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Introduction

Work in progress with Thomas Nikolaus.

Goal: Give a simplified description of symmetric monoidal
(∞, n)-categories with duals and certain adjoints as “chain
complexes” of symmetric monoidal (∞, 1)-categories.

To give a better idea of the result need to introduce:

(∞, n)-categories

symmetric monoidal (∞, n)-categories

duals and adjoints in (symmetric monoidal) (∞, n)-categories

cocartesian fibrations and straightening
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(∞, n)-categories

∞-category = (∞, 1)-category

Definition

An (∞, n)-category is an (∞, 1)-category enriched in
(∞, n − 1)-categories.

Informally, an (∞, n)-category has i-morphisms for all i , but they
are all invertible for i > n, and composition is only associative up
to coherent choice of higher invertible morphisms.

Rune Haugseng Unfolding of symmetric monoidal (∞, n)-categories



(∞, n)-categories

∞-category = (∞, 1)-category

Definition

An (∞, n)-category is an (∞, 1)-category enriched in
(∞, n − 1)-categories.

Informally, an (∞, n)-category has i-morphisms for all i , but they
are all invertible for i > n, and composition is only associative up
to coherent choice of higher invertible morphisms.

Rune Haugseng Unfolding of symmetric monoidal (∞, n)-categories



(∞, n)-categories

∞-category = (∞, 1)-category

Definition

An (∞, n)-category is an (∞, 1)-category enriched in
(∞, n − 1)-categories.

Informally, an (∞, n)-category has i-morphisms for all i , but they
are all invertible for i > n, and composition is only associative up
to coherent choice of higher invertible morphisms.

Rune Haugseng Unfolding of symmetric monoidal (∞, n)-categories



(∞, n)-categories

∞-category = (∞, 1)-category

Definition

An (∞, n)-category is an (∞, 1)-category enriched in
(∞, n − 1)-categories.

Informally, an (∞, n)-category has i-morphisms for all i , but they
are all invertible for i > n, and composition is only associative up
to coherent choice of higher invertible morphisms.

Rune Haugseng Unfolding of symmetric monoidal (∞, n)-categories



Symmetric monoidal (∞, n)-categories

Fin∗ = category of pointed finite sets, ⟨n⟩ = ({0, 1, . . . , n}, 0).

Definition (Segal)

A commutative monoid in an (∞, 1)-category C with finite
products is a functor

M : Fin∗ → C

such that
M(⟨n⟩) ∼−→ M(⟨1⟩)×n,

via the n maps ρi : ⟨n⟩ → ⟨1⟩ given by ρi (j) =

{
1, i = j ,

0, i ̸= j .

Definition

A symmetric monoidal (= s.m.) (∞, n)-category is a
commutative monoid in Cat(∞,n).
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Duals and adjoints

Duals in a s.m. (∞, n)-category can be defined in the homotopy
1-category,

i.e. X has dual X∨ if there are morphisms

ev : X∨ ⊗ X → 1, coev : 1 → X ⊗ X∨,

such that

X
coev⊗ idX−−−−−−→ X ⊗ X∨ ⊗ X

idX ⊗ ev−−−−−→ X ≃ idX ,

X∨ idX∨ ⊗ coev
−−−−−−−→ X∨ ⊗ X ⊗ X∨ ev⊗ idX∨−−−−−→ X∨ ≃ idX∨ ,

and adjoints in the homotopy 2-category, i.e. f is left adjoint to g
if there are 2-morphisms id → gf , fg → id such that

f → fgf → f ≃ idf , g → gfg → g ≃ idg .
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Cocartesian morphisms

Suppose p : E → B is a functor of (∞, n)-categories.

Definition

A morphism f : x → y in E is p-cocartesian if for all z ∈ E, the
commutative square

E(y , z) E(x , z)

B(py , pz) B(px , pz)

f ∗

p(f )∗

is a pullback.
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Cocartesian fibrations

Suppose p : E → B is a functor with E an (∞, n)-category and B

an (∞, 1)-category.

