(\infty, 1)$ -categories.

- (∞, n) -categories
- symmetric monoidal (∞, n) -categories
- duals and adjoints in (symmetric monoidal) (∞, n) -categories

Work in progress with Thomas Nikolaus.

Goal: Give a simplified description of symmetric monoidal (∞, n) -categories with duals and certain adjoints as "chain complexes" of symmetric monoidal $(\infty, 1)$ -categories.

- (∞, n) -categories
- symmetric monoidal (∞, n) -categories
- duals and adjoints in (symmetric monoidal) (∞, n) -categories
- cocartesian fibrations and straightening

$$\infty$$
-category = $(\infty, 1)$ -category

$$\infty$$
-category = $(\infty, 1)$ -category

Definition

An (∞, n) -category is an $(\infty, 1)$ -category enriched in $(\infty, n-1)$ -categories.

$$\infty$$
-category = $(\infty, 1)$ -category

Definition

An (∞, n) -category is an $(\infty, 1)$ -category enriched in $(\infty, n-1)$ -categories.

Informally, an (∞, n) -category has i-morphisms for all i, but they are all invertible for i > n, and composition is only associative up to coherent choice of higher invertible morphisms.

 $\mathsf{Fin}_* = \mathsf{category} \ \mathsf{of} \ \mathsf{pointed} \ \mathsf{finite} \ \mathsf{sets}, \ \langle \mathit{n} \rangle = (\{0,1,\ldots,\mathit{n}\},0).$

 $Fin_* = category of pointed finite sets, <math>\langle n \rangle = (\{0, 1, \dots, n\}, 0).$

Definition (Segal)

A commutative monoid in an $(\infty,1)\text{-category }\mathcal C$ with finite products is a functor

$$M \colon \mathsf{Fin}_* \to \mathfrak{C}$$

 $Fin_* = category of pointed finite sets, \langle n \rangle = (\{0, 1, ..., n\}, 0).$

Definition (Segal)

A commutative monoid in an $(\infty,1)\text{-category } \mathfrak C$ with finite products is a functor

$$M \colon \mathsf{Fin}_* \to \mathfrak{C}$$

such that

$$M(\langle n \rangle) \xrightarrow{\sim} M(\langle 1 \rangle)^{\times n},$$

 $Fin_* = category of pointed finite sets, <math>\langle n \rangle = (\{0, 1, \dots, n\}, 0).$

Definition (Segal)

A commutative monoid in an $(\infty,1)\text{-category } \mathfrak C$ with finite products is a functor

$$M \colon \mathsf{Fin}_* \to \mathfrak{C}$$

such that

$$M(\langle n \rangle) \xrightarrow{\sim} M(\langle 1 \rangle)^{\times n},$$

via the n maps $\rho_i \colon \langle n \rangle \to \langle 1 \rangle$ given by $\rho_i(j) = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$

 $Fin_* = category of pointed finite sets, <math>\langle n \rangle = (\{0, 1, \dots, n\}, 0).$

Definition (Segal)

A commutative monoid in an $(\infty,1)\text{-category }\mathcal C$ with finite products is a functor

$$M \colon \mathsf{Fin}_* \to \mathfrak{C}$$

such that

$$M(\langle n \rangle) \xrightarrow{\sim} M(\langle 1 \rangle)^{\times n},$$

via the n maps $\rho_i \colon \langle n \rangle \to \langle 1 \rangle$ given by $\rho_i(j) = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$

Definition

A symmetric monoidal (= s.m.) (∞, n) -category is a commutative monoid in $Cat_{(\infty,n)}$.

Duals in a s.m. (∞, n) -category can be defined in the homotopy 1-category,

Duals in a s.m. (∞, n) -category can be defined in the homotopy 1-category, i.e. X has dual X^{\vee} if there are morphisms

$$\operatorname{ev}: X^{\vee} \otimes X \to \mathbb{1}, \quad \operatorname{coev}: \mathbb{1} \to X \otimes X^{\vee},$$

