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Proposition
Let P be a poset with suprema of increasing chains. Let f : P → P be an order preserving map
satisfying x ⩽ f (x).

Then for each x ∈ P there exists a smallest fixed-point of f bigger than x .

Proof.
Define an ordinally indexed sequence:

f 0(x) = x
f β+1(x) = f (f β(x))
f α(x) = supβ<α f

β(x) (If α is limit)

For each x , the f α(x) form an increasing sequence of elements, all smaller than any fixed-point
of f above x .
It has to stabilize at some stage, this gives the smallest fixed-point above x .
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The notion of “Well-pointed endofunctor” (Kelly) is the correct framework to generalize the
observation above from a poset P to a category C.

It axiomatizes the idea of a construction that can be iterated an ordinal number of times until
it stabilizes to a “fixed-point”.
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What do we need to make sense of this?
1 We are working in a category C - which will have certain colimits.

2 First we want an endofunctor T : C → C.
3 We need to be able to build a sequence

X → T (X ) → T 2(X ) → . . .

from which to take the colimit. So we will need a natural transformation

tX : X → T (X )

So far, (T , t) is a pointed endofunctor.
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Given a pointed endofunctor, we can iterate it (assuming the appropriate colimit exists):

X
tx→ T (X )

tT (X )→ T 2(X ) → · · · → Tω(X )

tTω(X )→ Tω+1(X ) → . . .

and this continue with T β+1(X ) = T (T β(X )) and Tα(X ) = Colimβ<α T
β(X ) to construct a

functor:
Ord × C → C
(α,X ) 7→ Tα(X )

where Ord is the poset of ordinals. Potentially this is only defined for some X and some α if C
doesn’t have all the required colimits.
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Remark
In general, instead of the sequence

X
tx→ T (X )

tT (X )→ T 2(X ) → . . .Tω(X )

we could consider for example:

X
tx→ T (X )

T (tX )→ T 2(X )
T 2(tX )→ . . .

and there is in fact an infinite number of possible sequences (there are n different maps from
T n−1(X ) to T n(X ) we could use).
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Definition (Kelly 1980)

A well-pointed endofunctor is a pointed endofunctor (T , t) such that

T (tX ) = tT (x)

This implies that all maps from T n(X ) → T n+1(X ) built using t coincide.

This condition can be written as
Tt = tT
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Theorem (Kelly 1980)

If (T , t) is a well-pointed endofunctor on C, the following categories are equivalent:

The full subcategory of C of object X such that tx is an isomorphism.
The category of T -algebras (i.e. objects equipped with a : T (X ) → X such that
a ◦ tx = IdX ).
The full subcategory of objects of C that are orthogonal to tY for all y .

We call this the category Fix(T ) of fixed-points of T .
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Theorem (Kelly 1980)

If (T , t) is a well-pointed endofunctor on C. For any X ∈ C, if α > 0 is a limit ordinal such that
Tα(X ) exists.

The colimit Tα(X ) = Colimβ<α T
β(X ) defining Tα(X ) is preserved by T .

Then Tα(X ) is the reflection of X on the category Fix(T ) of fixed-points of T .

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 9



Theorem (Kelly 1980)

If (T , t) is a well-pointed endofunctor on C. For any X ∈ C, if α > 0 is a limit ordinal such that
Tα(X ) exists.
The colimit Tα(X ) = Colimβ<α T

β(X ) defining Tα(X ) is preserved by T .

Then Tα(X ) is the reflection of X on the category Fix(T ) of fixed-points of T .

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 9



Theorem (Kelly 1980)

If (T , t) is a well-pointed endofunctor on C. For any X ∈ C, if α > 0 is a limit ordinal such that
Tα(X ) exists.
The colimit Tα(X ) = Colimβ<α T

β(X ) defining Tα(X ) is preserved by T .
Then Tα(X ) is the reflection of X on the category Fix(T ) of fixed-points of T .

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 9



All this comes from:

BULL. AUSTRAL. MATH. SOC. I 8C I 5 , I 8 A 4 0 , I 8 D I 0

VOL. 22 ( 1 9 8 0 ) , 1 -83 .

