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Introduction

Work in progress with Thomas Nikolaus.

Goal: Give a simplified description of symmetric monoidal
(00, n)-categories with duals and certain adjoints as “chain
complexes” of symmetric monoidal (oo, 1)-categories.

To give a better idea of the result need to introduce:
@ (o0, n)-categories
@ symmetric monoidal (oo, n)-categories
@ duals and adjoints in (symmetric monoidal) (oo, n)-categories

@ cocartesian fibrations and straightening
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(00, n)-categories

oo-category = (o0, 1)-category
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(00, n)-categories

oo-category = (o0, 1)-category

Definition

An (oo, n)-category is an (oo, 1)-category enriched in
(00, n — 1)-categories.
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(00, n)-categories

oo-category = (o0, 1)-category

Definition

An (oo, n)-category is an (oo, 1)-category enriched in
(00, n — 1)-categories.

Informally, an (oo, n)-category has i-morphisms for all i, but they
are all invertible for i > n, and composition is only associative up
to coherent choice of higher invertible morphisms.
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Symmetric monoidal (oo, n)-categories

Fin, = category of pointed finite sets, (n) = ({0,1,...,n},0).
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Symmetric monoidal (oo, n)-categories

Fin, = category of pointed finite sets, (n) = ({0,1,...,n},0).

Definition (Segal)

A commutative monoid in an (0o, 1)-category C with finite
products is a functor
M: Fin, — €
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Symmetric monoidal (oo, n)-categories
Fin, = category of pointed finite sets, (n) = ({0,1,...,n},0).

Definition (Segal)

A commutative monoid in an (0o, 1)-category C with finite

products is a functor
M: Fin, — C

such that
M({n)) = M((1))*",
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Symmetric monoidal (oo, n)-categories
Fin, = category of pointed finite sets, (n) = ({0,1,...,n},0).

Definition (Segal)

A commutative monoid in an (0o, 1)-category C with finite
products is a functor
M: Fin, — €

such that

Definition
A symmetric monoidal (= s.m.) (oo, n)-category is a
commutative monoid in Cat( ).
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Duals and adjoints

Duals in a s.m. (o0, n)-category can be defined in the homotopy
1-category,
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Duals and adjoints

Duals in a s.m. (o0, n)-category can be defined in the homotopy
1-category, i.e. X has dual XV if there are morphisms

ev: XY@ X =1, coev:il— X®XY,
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Duals and adjoints

Duals in a s.m. (o0, n)-category can be defined in the homotopy
1-category, i.e. X has dual XV if there are morphisms

ev: XY@ X =1, coev:il— X®XY,

such that
X LVEx, o XV @ X OV X~ dy,
XV idyv ® coev XV o X @ XV ev@idyv XV ~ idx
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Duals and adjoints

Duals in a s.m. (o0, n)-category can be defined in the homotopy
1-category, i.e. X has dual XV if there are morphisms

ev: XY@ X =1, coev:il— X®XY,
such that

X SOVEUX o XV @ X O X~ idy,
XV idyv ® coev XV o X @ XV ev@idyv XV ~ idx

and adjoints in the homotopy 2-category, i.e. f is left adjoint to g
if there are 2-morphisms id — gf, fg — id such that

f—fgf = f ~idr, g—gfg—g ~idg.
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Cocartesian morphisms

Suppose p: € — B is a functor of (oo, n)-categories.
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Cocartesian morphisms

Suppose p: € — B is a functor of (oo, n)-categories.

Definition
A morphism f: x — y in £ is p-cocartesian if for all z € &, the
commutative square

&(y, 2) L AN &(x, z)

! !

B(py, pz) " B(px, pz)

is a pullback.

.
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Cocartesian fibrations

Suppose p: &€ — B is a functor with € an (oo, n)-category and B
an (oo, 1)-category.
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Cocartesian fibrations

Suppose p: &€ — B is a functor with € an (oo, n)-category and B
an (oo, 1)-category.