Duals in a s.m. (∞, n) -category can be defined in the homotopy 1-category, i.e. X has dual X^{\vee} if there are morphisms

ev:
$$X^{\vee} \otimes X \to 1$$
, coev: $1 \to X \otimes X^{\vee}$,

such that

$$X \xrightarrow{\operatorname{\mathsf{coev}} \otimes \operatorname{\mathsf{id}}_X} X \otimes X^{\vee} \otimes X \xrightarrow{\operatorname{\mathsf{id}}_X \otimes \operatorname{\mathsf{ev}}} X \ \simeq \ \operatorname{\mathsf{id}}_X,$$

$$X^{\vee} \xrightarrow{\operatorname{id}_{X^{\vee}} \otimes \operatorname{coev}} X^{\vee} \otimes X \otimes X^{\vee} \xrightarrow{\operatorname{ev} \otimes \operatorname{id}_{X^{\vee}}} X^{\vee} \simeq \operatorname{id}_{X^{\vee}},$$

Duals in a s.m. (∞, n) -category can be defined in the homotopy 1-category, i.e. X has dual X^{\vee} if there are morphisms

ev:
$$X^{\vee} \otimes X \to 1$$
, coev: $1 \to X \otimes X^{\vee}$,

such that

$$X \xrightarrow{\operatorname{\mathsf{coev}} \otimes \operatorname{\mathsf{id}}_X} X \otimes X^{\vee} \otimes X \xrightarrow{\operatorname{\mathsf{id}}_X \otimes \operatorname{\mathsf{ev}}} X \ \simeq \ \operatorname{\mathsf{id}}_X,$$

$$X^{\vee} \xrightarrow{\mathsf{id}_{X^{\vee}} \otimes \mathsf{coev}} X^{\vee} \otimes X \otimes X^{\vee} \xrightarrow{\mathsf{ev} \otimes \mathsf{id}_{X^{\vee}}} X^{\vee} \ \simeq \ \mathsf{id}_{X^{\vee}},$$

and adjoints in the homotopy 2-category,

Duals in a s.m. (∞, n) -category can be defined in the homotopy 1-category, i.e. X has dual X^{\vee} if there are morphisms

ev:
$$X^{\vee} \otimes X \to 1$$
, coev: $1 \to X \otimes X^{\vee}$,

such that

$$X \xrightarrow{\operatorname{\mathsf{coev}} \otimes \operatorname{\mathsf{id}}_X} X \otimes X^{\vee} \otimes X \xrightarrow{\operatorname{\mathsf{id}}_X \otimes \operatorname{\mathsf{ev}}} X \ \simeq \ \operatorname{\mathsf{id}}_X,$$

$$X^{\vee} \xrightarrow{\operatorname{id}_{X^{\vee}} \otimes \operatorname{coev}} X^{\vee} \otimes X \otimes X^{\vee} \xrightarrow{\operatorname{ev} \otimes \operatorname{id}_{X^{\vee}}} X^{\vee} \simeq \operatorname{id}_{X^{\vee}},$$

and **adjoints** in the homotopy 2-category, i.e. f is left adjoint to g if there are 2-morphisms id $\to gf$, $fg \to \text{id}$ such that

$$f \to fgf \to f \simeq id_f, \quad g \to gfg \to g \simeq id_g$$
.

Cocartesian morphisms

Suppose $p \colon \mathcal{E} \to \mathcal{B}$ is a functor of (∞, n) -categories.

Cocartesian morphisms

Suppose $p \colon \mathcal{E} \to \mathcal{B}$ is a functor of (∞, n) -categories.

Definition

A morphism $f: x \to y$ in \mathcal{E} is **p-cocartesian** if for all $z \in \mathcal{E}$, the commutative square

$$\begin{array}{ccc}
\mathcal{E}(y,z) & \xrightarrow{f^*} & \mathcal{E}(x,z) \\
\downarrow & & \downarrow \\
\mathcal{B}(py,pz) & \xrightarrow{p(f)^*} & \mathcal{B}(px,pz)
\end{array}$$

is a pullback.

Suppose $p: \mathcal{E} \to \mathcal{B}$ is a functor with \mathcal{E} an (∞, n) -category and \mathcal{B} an $(\infty, 1)$ -category.

Suppose $p \colon \mathcal{E} \to \mathcal{B}$ is a functor with \mathcal{E} an (∞, n) -category and \mathcal{B} an $(\infty, 1)$ -category.