A UNIFIED TREATMENT OF TRANSFINITE CONSTRUCTIONS
FOR FREE ALGEBRAS, FREE MONOIDS, COLIMTS,

ASSOCIATED SHEAVES, AND SO ON

G.lt. KELLY

Many problems lead to the consideration of "algebras", given by

an object A of a category A together with "actions" T,A -*• A

on A of one or more endofunctors of A , subjected to equational

axioms. Such problems include those of free monads and free

monoids, of cocompleteness in categories of monads and of monoids,

of orthogonal subcategories (= generalized sheaf-categories), of

categories of continuous functors, and so on; apart from problems

involving the algebras for their own sake.

Desirable properties of the category of algebras - existence of

free ones, cocompleteness, existence of adjoints to algebraic

functors - all follow if this category can be proved reflective

in some well-behaved category: for which we choose a certain

comma-category T/k .

We show that the reflexion exists and is given as the colimit of

a simple transfinite sequence, if A is cocomplete and the T1

preserve either colimits or unions of suitably-long chains of

subobjects.

The article draws heavily on the work of earlier authors, unifies

and simplifies this, and extends it to new problems. Moreover

the reflectivity in T/k is stronger than any earlier result, and

will be applied in forthcoming articles, in an enriched version, to

Received 19 November 1979-

I

https://doi.org/10.1017/S0004972700006353 Published online by Cambridge University Press
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Example
The small object argument for constructing a unique factorization system can be written as
iteration of a well-pointed endofunctor.

Example
Given an endofunctor, a pointed endofunctor or a monad M on C, Kelly considers a new
category

D = (M ↓ C) = {A,B ∈ C, λ : M(A) → B},

and a simple well-pointed endofunctor S on D, such that

M-Alg ≃ Fix(S)

Moreover, colimits in D can be expressed simply in terms of colimits in C.

This allows to give “explicit” constructions of colimits of M-algebras, or of the free M-algebras.
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Let M be a commutative monoid in a symmetric monoidal category V. Let a : I → M an
element.

The “localization” M[a−1] can be constructed as:
1 C the category of M-modules, that is objects of V equipped with an action of M.
2 T : C → C the identity functor.
3 t : Id → T (or Id → Id ) is multiplication by a. Note: a is a morphism of M-modules

because M is commutative.
Then T is well-pointed, and

Fix(T ) ≃ {M-Module on which a acts as an iso.} ≃ M[a−1]-Module

So starting with an M-module S , we have the colimit

S
a→ S

a→ S
a→ S

a→ S → · · · → S [a−1] = S ⊗M M[a−1]

Taking S = M will compute M[a−1].
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Example
1 If S and T are well-pointed endofunctors, then their composite ST is also well-pointed,

and:
Fix(ST ) = Fix(S) ∩ Fix(T )

2 So if C1 and C2 are two (accessible) reflective subcategories of C, with reflection
R1 : C → C1 and R2 : C → C2, the composite R1R2 is a well-pointed endofunctor whose
iteration will produce the reflection on C1 ∩ C2.
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Goal: Generalizing all this to ∞-categories (or even just 2-categories).

Remark
In what follows ∞-categories means (∞, 1)-categories. So by 2-categories, I really mean weak
(2, 1)-categories. Everything applies to 2-categories as well - but just keep in mind that when I
talk about a 2-cell I always mean an invertible one, and all colimits are pseudo-colimits.
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Let’s start with our earlier example of constructing M[a−1] when M is a monoid in a
(2, 1)-category:

Example
Let M be symmetric monoidal category, and a ∈ M an object. We can consider the
(pseudo)colimit of the sequence:

M
a⊗_
→ M

a⊗_
→ M

a⊗_
→ . . .

Is this a fixed-point? Does it provide a construction of M[a−1]?
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It doesn’t work in general!