Definition

The functor p is a cocartesian fibration if for all x ∈ E and
f : px → b in B there exists a p-cocartesian morphism f̄ : x → y
lifting f .

Generalizes Grothendieck/Street opfibrations for ordinary
categories.

Warning: Only the correct definition when B is an
(∞, 1)-category (not an (∞, n)-category)!
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Straightening

Theorem (Lurie (n = 1), Nuiten, Blans–Blom)

There is a natural equivalence of (∞, 1)-categories

Fun(B,Cat(∞,n)) ≃ Cocartn(B),

where Cocartn(B) is the sub-(∞, 1)-category of Cat(∞,n)/B with

objects the cocartesian fibrations over B,

and morphisms the functors that preserve cocartesian
morphisms over B.
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Basic idea

Idea (Lurie)

A s.m. (∞, n)-category C with duals and certain adjoints can be
reconstructed from the pullback squares of s.m. (∞, 1)-categories

c1ΩkC c1PΩk−1C

0 c1Ωk−1C

(k = 1, . . . , n − 1).

Here c1C is the underlying (∞, 1)-category (1-core) of C,
PC → c1C is the cocartesian fibration for the functor

C(1, –) : c1C → Cat(∞,n−1),

with objects 1 → X , morphisms
1

X Y ,
. . .

and ΩC = C(1,1), Ω2C = ΩC(id1, id1) = C(1,1)(id1, id1), etc.
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Categorical chain complexes

More precisely, there’s an equivalence between such s.m.
(∞, n)-categories and certain categorical chain complexes of
length n − 1:

Definition

A categorical chain complex of length ℓ is a sequence of
pullbacks of s.m. (∞, 1)-categories with duals

Zk Ck

0 Zk−1,

∂ (k = 1, . . . , ℓ),

where ∂ is a cocartesian fibration.

Analogy with chain complexes of abelian groups (C•, ∂): take
Zk = ker ∂ : Ck → Ck−1 and describe the chain complex by fibre
sequences

Zk → Ck
∂−→ Zk−1.
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Why is this interesting?

Can be used to inductively construct s.m. (∞, n)-categories
and s.m. functors among them from much simpler data, e.g.
extended TQFTs

Bord(0,n) → C.

We can construct spectra from s.m. (∞, n)-categories by
inverting everything; chain complex description gives some
information about this (and this extends to unbounded chain
complexes).
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Precise statement

Theorem (Lurie, H.–Nikolaus)

There is an equivalence of (∞, 1)-categories between left rigid
s.m. (∞, n)-categories and complete categorical chain complexes
of length n − 1.

A s.m. (∞, n)-category C is left k-rigid if C has duals for
objects, all morphisms 1 → X have left adjoints (if k > 1),
and ΩC is left (k − 1)-rigid. Left rigid = left n-rigid.
A categorical chain complex is complete if for each k the
canonical map

Zk,1/ Ck+1

Zk

∂

gives equivalences of ∞-groupoids on fibres

Zk(1,X ) ≃ C≃
k+1,X .
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Precise statement

Theorem (Lurie, H.–Nikolaus)

There is an equivalence of (∞, 1)-categories between skeletal
sequences of length n and categorical chain complexes of length
n − 1.

A skeletal sequence of length n consists of s.m. functors

A1 → A2 → · · · → An

where

Ai is a left rigid s.m. (∞, i)-category

and Ai → Ai+1 is (i − 1)-surjective (surjective on objects,
morphisms, etc., up to (i − 1)-morphisms.)
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The case n = 2

Want to recover a s.m. (∞, 2)-category C with duals from

PC → c1C,

i.e. from the lax s.m. functor

C(1, –) : c1C → Cat∞

Since C has duals (detected in c1C),

C(X ,Y ) ≃ C(1,X∨ ⊗ Y ),

so this functor knows all mapping (∞, 1)-categories of C.

c1C is closed s.m., so has self-enrichment c1C with Hom
object from X to Y given by X∨ ⊗ Y .