Definition

The functor p is a **cocartesian fibration** if for all $x \in \mathcal{E}$ and $f: px \to b$ in \mathcal{B} there exists a p-cocartesian morphism $\bar{f}: x \to y$ lifting f.

Suppose $p \colon \mathcal{E} \to \mathcal{B}$ is a functor with \mathcal{E} an (∞, n) -category and \mathcal{B} an $(\infty, 1)$ -category.

Definition

The functor p is a **cocartesian fibration** if for all $x \in \mathcal{E}$ and $f: px \to b$ in \mathcal{B} there exists a p-cocartesian morphism $\bar{f}: x \to y$ lifting f.

Generalizes Grothendieck/Street opfibrations for ordinary categories.

Suppose $p \colon \mathcal{E} \to \mathcal{B}$ is a functor with \mathcal{E} an (∞, n) -category and \mathcal{B} an $(\infty, 1)$ -category.

Definition

The functor p is a **cocartesian fibration** if for all $x \in \mathcal{E}$ and $f: px \to b$ in \mathcal{B} there exists a p-cocartesian morphism $\bar{f}: x \to y$ lifting f.

Generalizes Grothendieck/Street opfibrations for ordinary categories.

Warning: Only the correct definition when \mathcal{B} is an $(\infty, 1)$ -category (not an (∞, n) -category)!

Straightening

Theorem (Lurie (n = 1), Nuiten, Blans–Blom)

There is a natural equivalence of $(\infty, 1)$ -categories

$$\operatorname{\mathsf{Fun}}(\mathcal{B},\operatorname{\mathsf{Cat}}_{(\infty,n)})\simeq\operatorname{\mathsf{Cocart}}_n(\mathcal{B}),$$

Straightening

Theorem (Lurie (n=1), Nuiten, Blans–Blom)

There is a natural equivalence of $(\infty, 1)$ -categories

$$\operatorname{\mathsf{Fun}}(\mathfrak{B},\operatorname{\mathsf{Cat}}_{(\infty,n)})\simeq\operatorname{\mathsf{Cocart}}_n(\mathfrak{B}),$$

where $\mathsf{Cocart}_n(\mathcal{B})$ is the $\mathsf{sub}\text{-}(\infty,1)\text{-category of }\mathsf{Cat}_{(\infty,n)/\mathcal{B}}$ with

- \bullet objects the cocartesian fibrations over \mathcal{B} ,
- and morphisms the functors that preserve cocartesian morphisms over \mathcal{B} .

Idea (Lurie)

A s.m. (∞, n) -category $\mathcal C$ with duals and certain adjoints can be reconstructed from the pullback squares of s.m. $(\infty, 1)$ -categories

$$c_1 \mathbb{O}^k \mathbb{C} \longrightarrow c_1 \mathbb{P} \mathbb{O}^{k-1} \mathbb{C}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad (k = 1, \dots, n-1).$$

$$0 \longrightarrow c_1 \mathbb{O}^{k-1} \mathbb{C}$$

Idea (Lurie)

A s.m. (∞, n) -category $\mathcal C$ with duals and certain adjoints can be reconstructed from the pullback squares of s.m. $(\infty, 1)$ -categories

$$egin{aligned} \mathfrak{c}_1\mathbb{D}^k\mathbb{C} & \longrightarrow \mathfrak{c}_1\mathbb{P}\mathbb{D}^{k-1}\mathbb{C} \ & & & \downarrow & & (k=1,\dots,n-1). \ 0 & \longrightarrow \mathfrak{c}_1\mathbb{D}^{k-1}\mathbb{C} \end{aligned}$$

• Here $c_1\mathcal{C}$ is the underlying $(\infty, 1)$ -category (1-core) of \mathcal{C} ,

Idea (Lurie)

A s.m. (∞, n) -category ${\mathcal C}$ with duals and certain adjoints can be reconstructed from the pullback squares of s.m. $(\infty, 1)$ -categories

- Here $\mathfrak{c}_1\mathfrak{C}$ is the underlying $(\infty, 1)$ -category (1-core) of \mathfrak{C} ,
- ullet $\mathbb{P}\mathcal{C}
 ightarrow \mathfrak{c}_1\mathcal{C}$ is the cocartesian fibration for the functor

$$\mathcal{C}(\mathbb{1},-)\colon \mathfrak{c}_1\mathcal{C}\to \mathsf{Cat}_{(\infty,n-1)},$$

with objects $\mathbb{1} \to X$, morphisms $X \xrightarrow{\swarrow} X \xrightarrow{} Y$, ...