Definition

The functor p is a cocartesian fibration if for all x € € and
f: px — b in B there exists a p-cocartesian morphism f: x — y
lifting f.
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Cocartesian fibrations

Suppose p: &€ — B is a functor with € an (oo, n)-category and B
an (oo, 1)-category.

Definition

The functor p is a cocartesian fibration if for all x € € and
f: px — b in B there exists a p-cocartesian morphism f: x — y
lifting f.

Generalizes Grothendieck/Street opfibrations for ordinary
categories.
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Cocartesian fibrations

Suppose p: &€ — B is a functor with € an (oo, n)-category and B
an (oo, 1)-category.

Definition

The functor p is a cocartesian fibration if for all x € € and
f: px — b in B there exists a p-cocartesian morphism f: x — y
lifting f.

Generalizes Grothendieck/Street opfibrations for ordinary
categories.

Warning: Only the correct definition when B is an
(00, 1)-category (not an (oo, n)-category)!

Rune Haugseng Unfolding of symmetric monoidal (oo, n)-categories



Straightening

Theorem (Lurie (n = 1), Nuiten, Blans—Blom)

There is a natural equivalence of (oo, 1)-categories

Fun(3B, Cat(,ny) = Cocart,(B),
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Straightening

Theorem (Lurie (n = 1), Nuiten, Blans—Blom)

There is a natural equivalence of (oo, 1)-categories
Fun(3B, Cat(,ny) = Cocart,(B),

where Cocart,(B) is the sub-(co, 1)-category of Cat(q, ny/5 With
@ objects the cocartesian fibrations over B,

@ and morphisms the functors that preserve cocartesian
morphisms over B.
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Basic idea

Idea (Lurie)

A s.m. (o0, n)-category € with duals and certain adjoints can be
reconstructed from the pullback squares of s.m. (oo, 1)-categories

g k6 —— P k-lg

l l (k=1,...,n—1).

0 —— ¢ Kle
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@ Here ¢;C is the underlying (oo, 1)-category (1-core) of C,
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Basic idea

Idea (Lurie)

A s.m. (o0, n)-category € with duals and certain adjoints can be
reconstructed from the pullback squares of s.m. (oo, 1)-categories

g k6 —— P k-lg

l l (k=1,...,n—1).

0 —— ¢ Kle

@ Here ¢;C is the underlying (oo, 1)-category (1-core) of C,
@ PC — ¢1C is the cocartesian fibration for the functor

(i’(l,—)i ¢1C — Cat(oo,nfl)7

1
with objects 1 — X, morphisms K =™
X —Y,
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Basic idea

Idea (Lurie)

A s.m. (o0, n)-category € with duals and certain adjoints can be
reconstructed from the pullback squares of s.m. (oo, 1)-categories

g k6 —— P k-lg

l l (k=1,...,n—1).

0 —— ¢ Kle

@ Here ¢;C is the underlying (oo, 1)-category (1-core) of C,
@ PC — ¢1C is the cocartesian fibration for the functor

(i’(l,—)i ¢1C — Cat(oo,nfl)7

1
with objects 1 — X, morphisms K =™
X —Y,

eand €C=0C(1,1), 2= C(idy,id1) = C(1,1)(idy,id1), etc.
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Categorical chain complexes

More precisely, there's an equivalence between such s.m.
(00, n)-categories and certain categorical chain complexes of
length n — 1:
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Categorical chain complexes

More precisely, there's an equivalence between such s.m.

(00, n)-categories and certain categorical chain complexes of
length n — 1:

Definition

A categorical chain complex of length £ is a sequence of
pullbacks of s.m. (o0, 1)-categories with duals

Zx — Cx
l 1o (k=1,...,0),

0— Zk—l,

where 0 is a cocartesian fibration.
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Categorical chain complexes

More precisely, there's an equivalence between such s.m.
(00, n)-categories and certain categorical chain complexes of
length n — 1:

Definition

A categorical chain complex of length £ is a sequence of
pullbacks of s.m. (o0, 1)-categories with duals

Z,k—>6k
l 1o (k=1,...,0),

0— Zk—l,

where 0 is a cocartesian fibration.