But this has been studied:

Theorem (Voevodsky 1998 for 1-categories, Robalo 2015 for ∞-categories)

Given a symmetric monoidal (∞-)category M and a ∈ M an object, the pseudo-colimit

M
a⊗_
→ M

a⊗_
→ M

a⊗_
→ . . .

of (∞-)categories is a symmetric monoidal (∞-)category and has the universal property of
M[a−1] if

and only if

σ(123) : (a⊗ a⊗ a) → (a⊗ a⊗ a)

the map induced by the permutation (123) is equivalent to the identity after tensoring by a
finite number of copies of a.
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Theorem (A version of the Group completion theorem)

If M is a E∞-monoid in the ∞-category of spaces and a ∈ M, the homotopy colimit of

M a→ M a→ M a→ M a→ . . .

is homologically equivalent to M[a−1] (defined in a proper up to homotopy sense).

Remark
In fact the actual localization can be constructed from this colimit by applying Quillen’s
+-construction.
This is a fairly involved construction in topology that “kills off” a normal perfecta subgroup of
the π1 of a space without changing its homology (but completely transforming the higher
homotopy groups).

aG is perfect if the commutator subgroup [G ,G ] is G .
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Definition
A pointed endofunctor on an ∞-category C is a functor T : C → C together with a natural
transformation t : Id → T .

A braided endofunctor on an ∞-category C is triple (T , t, τ) where (T , t) is a pointed
endofunctor on C and τ is a (invertible) 2-cell

τ : T ⊗ t → t ⊗ T

in End(C).

Remark
If (T , t, τ) is a braided endofunctor on an ∞-category C, then (T , t) is a well-pointed
endofunctor on the homotopy category Ho(C).
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Theorem (A., H.

... but mostly Kelly

)

Let C be an ∞-category with a braided endofunctor (T , t, τ) then the following ∞-categories
are equivalent:

The full subcategory of C of objects X such that tx is an isomorphism.
The ∞-category of T -algebras (for the pointed endofunctor T ).
The full subcategory of objects of C that are orthogonal to tY for all y .

These equivalent categories are denoted by Fix(T ).

The proof is mostly the same as for 1-categories. In fact most of it happens in the homotopy
category, and we don’t even need τ to be natural.
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The problems start with the second theorem.

Let’s examine its proof:
Consider Y = Colimi<ω T i (X ) and assume that this colimit is preseved by T . We only need to
construct a T -algebra structure on Y to conclude, i.e. a retraction of the map
tY : Y → T (Y ). The map ty can be obtained as the colimit of:

X T (X ) T 2(X ) . . . Y

T (X ) T 2(X ) T 3(X ) . . . T (Y )

t

t

tT

tT

tT 2

tT t

Tt TtT TtT
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It works in 1-category theory because shifting the diagram preserve the colimit:

X TX T 2X . . . Y

TX T 2X T 3X . . . Y

t

t

tT

tT

tT 2

tT 2 Id

tT tT 2 tT 3

and this diagram is the same as the outer part of the previous one:

X T (X ) T 2(X ) . . . Y

T (X ) T 2(X ) T 3(X ) . . . T (Y )

T (X ) T 2(X ) T 3(X ) . . . Y

t

t

tT

tT

tT 2

tT t

τ

Tt TtT

τT

TtT

s

tT tT 2 tT 3

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 21



It works in 1-category theory because shifting the diagram preserve the colimit:

X TX T 2X . . . Y

TX T 2X T 3X . . . Y

t

t

tT

tT

tT 2

tT 2 Id

tT tT 2 tT 3

and this diagram is the same as the outer part of the previous one:

X T (X ) T 2(X ) . . . Y

T (X ) T 2(X ) T 3(X ) . . . T (Y )

T (X ) T 2(X ) T 3(X ) . . . Y

t

t

tT

tT

tT 2

tT t

τ

Tt TtT

τT

TtT

s

tT tT 2 tT 3
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But for this to work in ∞-category theory (or 2-category theory), we also need the 2-cells of
these two diagram to be the same: Changing the 2-cell making the square commute can affect
the morphism between the colimits!