Idea (Lurie)

A s.m. (∞, n) -category \mathcal{C} with duals and certain adjoints can be reconstructed from the pullback squares of s.m. $(\infty, 1)$ -categories

- Here $\mathfrak{c}_1\mathfrak{C}$ is the underlying $(\infty, 1)$ -category (1-core) of \mathfrak{C} ,
- $\mathbb{P}^{\mathfrak{C}} \to \mathfrak{c}_1 \mathfrak{C}$ is the cocartesian fibration for the functor

$$\mathcal{C}(\mathbb{1},-)\colon \mathfrak{c}_1\mathcal{C} \to \mathsf{Cat}_{(\infty,n-1)},$$

with objects $\mathbb{1} \to X$, morphisms $X \xrightarrow{\swarrow} X \xrightarrow{} Y$.

$$X \xrightarrow{1} Y$$
. ...

• and $\Omega \mathcal{C} = \mathcal{C}(\mathbb{1}, \mathbb{1}), \ \Omega^2 \mathcal{C} = \Omega \mathcal{C}(\mathsf{id}_{\mathbb{1}}, \mathsf{id}_{\mathbb{1}}) = \mathcal{C}(\mathbb{1}, \mathbb{1})(\mathsf{id}_{\mathbb{1}}, \mathsf{id}_{\mathbb{1}}), \text{ etc.}$

Categorical chain complexes

More precisely, there's an equivalence between such s.m. (∞, n) -categories and certain **categorical chain complexes** of length n-1:

Categorical chain complexes

More precisely, there's an equivalence between such s.m. (∞, n) -categories and certain **categorical chain complexes** of length n-1:

Definition

A categorical chain complex of length ℓ is a sequence of pullbacks of s.m. $(\infty,1)$ -categories with duals

$$\begin{array}{ccc}
\mathcal{Z}_{k} & \longrightarrow & \mathcal{C}_{k} \\
\downarrow & & \downarrow_{\partial} \\
0 & \longrightarrow & \mathcal{Z}_{k-1},
\end{array}$$
 $(k = 1, \dots, \ell),$

where ∂ is a cocartesian fibration.

Categorical chain complexes

More precisely, there's an equivalence between such s.m. (∞, n) -categories and certain **categorical chain complexes** of length n-1:

Definition

A categorical chain complex of length ℓ is a sequence of pullbacks of s.m. $(\infty,1)$ -categories with duals

$$\mathcal{Z}_{k} \longrightarrow \mathcal{C}_{k}$$
 $\downarrow \qquad \qquad \downarrow \partial$
 $0 \longrightarrow \mathcal{Z}_{k-1}$, $(k = 1, \dots, \ell)$,

where ∂ is a cocartesian fibration.

Analogy with chain complexes of abelian groups (C_{\bullet}, ∂) : take $Z_k = \ker \partial \colon C_k \to C_{k-1}$ and describe the chain complex by fibre sequences

$$Z_k \to C_k \xrightarrow{\partial} Z_{k-1}$$
.

Why is this interesting?

• Can be used to inductively construct s.m. (∞, n) -categories and s.m. functors among them from much simpler data, e.g. extended TQFTs

$$\mathsf{Bord}_{(0,n)} \to \mathcal{C}.$$

Why is this interesting?

• Can be used to inductively construct s.m. (∞, n) -categories and s.m. functors among them from much simpler data, e.g. extended TQFTs

$$\mathsf{Bord}_{(0,n)} \to \mathcal{C}.$$

• We can construct spectra from s.m. (∞, n) -categories by inverting everything; chain complex description gives some information about this (and this extends to unbounded chain complexes).

Theorem (Lurie, H.–Nikolaus)

There is an equivalence of $(\infty, 1)$ -categories between **left rigid** s.m. (∞, n) -categories and **complete** categorical chain complexes of length n-1.

Theorem (Lurie, H.–Nikolaus)

There is an equivalence of $(\infty, 1)$ -categories between **left rigid** s.m. (∞, n) -categories and **complete** categorical chain complexes of length n-1.