Idea: Recover C by changing this enrichment along the lax
s.m. functor C(1, –).
We prove that in general we can recover a closed s.m.
V-(∞, 1)-category D from the lax s.m. functor
D(1, –) : UD → V by changing enrichment from UD.
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Two-step unfolding

Upshot: Can recover a s.m. (∞, n)-category C with duals
from PC → c1C (where PC is an (∞, n − 1)-category).

Can show that PC has duals if and only if C is left 2-rigid; the
dual of f : 1 → X is (f L)∨ : 1 → X∨.

So in this case we can reconstruct C from the square

P2C (c1C)1/

c1PC c1C

But P2C won’t have duals, since PC can’t have many adjoints
(must live over adjoints = equivalences in c1C) — so can’t
iterate this argument.
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Two-step unfolding

Idea: The triangle

P2C c1PC×c1C (c1C)1/

c1PC

is obtained from

PΩC c1ΩC

c1ΩC

=

by left Kan extension along c1ΩC → c1PC.
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Inductive unfolding

Thus we can recover C from the diagram

PΩC

c1ΩC c1PC

0 c1C.

⌟

Here PΩC has duals when C is left 3-rigid, so can proceed by
induction to recover C from its categorical chain complex.

Rune Haugseng Unfolding of symmetric monoidal (∞, n)-categories



Inductive unfolding

Thus we can recover C from the diagram

PΩC

c1ΩC c1PC

0 c1C.

⌟

Here PΩC has duals when C is left 3-rigid, so can proceed by
induction to recover C from its categorical chain complex.

Rune Haugseng Unfolding of symmetric monoidal (∞, n)-categories



The End

Thank you!
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Closed s.m. enriched ∞-categories

Theorem (H.–Nikolaus, [∗])
V a s.m. (∞, 1)-category. There is an equivalence of
(∞, 1)-categories between

closed s.m. (∞, 1)-categories C equipped with a lax s.m.
functor ϕ : C → V

and pinned closed s.m. V-(∞, 1)-categories D, B → UD.

A pinned closed s.m. V-(∞, 1)-category is such a D together
with an essentially surjective strong s.m. functor ψ : B → UD

where B is a closed s.m. (∞, 1)-category and ψ preserves
internal Homs.

The equivalence is given by

(C, ϕ) 7→ (ϕ∗C, C → Uϕ∗C),

(D, ψ) 7→ (B
ψ−→ UD

D(1,–)−−−−→ V).
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Closed s.m. enriched ∞-categories

Theorem (H.–Nikolaus)

V a s.m. (∞, 1)-category. There is an equivalence of
(∞, 1)-categories between

closed s.m. (∞, 1)-categories C equipped with a lax s.m.
functor ϕ : C → V such that the canonical lax triangle

C V

Spc

ϕ

C(1,–) V(1,–)

commutes.

and closed s.m. V-(∞, 1)-categories.
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Kan extensions

Theorem (H.–Nikolaus)

Suppose p : B → A is a cocartesian fibration of symmetric
monoidal (∞, 1)-categories whose underlying functor is also a
cartesian fibration. Then left Kan extension along B1 → B induces
a fully faithful functor

MonB⊗
1
(Cat(∞,n)) ↪→ MonB⊗(Cat(∞,n))/A(1,p(–))

with image those transformations α : F → A(1, p(–)) such that

(⋆) for f : x → y a p-cartesian morphism, the square

F (x) F (y)

A(1, p(x)) A(1, p(y))

F (f )

αx αy

A(1,p(f ))

is a pullback.
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Kan extensions

Apply this to p : c1PC → c1C:

Corollary

Left Kan extension along c1ΩC → c1PC induces a fully faithful
functor

Monc1ΩC(Cat(∞,n)) ↪→ Monc1PC(Cat(∞,n))/c1C(1,p(–))

with image those transformations α : F → c1C(1, p(–)) such that
(⋆) holds.

For our triangle

P2C c1PC×c1C (c1C)1/

c1PC,

condition (⋆) is precisely equivalent to PC → c1C being a
cocartesian fibration!
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