That is we need that for each object X :

X T (X ) X T (X )

T (X ) T 2(X ) =

T (X ) T 2(X ) T (X ) T 2(X )

t

t

tT

t

t = tT
Tt

τ

tT tT

We call τ (2)(X ) the 2-cell inside the left rectangle.
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Importantly, τ (2)X is an endomorphism 2-cell, that is its source and target are the same 1-cells.

So (the isomorphism class of) τ (2)(X ) can be seen as an element of π1(Hom(X ,T 2(X )), •)
and it makes sense to ask whether τ (2)(X ) ∼ 1.

Theorem (A.,H.)

Let (T , t, τ) be a braided endofunctor on an ∞-category. Let X be an object and α > 0 a limit
ordinal such that:

1 Tα(X ) exists.
2 T preserves the colimit Tα(X ) = Colimβ<α T

β(X ).

3 ∀β < α , τ (2)(T β(X )) ∼ 1. τ (2)(Tα(X )) ∼ 1.

Then Tα(X ) is a reflection of X on the category of fixed-points of T .
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Example
Returning to the example of a symmetric monoid M in a monoidal ∞-category V and a an
element of M.

We have a braided endofunctor (Id, a× _) as before. Then τ (2) is:

X T (X )

T (X ) T 2(X )

T (X ) T 2(X )

t

t

tT

Tt

τ

tT

=

X X

X X

X X

σ2a

a

a

a

=

a

So to ensure convergence with the above theorem and compute M[a−1], we need to know that
the isomorphism

σ12 : a⊗ a → a⊗ a

is trivial. This is a stronger requirement than the 3-cycle condition we mentioned earlier.
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We can do better. Let’s go back to our diagram:

X T (X ) T 2(X ) . . . Y
t tT tT 2

T (X ) T 2(X ) T 3(X ) . . . T (Y )

T (X ) T 2(X ) T 3(X ) . . . Y

Tt TtT TtT 2

tT tT 2 tT 3

T (X ) T 2(X ) T 3(X ) . . . Y

T 4(X )

tT tT 2 tT 3 tT 3

tT tT 2 tT 3 tT 3

t tT tT t

sτ τT
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So to ensure convergence, we can replace τ (2) by:

τ (3)(X ) =

X T (X )

T (X ) T 2(X )

T 2(X ) T 3(X )

t

t tT

tT tT 2

tT 2

τ (2)

(τ (2))−1T

τ (3)(X ) ∈ π1
(
Hom(X ,T 3X ), •

)

In the special case of multiplication
by an element in a symmetric monoid
(or by an object in a symmetric
monoidal category) that we discussed
earlier, τ (3) is the 3-cycle

a⊗ a⊗ a → a⊗ a⊗ a
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Theorem (A.,H.)

Let (T , t, τ) be a braided endofunctor on an ∞-category. Let X be an object and α a limit
ordinal such that:

1 Tα(X ) exists.
2 T preserves the colimit Tα(X ) = Colimβ<α T

β(X ).
3 τ (2)(Tα(X )) ∼ Id. τ (3)(Tα(X )) ∼ Id.

Then Tα(X ) is a reflection of X on the category of fixed-points of T .

Moreover, the point of using this (τ (2))−1 in the definition of τ (3), is so that we have:

Proposition (A. , H.)

If Y is a fixed-point of T , then τ (3)(Y ) ∼ Id. In particular, the last condition is necessary in
the previous theorem.
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Definition (A.,H.)

We say that a Braided endofunctor (T , t, τ) is

1 Strongly well-pointed if τ (2)X ∼ Id for all X .

2 Well-pointed if τ (3)X ∼ Id for all X .

3 Eventually well-pointed if for each object X , τ (3)Tα(X ) ∼ Id for α large enough.

Theorem (A., H.)

Let S and T be two braided endofunctors, then ST is a braided endofunctor and

Fix(ST ) = Fix(S) ∩ Fix(T )

Moreover, if S and T are (strongly) well-pointed then ST is (strongly) well-pointed.
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The condition on τ (3) still looks mysterious however... But in order to establish our result we
did made some progress toward understanding it better.