• A s.m. (∞, n) -category $\mathcal C$ is **left** k-**rigid** if $\mathcal C$ has duals for objects, all morphisms $\mathbb 1 \to X$ have left adjoints (if k > 1), and $\mathbb C$ is left (k-1)-rigid. **Left rigid** = left n-rigid.

Theorem (Lurie, H.–Nikolaus)

There is an equivalence of $(\infty, 1)$ -categories between **left rigid** s.m. (∞, n) -categories and **complete** categorical chain complexes of length n-1.

- A s.m. (∞, n) -category $\mathcal C$ is **left** k-**rigid** if $\mathcal C$ has duals for objects, all morphisms $\mathbb 1 \to X$ have left adjoints (if k > 1), and $\mathbb C$ is left (k-1)-rigid. **Left rigid** = left n-rigid.
- A categorical chain complex is complete if for each k the canonical map

gives equivalences of ∞ -groupoids on fibres

$$\mathcal{Z}_k(\mathbb{1},X)\simeq \mathcal{C}_{k+1,X}^{\sim}.$$

Theorem (Lurie, H.-Nikolaus)

There is an equivalence of $(\infty, 1)$ -categories between **skeletal sequences** of length n and categorical chain complexes of length n-1.

Theorem (Lurie, H.-Nikolaus)

There is an equivalence of $(\infty, 1)$ -categories between **skeletal sequences** of length n and categorical chain complexes of length n-1.

A **skeletal sequence** of length *n* consists of s.m. functors

$$A_1 \to A_2 \to \cdots \to A_n$$

where

Theorem (Lurie, H.-Nikolaus)

There is an equivalence of $(\infty, 1)$ -categories between **skeletal sequences** of length n and categorical chain complexes of length n-1.

A **skeletal sequence** of length *n* consists of s.m. functors

$$A_1 \to A_2 \to \cdots \to A_n$$

where

• A_i is a left rigid s.m. (∞, i) -category

Theorem (Lurie, H.–Nikolaus)ˈ

There is an equivalence of $(\infty, 1)$ -categories between **skeletal sequences** of length n and categorical chain complexes of length n-1.

A **skeletal sequence** of length *n* consists of s.m. functors

$$A_1 \to A_2 \to \cdots \to A_n$$

where

- A_i is a left rigid s.m. (∞, i) -category
- and $A_i \to A_{i+1}$ is (i-1)-surjective (surjective on objects, morphisms, etc., up to (i-1)-morphisms.)

ullet Want to recover a s.m. $(\infty,2)$ -category ${\mathcal C}$ with duals from

$$\mathbb{P}^{\mathcal{C}} \to \mathfrak{c}_1^{\mathcal{C}},$$

i.e. from the lax s.m. functor

$${\mathfrak C}({\mathbb 1},{\mathord{\text{--}}})\colon {\mathfrak c}_1{\mathfrak C}\to \mathsf{Cat}_\infty$$

• Want to recover a s.m. $(\infty, 2)$ -category ${\mathfrak C}$ with duals from

$$\mathbb{P}^{\mathcal{C}} \to \mathfrak{c}_1^{\mathcal{C}},$$

i.e. from the lax s.m. functor

$$\mathcal{C}(\mathbb{1},-)\colon \mathfrak{c}_1\mathcal{C}\to \mathsf{Cat}_\infty$$

• Since \mathcal{C} has duals (detected in $\mathfrak{c}_1\mathcal{C}$),

$$\mathcal{C}(X,Y)\simeq\mathcal{C}(\mathbb{1},X^{\vee}\otimes Y),$$

so this functor knows all mapping $(\infty, 1)$ -categories of \mathcal{C} .

• Want to recover a s.m. $(\infty, 2)$ -category ${\mathfrak C}$ with duals from

$$\mathbb{P}\mathcal{C} \to \mathfrak{c}_1\mathcal{C},$$

i.e. from the lax s.m. functor

$$\mathcal{C}(\mathbb{1},-)\colon \mathfrak{c}_1\mathcal{C}\to \mathsf{Cat}_\infty$$

• Since \mathcal{C} has duals (detected in $\mathfrak{c}_1\mathcal{C}$),

$$\mathfrak{C}(X,Y)\simeq\mathfrak{C}(\mathbb{1},X^{\vee}\otimes Y),$$

so this functor knows all mapping $(\infty, 1)$ -categories of \mathcal{C} .

