Well-pointed endofunctors on ∞-categories (Joint work with Mathieu Anel)

Simon Henry

University of Ottawa

CT2025 - Masaryk university Brno - July 14th 2025

Let P be a poset with suprema of increasing chains. Let $f: P \to P$ be an order preserving map satisfying $x \leq f(x)$.

Let P be a poset with suprema of increasing chains. Let $f: P \to P$ be an order preserving map satisfying $x \leqslant f(x)$. Then for each $x \in P$ there exists a smallest fixed-point of f bigger than x.

Let P be a poset with suprema of increasing chains. Let $f: P \to P$ be an order preserving map satisfying $x \leqslant f(x)$. Then for each $x \in P$ there exists a smallest fixed-point of f bigger than x.

Proof.

Define an ordinally indexed sequence:

$$\begin{cases} f^0(x) = x \\ f^{\beta+1}(x) = f(f^{\beta}(x)) \\ f^{\alpha}(x) = \sup_{\beta < \alpha} f^{\beta}(x) \text{ (If } \alpha \text{ is limit)} \end{cases}$$

Let P be a poset with suprema of increasing chains. Let $f: P \to P$ be an order preserving map satisfying $x \leqslant f(x)$. Then for each $x \in P$ there exists a smallest fixed-point of f bigger than x.

Proof.

Define an ordinally indexed sequence:

$$\begin{cases} f^0(x) &= x \\ f^{\beta+1}(x) &= f(f^{\beta}(x)) \\ f^{\alpha}(x) &= \sup_{\beta < \alpha} f^{\beta}(x) \text{ (If } \alpha \text{ is limit)} \end{cases}$$

For each x, the $f^{\alpha}(x)$ form an increasing sequence of elements, all smaller than any fixed-point of f above x.

Let P be a poset with suprema of increasing chains. Let $f: P \to P$ be an order preserving map satisfying $x \leqslant f(x)$. Then for each $x \in P$ there exists a smallest fixed-point of f bigger than x.

Proof.

Define an ordinally indexed sequence:

$$\begin{cases} f^0(x) &= x \\ f^{\beta+1}(x) &= f(f^{\beta}(x)) \\ f^{\alpha}(x) &= \sup_{\beta < \alpha} f^{\beta}(x) \text{ (If } \alpha \text{ is limit)} \end{cases}$$

For each x, the $f^{\alpha}(x)$ form an increasing sequence of elements, all smaller than any fixed-point of f above x.

It has to stabilize at some stage, this gives the smallest fixed-point above x.

The notion of "Well-pointed endofunctor" (Kelly) is the correct framework to generalize the observation above from a poset P to a category C.

The notion of "Well-pointed endofunctor" (Kelly) is the correct framework to generalize the observation above from a poset P to a category C.

It axiomatizes the idea of a construction that can be iterated an ordinal number of times until it stabilizes to a "fixed-point".

lacktriangle We are working in a category $\mathcal C$ - which will have certain colimits.

- lacktriangle We are working in a category $\mathcal C$ which will have certain colimits.
- 2 First we want an endofunctor $T: \mathcal{C} \to \mathcal{C}$.

- lacktriangle We are working in a category $\mathcal C$ which will have certain colimits.
- ② First we want an endofunctor $T: \mathcal{C} \to \mathcal{C}$.
- We need to be able to build a sequence

$$X \to T(X) \to T^2(X) \to \dots$$

from which to take the colimit.

- lacktriangle We are working in a category $\mathcal C$ which will have certain colimits.
- ② First we want an endofunctor $T: \mathcal{C} \to \mathcal{C}$.
- We need to be able to build a sequence

$$X \to T(X) \to T^2(X) \to \dots$$

from which to take the colimit. So we will need a natural transformation

$$t_X:X\to T(X)$$

- lacktriangledown We are working in a category $\mathcal C$ which will have certain colimits.
- ② First we want an endofunctor $T: \mathcal{C} \to \mathcal{C}$.
- 3 We need to be able to build a sequence

$$X \to T(X) \to T^2(X) \to \dots$$

from which to take the colimit. So we will need a natural transformation

$$t_X:X\to T(X)$$

So far, (T, t) is a **pointed endofunctor**.

$$X\stackrel{t_{X}}{
ightarrow}T(X)\stackrel{t_{T(X)}}{
ightarrow}T^{2}(X)
ightarrow\cdots
ightarrow T^{\omega}(X)$$

$$X \stackrel{t_X}{\to} T(X) \stackrel{t_{T(X)}}{\to} T^2(X) \to \cdots \to T^{\omega}(X) \stackrel{t_{T^{\omega}(X)}}{\to} T^{\omega+1}(X) \to \cdots$$

$$X \stackrel{t_X}{\to} T(X) \stackrel{t_{T(X)}}{\to} T^2(X) \to \cdots \to T^{\omega}(X) \stackrel{t_{T^{\omega}(X)}}{\to} T^{\omega+1}(X) \to \ldots$$

and this continue with $T^{\beta+1}(X) = T(T^{\beta}(X))$ and $T^{\alpha}(X) = \text{Colim}_{\beta < \alpha} T^{\beta}(X)$ to construct a functor:

$$\begin{array}{ccc} \mathsf{Ord} \times \mathcal{C} & \to & \mathcal{C} \\ (\alpha, X) & \mapsto & \mathcal{T}^{\alpha}(X) \end{array}$$

$$X\stackrel{t_X}{ o} T(X)\stackrel{t_{T(X)}}{ o} T^2(X) o \cdots o T^\omega(X)\stackrel{t_{T^\omega(X)}}{ o} T^{\omega+1}(X) o \cdots$$

and this continue with $T^{\beta+1}(X) = T(T^{\beta}(X))$ and $T^{\alpha}(X) = \text{Colim}_{\beta < \alpha} T^{\beta}(X)$ to construct a functor:

$$\begin{array}{ccc} \mathsf{Ord} \times \mathcal{C} & \to & \mathcal{C} \\ (\alpha, X) & \mapsto & \mathcal{T}^{\alpha}(X) \end{array}$$

where Ord is the poset of ordinals.