In order to better understand the role of the various map (and higher arrows) we can build by
combining t and τ let’s consider:

Definition
Let B be the free monoidal ∞-category generated by a “braided object”. That is generated by:

1 an object T ,
2 together with an arrow t : 1 → T ,
3 a 2-cell τ : T ⊗ t ≃ t ⊗ T ∈ Hom(T ,T 2).

That is, a braided endofunctor on C is the same as a monoidal functor B → End(C), i.e. an
action of B on C.
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We have a “Structure theorem” describing B:

Theorem (A., H.)

B has objects T n and morphism spaces are given by

Hom(T n,Tm) =

{

∅ if m < n,
B(Bm−n) if m ⩾ n,

where Bi is the braid group on i strands (with B0 = B1 = {1}), and B(Bi ) is its classifying
space. That is essentially a one object groupoid with Bi as its automorphism group.

So B is a 2-category, and the 2-cells correspond to braids.

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 30



We have a “Structure theorem” describing B:

Theorem (A., H.)

B has objects T n and morphism spaces are given by

Hom(T n,Tm) =

{

∅ if m < n,
B(Bm−n) if m ⩾ n,

where Bi is the braid group on i strands (with B0 = B1 = {1}), and B(Bi ) is its classifying
space. That is essentially a one object groupoid with Bi as its automorphism group.

So B is a 2-category, and the 2-cells correspond to braids.

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 30



We have a “Structure theorem” describing B:

Theorem (A., H.)

B has objects T n and morphism spaces are given by

Hom(T n,Tm) =

{
∅ if m < n,

B(Bm−n) if m ⩾ n,

where Bi is the braid group on i strands (with B0 = B1 = {1}), and B(Bi ) is its classifying
space. That is essentially a one object groupoid with Bi as its automorphism group.

So B is a 2-category, and the 2-cells correspond to braids.

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 30



We have a “Structure theorem” describing B:

Theorem (A., H.)

B has objects T n and morphism spaces are given by

Hom(T n,Tm) =

{
∅ if m < n,
B(Bm−n) if m ⩾ n,

where Bi is the braid group on i strands (with B0 = B1 = {1}), and B(Bi ) is its classifying
space. That is essentially a one object groupoid with Bi as its automorphism group.

So B is a 2-category, and the 2-cells correspond to braids.

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 30



We have a “Structure theorem” describing B:

Theorem (A., H.)

B has objects T n and morphism spaces are given by

Hom(T n,Tm) =

{
∅ if m < n,
B(Bm−n) if m ⩾ n,

where Bi is the braid group on i strands (with B0 = B1 = {1}), and B(Bi ) is its classifying
space.

That is essentially a one object groupoid with Bi as its automorphism group.

So B is a 2-category, and the 2-cells correspond to braids.

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 30



We have a “Structure theorem” describing B:

Theorem (A., H.)

B has objects T n and morphism spaces are given by

Hom(T n,Tm) =

{
∅ if m < n,
B(Bm−n) if m ⩾ n,

where Bi is the braid group on i strands (with B0 = B1 = {1}), and B(Bi ) is its classifying
space. That is essentially a one object groupoid with Bi as its automorphism group.

So B is a 2-category, and the 2-cells correspond to braids.

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 30



We have a “Structure theorem” describing B:

Theorem (A., H.)

B has objects T n and morphism spaces are given by

Hom(T n,Tm) =

{
∅ if m < n,
B(Bm−n) if m ⩾ n,

where Bi is the braid group on i strands (with B0 = B1 = {1}), and B(Bi ) is its classifying
space. That is essentially a one object groupoid with Bi as its automorphism group.

So B is a 2-category, and the 2-cells correspond to braids.

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 30



We can be more precise on what the composition and monoidal structure on B actually is:

Theorem (A., H.)

B is equivalent to a strictly monoidal strict 2-category, in which all 2-arrows have inverses.

Let’s describe this “strict” version of B:
1 Objects are integer n ⩾ 0.
2 1-morphism m → n are order preserving injections {1, . . . ,m} → {1, . . . , n}.
3 2-morphism f ⇒ g are braids on m − n strand connecting the m − n points not in the

image of f to the m − n points not in the image of g .
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We draw 1-morphism by putting circle around the element in the image, for example

1 2 3

is the map 1 to 3 sending 1 to 2.