Analogy with chain complexes of abelian groups (C,, 0): take
Z = kerd: Cx — Ci_1 and describe the chain complex by fibre
sequences

Zk — Ck 2) Zk—l-
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Why is this interesting?

@ Can be used to inductively construct s.m. (oo, n)-categories
and s.m. functors among them from much simpler data, e.g.
extended TQFTs

Bord(om) — C.
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Why is this interesting?

@ Can be used to inductively construct s.m. (oo, n)-categories
and s.m. functors among them from much simpler data, e.g.
extended TQFTs

Bord(om) — C.

@ We can construct spectra from s.m. (oo, n)-categories by
inverting everything; chain complex description gives some
information about this (and this extends to unbounded chain
complexes).
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Precise statement

Theorem (Lurie, H.—Nikolaus)

There is an equivalence of (0o, 1)-categories between left rigid
s.m. (oo, n)-categories and complete categorical chain complexes
of length n — 1.
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Precise statement

Theorem (Lurie, H.—Nikolaus)

There is an equivalence of (0o, 1)-categories between left rigid
s.m. (oo, n)-categories and complete categorical chain complexes
of length n — 1.

@ A s.m. (o0, n)-category C is left k-rigid if C has duals for
objects, all morphisms 1 — X have left adjoints (if kK > 1),
and Cis left (k — 1)-rigid. Left rigid = left n-rigid.
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Precise statement

Theorem (Lurie, H.—Nikolaus)

There is an equivalence of (0o, 1)-categories between left rigid
s.m. (oo, n)-categories and complete categorical chain complexes
of length n — 1.

@ A s.m. (o0, n)-category C is left k-rigid if C has duals for
objects, all morphisms 1 — X have left adjoints (if kK > 1),
and Cis left (k — 1)-rigid. Left rigid = left n-rigid.

@ A categorical chain complex is complete if for each k the
canonical map

Zk1) — Ciqa

N S
Zk

gives equivalences of oo-groupoids on fibres
2 (1, X) ~ € x-
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Precise statement

Theorem (Lurie, H.—Nikolaus)

There is an equivalence of (oo, 1)-categories between skeletal
sequences of length n and categorical chain complexes of length
n—1.
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Precise statement

Theorem (Lurie, H.—Nikolaus)

There is an equivalence of (oo, 1)-categories between skeletal
sequences of length n and categorical chain complexes of length
n—1.

A skeletal sequence of length n consists of s.m. functors
Ay =2 Ay — - = Ap

where
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Precise statement

Theorem (Lurie, H.—Nikolaus)

There is an equivalence of (oo, 1)-categories between skeletal
sequences of length n and categorical chain complexes of length
n—1.

A skeletal sequence of length n consists of s.m. functors
Ay =2 Ay — - = Ap

where

o A;is a left rigid s.m. (o0, /)-category
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Precise statement

Theorem (Lurie, H.—Nikolaus)

There is an equivalence of (oo, 1)-categories between skeletal
sequences of length n and categorical chain complexes of length
n—1.

A skeletal sequence of length n consists of s.m. functors
Ay =2 Ay — - = Ap

where
o A;is a left rigid s.m. (o0, /)-category
e and A; — Ajy1 is (i — 1)-surjective (surjective on objects,
morphisms, etc., up to (i — 1)-morphisms.)
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e Want to recover a s.m. (0o, 2)-category C with duals from
PC — Cle,
i.e. from the lax s.m. functor

C(1,-): ¢1€ — Catoo
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e Want to recover a s.m. (0o, 2)-category C with duals from
PC — ¢;1C,
i.e. from the lax s.m. functor
C(1,-): ¢1€ — Catoo
@ Since C has duals (detected in ¢;1C),
e(X,Y)~C(1 XYaY),

so this functor knows all mapping (oo, 1)-categories of C.