• $c_1\mathcal{C}$ is closed s.m., so has self-enrichment $\overline{c_1\mathcal{C}}$ with Hom object from X to Y given by $X^{\vee}\otimes Y$.

• Want to recover a s.m. $(\infty, 2)$ -category ${\mathfrak C}$ with duals from

$$\mathbb{P}^{\mathcal{C}} \to \mathfrak{c}_1^{\mathcal{C}},$$

i.e. from the lax s.m. functor

$$\mathcal{C}(\mathbb{1},-)\colon \mathfrak{c}_1\mathcal{C}\to \mathsf{Cat}_\infty$$

• Since \mathcal{C} has duals (detected in $\mathfrak{c}_1\mathcal{C}$),

$$\mathfrak{C}(X,Y)\simeq\mathfrak{C}(\mathbb{1},X^{\vee}\otimes Y),$$

so this functor knows all mapping $(\infty, 1)$ -categories of \mathcal{C} .

- $\mathfrak{c}_1\mathcal{C}$ is closed s.m., so has self-enrichment $\overline{\mathfrak{c}_1\mathcal{C}}$ with Hom object from X to Y given by $X^\vee\otimes Y$.
- Idea: Recover \mathcal{C} by changing this enrichment along the lax s.m. functor $\mathcal{C}(\mathbb{1},-)$.

• Want to recover a s.m. $(\infty, 2)$ -category ${\mathfrak C}$ with duals from

$$\mathbb{P}\mathcal{C} \to \mathfrak{c}_1\mathcal{C},$$

i.e. from the lax s.m. functor

$$\mathcal{C}(\mathbb{1},-)\colon \mathfrak{c}_1\mathcal{C}\to \mathsf{Cat}_\infty$$

• Since \mathcal{C} has duals (detected in $\mathfrak{c}_1\mathcal{C}$),

$$\mathcal{C}(X,Y)\simeq\mathcal{C}(\mathbb{1},X^{\vee}\otimes Y),$$

so this functor knows all mapping $(\infty, 1)$ -categories of \mathcal{C} .

- $c_1\mathcal{C}$ is closed s.m., so has self-enrichment $\overline{c_1\mathcal{C}}$ with Hom object from X to Y given by $X^{\vee}\otimes Y$.
- **Idea:** Recover \mathcal{C} by changing this enrichment along the lax s.m. functor $\mathcal{C}(1,-)$.
- We prove that in general we can recover a closed s.m. \mathcal{V} - $(\infty,1)$ -category \mathcal{D} from the lax s.m. functor $\mathcal{D}(\mathbb{1},-)\colon U\mathcal{D}\to\mathcal{V}$ by changing enrichment from $\overline{U\mathcal{D}}$.

• **Upshot:** Can recover a s.m. (∞, n) -category \mathcal{C} with duals from $\mathbb{P}\mathcal{C} \to \mathfrak{c}_1\mathcal{C}$ (where $\mathbb{P}\mathcal{C}$ is an $(\infty, n-1)$ -category).

- **Upshot:** Can recover a s.m. (∞, n) -category \mathcal{C} with duals from $\mathbb{P}\mathcal{C} \to \mathfrak{c}_1\mathcal{C}$ (where $\mathbb{P}\mathcal{C}$ is an $(\infty, n-1)$ -category).
- Can show that $\mathbb{P}\mathcal{C}$ has duals if and only if \mathcal{C} is left 2-rigid; the dual of $f: \mathbb{1} \to X$ is $(f^L)^{\vee}: \mathbb{1} \to X^{\vee}$.