2-morphisms are braids connecting the non-circled elements:

1 2 3

1 2 3
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The tensor product is horizontal concatenation:

1 2 3

1 2 3

⊗

1 2

1 2

=

1 2 3 4 5

1 2 3 4 5

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 33



The tensor product is horizontal concatenation:

1 2 3

1 2 3

⊗

1 2

1 2

=

1 2 3 4 5

1 2 3 4 5

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 33



“Vertical” composition of 2-cells is vertical stacking:

1 2 3

1 2 3

◦1

1 2 3

1 2 3

=

1 2 3

1 2 3

=

1 2 3

1 2 3
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Horizontal Composition is stacking in the remaining direction:

1 2 3 4 5

1 2 3 4 5

◦0

1 2 3

1 2 3

=

1 2 3 4 5

1 2 3 4 5
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T is the object 1,

so that

IdT = 1 t = 1

And:

τ : Tt → tT =

1 2

1 2
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The 2-cell τ (2) which was defined as:

τ (2) =

Id T

T T 2

T T 2

t

t

tT

Tt

τ

tT

(Strictness)
=

Id

T T 2

T T 2

t

Tt

τ

tT

=

1 2

1 2

◦0

1

1

=

1 2

1 2
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Finally:

τ (3) =

Id T

T T 2

T 2 T 3

t

tTt

tT

tT 2

tT 2

τ (2)

(τ (2))−1T

=



1 2 3

1 2 3

◦0

1 2

1 2



◦1





1 2

1 2

⊗

1

1


◦0

1

1



=

1 2 3

1 2 3

Is a 3-cycle realized as an element of degree 0.
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Remark
The abelianization of the Braid group Bn is Z (for n ⩾ 2).

The abelianization morphisms is:

degree : Bn → Z

which count the number of overcrossing minus the number of under-crossing. Moreover for
n ⩾ 3, the element τ (3) generates the kernel of this map as a normal subgroup: That is for a
morphism f : Bn → G the following are equivalent:

1 f (τ (3)) = 1.
2 f factor through the degree map Bn → Z.

In particular:

Remark
1 T is strongly well-pointed iff all the Bn → π1(Hom(X ,T nX )) induced by T are trivial.
2 T is well-pointed iff all the Bn → π1(Hom(X ,T nX )) factor through the degree map.

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 39



Remark
The abelianization of the Braid group Bn is Z (for n ⩾ 2). The abelianization morphisms is:

degree : Bn → Z

which count the number of overcrossing minus the number of under-crossing. Moreover for
n ⩾ 3, the element τ (3) generates the kernel of this map as a normal subgroup: That is for a
morphism f : Bn → G the following are equivalent:

1 f (τ (3)) = 1.
2 f factor through the degree map Bn → Z.

In particular:

Remark
1 T is strongly well-pointed iff all the Bn → π1(Hom(X ,T nX )) induced by T are trivial.
2 T is well-pointed iff all the Bn → π1(Hom(X ,T nX )) factor through the degree map.

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 39



Remark
The abelianization of the Braid group Bn is Z (for n ⩾ 2). The abelianization morphisms is:

degree : Bn → Z

which count the number of overcrossing minus the number of under-crossing.

Moreover for
n ⩾ 3, the element τ (3) generates the kernel of this map as a normal subgroup: That is for a
morphism f : Bn → G the following are equivalent:

1 f (τ (3)) = 1.
2 f factor through the degree map Bn → Z.

In particular:

Remark
1 T is strongly well-pointed iff all the Bn → π1(Hom(X ,T nX )) induced by T are trivial.
2 T is well-pointed iff all the Bn → π1(Hom(X ,T nX )) factor through the degree map.