Rune Haugseng Unfolding of symmetric monoidal (oo, n)-categories



e Want to recover a s.m. (0o, 2)-category C with duals from
PC — ¢;1C,
i.e. from the lax s.m. functor
C(1,-): ¢1€ — Catoo
@ Since C has duals (detected in ¢;1C),
e(X,Y)~C(1 XYaY),

so this functor knows all mapping (oo, 1)-categories of C.
@ ¢1C is closed s.m., so has self-enrichment ¢; € with Hom
object from X to Y given by XV ® Y.
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e Want to recover a s.m. (0o, 2)-category C with duals from
PC — ¢;1C,
i.e. from the lax s.m. functor
C(1,-): ¢1€ — Catoo
@ Since C has duals (detected in ¢;1C),
e(X,Y)~C(1 XYaY),

so this functor knows all mapping (oo, 1)-categories of C.
@ ¢1C is closed s.m., so has self-enrichment ¢; € with Hom
object from X to Y given by XV ® Y.

@ ldea: Recover € by changing this enrichment along the lax
s.m. functor C(1,-).

Rune Haugseng Unfolding of symmetric monoidal (oo, n)-categories



e Want to recover a s.m. (0o, 2)-category C with duals from
PC — ¢;1C,
i.e. from the lax s.m. functor
C(1,-): ¢1€ — Catoo
@ Since C has duals (detected in ¢;1C),
e(X,Y)~C(1 XYaY),

so this functor knows all mapping (oo, 1)-categories of C.

@ ¢1C is closed s.m., so has self-enrichment ¢; € with Hom
object from X to Y given by XV @ Y.

@ ldea: Recover € by changing this enrichment along the lax
s.m. functor C(1,-).

@ We prove that in general we can recover a closed s.m.
V-(00, 1)-category D from the lax s.m. functor
D(1,-): UD — V by changing enrichment from UD.
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Two-step unfolding

@ Upshot: Can recover a s.m. (0o, n)-category C with duals
from PC — ¢;€ (where PC is an (0o, n — 1)-category).
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Two-step unfolding

@ Upshot: Can recover a s.m. (0o, n)-category C with duals
from PC — ¢;€ (where PC is an (0o, n — 1)-category).

@ Can show that PC has duals if and only if € is left 2-rigid; the
dual of f: 1 — X is (FL)V: 1 — XV.

Rune Haugseng Unfolding of symmetric monoidal (oo, n)-categories



Two-step unfolding

@ Upshot: Can recover a s.m. (0o, n)-category C with duals
from PC — ¢;€ (where PC is an (0o, n — 1)-category).

@ Can show that PC has duals if and only if € is left 2-rigid; the
dual of f: 1 — X is (FL)V: 1 — XV.
@ So in this case we can reconstruct € from the square

]P’2G Em— (cl(f)l/

|

¢ PC — ¢1C
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Two-step unfolding

@ Upshot: Can recover a s.m. (0o, n)-category C with duals
from PC — ¢;€ (where PC is an (0o, n — 1)-category).

@ Can show that PC has duals if and only if € is left 2-rigid; the
dual of f: 1 — X is (FL)V: 1 — XV.

@ So in this case we can reconstruct € from the square

]P’2G E— (cl(f)l/

|

¢ PC — ¢1C
e But P?C won't have duals, since PC can't have many adjoints

(must live over adjoints = equivalences in ¢;C) — so can't
iterate this argument.
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Two-step unfolding

Idea: The triangle

cl]P’(‘Z X @ (cl(i) 1/

N

cl]P’G

is obtained from

by left Kan extension along ¢; € — ¢1PC.
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Inductive unfolding

@ Thus we can recover C from the diagram

P ¢
|
¢g € —— PC
_l
| |
0

— G
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Inductive unfolding

@ Thus we can recover C from the diagram

P ¢
|
¢g € —— PC
_l
| |
0 — ¢1C.