- **Upshot:** Can recover a s.m. (∞, n) -category \mathcal{C} with duals from $\mathbb{P}\mathcal{C} \to \mathfrak{c}_1\mathcal{C}$ (where $\mathbb{P}\mathcal{C}$ is an $(\infty, n-1)$ -category).
- Can show that $\mathbb{P}\mathcal{C}$ has duals if and only if \mathcal{C} is left 2-rigid; the dual of $f: \mathbb{1} \to X$ is $(f^L)^{\vee}: \mathbb{1} \to X^{\vee}$.
- ullet So in this case we can reconstruct ${\mathcal C}$ from the square

- **Upshot:** Can recover a s.m. (∞, n) -category \mathcal{C} with duals from $\mathbb{P}\mathcal{C} \to \mathfrak{c}_1\mathcal{C}$ (where $\mathbb{P}\mathcal{C}$ is an $(\infty, n-1)$ -category).
- Can show that $\mathbb{P}\mathcal{C}$ has duals if and only if \mathcal{C} is left 2-rigid; the dual of $f: \mathbb{1} \to X$ is $(f^L)^{\vee}: \mathbb{1} \to X^{\vee}$.
- ullet So in this case we can reconstruct ${\mathcal C}$ from the square

• But $\mathbb{P}^2\mathbb{C}$ won't have duals, since $\mathbb{P}\mathbb{C}$ can't have many adjoints (must live over adjoints = equivalences in $\mathfrak{c}_1\mathbb{C}$) — so can't iterate this argument.

Idea: The triangle

is obtained from

by left Kan extension along $\mathfrak{c}_1 \mathbb{\Omega} \mathfrak{C} \to \mathfrak{c}_1 \mathbb{P} \mathfrak{C}$.

Inductive unfolding

ullet Thus we can recover ${\mathcal C}$ from the diagram

Inductive unfolding

• Thus we can recover ${\mathfrak C}$ from the diagram

• Here Pnc has duals when c is left 3-rigid, so can proceed by induction to recover c from its categorical chain complex.

The End

Thank you!

Theorem (H.-Nikolaus, [*])

 ${\mathcal V}$ a s.m. $(\infty,1)\text{-category}.$ There is an equivalence of $(\infty,1)\text{-categories}$ between

- closed s.m. $(\infty,1)$ -categories $\mathcal C$ equipped with a lax s.m. functor $\phi\colon\mathcal C\to\mathcal V$
- and pinned closed s.m. \mathcal{V} - $(\infty, 1)$ -categories \mathcal{D} , $\mathcal{B} \to U\mathcal{D}$.

Theorem (H.-Nikolaus, [*])

 ${\mathcal V}$ a s.m. $(\infty,1)\text{-category}.$ There is an equivalence of $(\infty,1)\text{-categories}$ between

- closed s.m. $(\infty,1)$ -categories $\mathcal C$ equipped with a lax s.m. functor $\phi\colon\mathcal C\to\mathcal V$
- and pinned closed s.m. \mathcal{V} - $(\infty, 1)$ -categories \mathcal{D} , $\mathcal{B} \to U\mathcal{D}$.
- A pinned closed s.m. $\mathcal{V}\text{-}(\infty,1)\text{-}\text{category}$ is such a \mathcal{D} together with an essentially surjective strong s.m. functor $\psi\colon\mathcal{B}\to U\mathcal{D}$ where \mathcal{B} is a closed s.m. $(\infty,1)\text{-}\text{category}$ and ψ preserves internal Homs.

Theorem (H.-Nikolaus, [*])

 ${\mathcal V}$ a s.m. $(\infty,1)\text{-category}.$ There is an equivalence of $(\infty,1)\text{-categories}$ between

- closed s.m. $(\infty,1)$ -categories $\mathcal C$ equipped with a lax s.m. functor $\phi\colon \mathcal C\to \mathcal V$
- and **pinned** closed s.m. \mathcal{V} - $(\infty, 1)$ -categories \mathcal{D} , $\mathcal{B} \to U\mathcal{D}$.
- A pinned closed s.m. $\mathcal{V}\text{-}(\infty,1)\text{-}\text{category}$ is such a \mathcal{D} together with an essentially surjective strong s.m. functor $\psi\colon\mathcal{B}\to U\mathcal{D}$ where \mathcal{B} is a closed s.m. $(\infty,1)\text{-}\text{category}$ and ψ preserves internal Homs.
- The equivalence is given by

$$(\mathfrak{C},\phi) \mapsto (\phi_* \overline{\mathfrak{C}}, \ \mathfrak{C} \to U \phi_* \overline{\mathfrak{C}}),$$
$$(\mathfrak{D},\psi) \mapsto (\mathfrak{B} \xrightarrow{\psi} U \mathfrak{D} \xrightarrow{\mathfrak{D}(\mathbb{1},-)} \mathcal{V}).$$

Theorem (H.–Nikolaus)

 ${\mathcal V}$ a s.m. $(\infty,1)$ -category. There is an equivalence of $(\infty,1)$ -categories between

• closed s.m. $(\infty,1)$ -categories $\mathcal C$ equipped with a lax s.m. functor $\phi\colon\mathcal C\to\mathcal V$ such that the canonical lax triangle

commutes.