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 39



Remark
The abelianization of the Braid group Bn is Z (for n ⩾ 2). The abelianization morphisms is:

degree : Bn → Z

which count the number of overcrossing minus the number of under-crossing. Moreover for
n ⩾ 3, the element τ (3) generates the kernel of this map as a normal subgroup:

That is for a
morphism f : Bn → G the following are equivalent:

1 f (τ (3)) = 1.
2 f factor through the degree map Bn → Z.

In particular:

Remark
1 T is strongly well-pointed iff all the Bn → π1(Hom(X ,T nX )) induced by T are trivial.
2 T is well-pointed iff all the Bn → π1(Hom(X ,T nX )) factor through the degree map.

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 39



Remark
The abelianization of the Braid group Bn is Z (for n ⩾ 2). The abelianization morphisms is:

degree : Bn → Z

which count the number of overcrossing minus the number of under-crossing. Moreover for
n ⩾ 3, the element τ (3) generates the kernel of this map as a normal subgroup: That is for a
morphism f : Bn → G the following are equivalent:

1 f (τ (3)) = 1.
2 f factor through the degree map Bn → Z.

In particular:

Remark
1 T is strongly well-pointed iff all the Bn → π1(Hom(X ,T nX )) induced by T are trivial.
2 T is well-pointed iff all the Bn → π1(Hom(X ,T nX )) factor through the degree map.

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 39



Remark
The abelianization of the Braid group Bn is Z (for n ⩾ 2). The abelianization morphisms is:

degree : Bn → Z

which count the number of overcrossing minus the number of under-crossing. Moreover for
n ⩾ 3, the element τ (3) generates the kernel of this map as a normal subgroup: That is for a
morphism f : Bn → G the following are equivalent:

1 f (τ (3)) = 1.
2 f factor through the degree map Bn → Z.

In particular:

Remark
1 T is strongly well-pointed iff all the Bn → π1(Hom(X ,T nX )) induced by T are trivial.
2 T is well-pointed iff all the Bn → π1(Hom(X ,T nX )) factor through the degree map.

S.Henry uOttawa Well-pointed endofunctors - j. w/ Mathieu Anel 07-14 39



Proposition (A.,H.)

If in C, all the π1(Hom(X ,Y ), •) are abelian groups, then every braided endofunctor on C is
well-pointed (i.e. τ (3) ∼ 1).

This happens for example when C is an ∞-category of chain
complexes, or more generally a stable or additive ∞-category.

In fact, because the kernel of the degree map is a perfect group for n ⩾ 5 we have the stronger
result:

Proposition (A.,H.)

If in C, all the π1(Hom(X ,Y )) are hypoabeliana groups, then every braided endofunctor on C is
eventually well-pointed.

This happen for example when C is the essential image of Quillen’s
+-construction.

aA hypoabelian group is a group that has no perfect subgroups. Solvable groups are hypoabelian.
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Theorem (A.,H.)

If T is a braided endofunctor on C which has colimits, there is a quotient Tω → S so that S is
strongly well-pointed and has the same fixed-point as T .

S is defined by:

Hom(S(X ),Y ) ≃

{
f : Tω(X ) → Y

∣∣∣∣∣

∀i < ω, f (τ
(3)
i ) ∼ Id

where τ
(3)
i ∈ Hom(T i (X ),Tω(X )).

}

Remark
Here we really mean that Hom(S(X ),Y ) is a subspace of Hom(Tω(X ),Y ), not elements of
Hom(Tω(X ),Y ) equipped with an additional homotopies trivializing these cells.

The fact that this sort of thing is possible is closely related to Quillen’s +-construction and the
fact that the Kernel of the degree map is a perfect group (for n ⩾ 5).

However, this last quotient can be quite complicated...
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Conjecture (Structure theorem for strongly well-pointed endofunctors)

The poset N, equipped with the addition as a monoidal structure, is equivalent to the free
monoidal ∞-category generated by strongly well-pointed object,

i.e.:
An object T .
A map t : 1 → T .
A “braiding” 2-cell τ : T ⊗ t → t ⊗ T .
A 3-cell Θ : τ (2) ≃ Id witnessing that the previous braided object is strongly well-pointed.

Thank you!
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