@ Here P C has duals when C is left 3-rigid, so can proceed by
induction to recover C from its categorical chain complex.
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The End

Thank you!
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Closed s.m. enriched oo-categories

Theorem (H.—Nikolaus, [*])

V a s.m. (00, 1)-category. There is an equivalence of
(00, 1)-categories between

@ closed s.m. (o0, 1)-categories C equipped with a lax s.m.
functor ¢: € — V

@ and pinned closed s.m. V-(co, 1)-categories D, B — UD.

.
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Closed s.m. enriched oo-categories

Theorem (H.—Nikolaus, [*])

V a s.m. (00, 1)-category. There is an equivalence of
(00, 1)-categories between

@ closed s.m. (o0, 1)-categories C equipped with a lax s.m.
functor ¢: € — V

@ and pinned closed s.m. V-(co, 1)-categories D, B — UD.

.

e A pinned closed s.m. V-(o0, 1)-category is such a D together
with an essentially surjective strong s.m. functor ¢¥»: B — UD
where B is a closed s.m. (00, 1)-category and v preserves
internal Homs.
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Closed s.m. enriched oo-categories

Theorem (H.—Nikolaus, [*])

V a s.m. (00, 1)-category. There is an equivalence of
(00, 1)-categories between

@ closed s.m. (o0, 1)-categories C equipped with a lax s.m.
functor ¢: € — V

@ and pinned closed s.m. V-(co, 1)-categories D, B — UD.

.

e A pinned closed s.m. V-(o0, 1)-category is such a D together
with an essentially surjective strong s.m. functor ¢¥»: B — UD
where B is a closed s.m. (00, 1)-category and v preserves
internal Homs.

@ The equivalence is given by

(C, p) (qﬁ*@, € — Ug.C),

D(1-)

(D, ) (B S UD 222 ).
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Closed s.m. enriched oo-categories

Theorem (H.—Nikolaus)

V a s.m. (0o, 1)-category. There is an equivalence of
(00, 1)-categories between

@ closed s.m. (00, 1)-categories € equipped with a lax s.m.
functor ¢: € — 'V such that the canonical lax triangle

->\/

commutes.

@ and closed s.m. V-(oc0, 1)-categories.
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Kan extensions

Theorem (H.—-Nikolaus)

Suppose p: B — A is a cocartesian fibration of symmetric
monoidal (oo, 1)-categories whose underlying functor is also a
cartesian fibration. Then left Kan extension along B1 — B induces
a fully faithful functor

MOHB?(Cat(OO,n)) — MO“B®(Cat(oo,n))/fl(l,p(—))

with image those transformations o: F — A(1, p(-)) such that
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Kan extensions

Theorem (H.—-Nikolaus)

Suppose p: B — A is a cocartesian fibration of symmetric
monoidal (oo, 1)-categories whose underlying functor is also a
cartesian fibration. Then left Kan extension along B1 — B induces
a fully faithful functor

MOI‘\B%@(Cat(OO,n)) — Mon3®(Cat(oom))/ﬂ(l,p(_))

with image those transformations o: F — A(1, p(-)) such that
(%) for f: x — y a p-cartesian morphism, the square

Fix) —0 s F(y)
o, Jay
AL, p(y))

is a pullback.
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Kan extensions

Apply this to p: ¢;IPC — ¢;C:

Left Kan extension along ¢; € — ¢1IPC induces a fully faithful
functor

Mon, ¢(Cat(oo,n)) = Mongpe(Cat(on)) /eie(1,p(-))

with image those transformations a: F — ¢1C(1, p(-)) such that
(%) holds.

For our triangle

IP’2G — > 1 PC Xe@ (Cle)l/

N

CﬂP’G,

condition (%) is precisely equivalent to PC — ¢;C being a
cocartesian fibration!
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