• and closed s.m. \mathcal{V} - $(\infty, 1)$ -categories.

Kan extensions

Theorem (H.–Nikolaus)

Suppose $p\colon \mathcal{B} \to \mathcal{A}$ is a cocartesian fibration of symmetric monoidal $(\infty,1)$ -categories whose underlying functor is also a cartesian fibration. Then left Kan extension along $\mathcal{B}_1 \to \mathcal{B}$ induces a fully faithful functor

$$\mathsf{Mon}_{\mathcal{B}_{\mathbb{I}}^{\otimes}}(\mathsf{Cat}_{(\infty,n)}) \hookrightarrow \mathsf{Mon}_{\mathcal{B}^{\otimes}}(\mathsf{Cat}_{(\infty,n)})_{/\mathcal{A}(\mathbb{1},p(-))}$$

with image those transformations $\alpha \colon F \to \mathcal{A}(\mathbb{1}, p(-))$ such that

Kan extensions

Theorem (H.–Nikolaus)

Suppose $p\colon \mathcal{B} \to \mathcal{A}$ is a cocartesian fibration of symmetric monoidal $(\infty,1)$ -categories whose underlying functor is also a cartesian fibration. Then left Kan extension along $\mathcal{B}_1 \to \mathcal{B}$ induces a fully faithful functor

$$\mathsf{Mon}_{\mathcal{B}_{1}^{\otimes}}(\mathsf{Cat}_{(\infty,n)}) \hookrightarrow \mathsf{Mon}_{\mathcal{B}^{\otimes}}(\mathsf{Cat}_{(\infty,n)})_{/\mathcal{A}(\mathbb{1},p(-))}$$

with image those transformations $\alpha \colon F \to \mathcal{A}(\mathbb{1}, p(\mathsf{-}))$ such that

(*) for $f: x \to y$ a *p*-cartesian morphism, the square

$$F(x) \xrightarrow{F(f)} F(y)$$

$$\alpha_{x\downarrow} \downarrow^{\alpha_{y}}$$

$$\mathcal{A}(\mathbb{1}, p(x)) \xrightarrow{\mathcal{A}(\mathbb{1}, p(f))} \mathcal{A}(\mathbb{1}, p(y))$$

is a pullback.

Kan extensions

Apply this to $p: \mathfrak{c}_1\mathbb{P}^{\mathfrak{C}} \to \mathfrak{c}_1\mathfrak{C}$:

Corollary

Left Kan extension along $\mathfrak{c}_1\mathbb{\Omega}\mathcal{C}\to\mathfrak{c}_1\mathbb{P}\mathcal{C}$ induces a fully faithful functor

$$\mathsf{Mon}_{\mathfrak{c}_1\mathbb{DC}}(\mathsf{Cat}_{(\infty,n)}) \hookrightarrow \mathsf{Mon}_{\mathfrak{c}_1\mathbb{PC}}(\mathsf{Cat}_{(\infty,n)})_{/\mathfrak{c}_1\mathbb{C}(\mathbb{1},p(-))}$$

with image those transformations $\alpha \colon F \to \mathfrak{c}_1 \mathfrak{C}(\mathbb{1}, p(-))$ such that (\star) holds.

For our triangle

$$\mathbb{P}^{2}\mathbb{C} \xrightarrow{\mathfrak{c}_{1}\mathbb{P}\mathbb{C} \times_{\mathfrak{c}_{1}\mathbb{C}}} \mathfrak{c}_{1}\mathbb{P}\mathbb{C} \times_{\mathfrak{c}_{1}\mathbb{C}} (\mathfrak{c}_{1}\mathbb{C})_{\mathbb{1}/\mathbb{C}}$$

condition (\star) is precisely equivalent to $\mathbb{P}\mathcal{C} \to \mathfrak{c}_1\mathcal{C}$ being a cocartesian fibration!