$$X \stackrel{t_X}{\to} T(X) \stackrel{t_{T(X)}}{\to} T^2(X) \to \cdots \to T^{\omega}(X) \stackrel{t_{T^{\omega}(X)}}{\to} T^{\omega+1}(X) \to \ldots$$

and this continue with $T^{\beta+1}(X) = T(T^{\beta}(X))$ and $T^{\alpha}(X) = \text{Colim}_{\beta < \alpha} T^{\beta}(X)$ to construct a functor:

$$\begin{array}{ccc} \mathsf{Ord} \times \mathcal{C} & \to & \mathcal{C} \\ (\alpha, X) & \mapsto & \mathcal{T}^{\alpha}(X) \end{array}$$

where Ord is the poset of ordinals. Potentially this is only defined for some X and some α if C doesn't have all the required colimits.

In general, instead of the sequence

$$X\stackrel{t_X}{\to} T(X)\stackrel{t_{T(X)}}{\to} T^2(X)\to \dots T^\omega(X)$$

In general, instead of the sequence

$$X \stackrel{t_X}{\to} T(X) \stackrel{t_{T(X)}}{\to} T^2(X) \to \dots T^{\omega}(X)$$

we could consider for example:

$$X \stackrel{t_{\times}}{\to} T(X) \stackrel{T(t_{X})}{\to} T^{2}(X) \stackrel{T^{2}(t_{X})}{\to} \dots$$

In general, instead of the sequence

$$X \stackrel{t_X}{\to} T(X) \stackrel{t_{T(X)}}{\to} T^2(X) \to \dots T^{\omega}(X)$$

we could consider for example:

$$X \stackrel{t_{X}}{\rightarrow} T(X) \stackrel{T(t_{X})}{\rightarrow} T^{2}(X) \stackrel{T^{2}(t_{X})}{\rightarrow} \dots$$

and there is in fact an infinite number of possible sequences

In general, instead of the sequence

$$X \stackrel{t_X}{\to} T(X) \stackrel{t_{T(X)}}{\to} T^2(X) \to \dots T^{\omega}(X)$$

we could consider for example:

$$X \stackrel{t_X}{\to} T(X) \stackrel{T(t_X)}{\to} T^2(X) \stackrel{T^2(t_X)}{\to} \dots$$

and there is in fact an infinite number of possible sequences (there are n different maps from $T^{n-1}(X)$ to $T^n(X)$ we could use).

Definition (Kelly 1980)

A well-pointed endofunctor is a pointed endofunctor (\mathcal{T},t) such that

$$T(t_X)=t_{T(x)}$$

Definition (Kelly 1980)

A well-pointed endofunctor is a pointed endofunctor (T, t) such that

$$T(t_X)=t_{T(x)}$$

This implies that all maps from $T^n(X) \to T^{n+1}(X)$ built using t coincide.

Definition (Kelly 1980)

A well-pointed endofunctor is a pointed endofunctor (T, t) such that

$$T(t_X) = t_{T(x)}$$

This implies that all maps from $T^n(X) \to T^{n+1}(X)$ built using t coincide.

This condition can be written as

$$Tt = tT$$

If (T,t) is a well-pointed endofunctor on C, the following categories are equivalent:

If (T, t) is a well-pointed endofunctor on C, the following categories are equivalent:

• The full subcategory of C of object X such that t_x is an isomorphism.

If (T,t) is a well-pointed endofunctor on C, the following categories are equivalent:

- The full subcategory of C of object X such that t_x is an isomorphism.
- The category of T-algebras (i.e. objects equipped with a : $T(X) \rightarrow X$ such that $a \circ t_X = Id_X$).

If (T,t) is a well-pointed endofunctor on C, the following categories are equivalent:

- The full subcategory of C of object X such that t_X is an isomorphism.
- The category of T-algebras (i.e. objects equipped with a : $T(X) \rightarrow X$ such that $a \circ t_X = Id_X$).
- The full subcategory of objects of C that are orthogonal to t_Y for all y.

If (T,t) is a well-pointed endofunctor on C, the following categories are equivalent:

- The full subcategory of C of object X such that t_x is an isomorphism.
- The category of T-algebras (i.e. objects equipped with a : $T(X) \rightarrow X$ such that $a \circ t_X = Id_X$).
- The full subcategory of objects of C that are orthogonal to t_Y for all y.

We call this the category Fix(T) of **fixed-points** of T.

If (T,t) is a well-pointed endofunctor on C. For any $X \in C$, if $\alpha > 0$ is a limit ordinal such that

• $T^{\alpha}(X)$ exists.

If (T,t) is a well-pointed endofunctor on C. For any $X \in C$, if $\alpha > 0$ is a limit ordinal such that

- $T^{\alpha}(X)$ exists.
- The colimit $T^{\alpha}(X) = Colim_{\beta < \alpha} T^{\beta}(X)$ defining $T^{\alpha}(X)$ is preserved by T.

If (T,t) is a well-pointed endofunctor on C. For any $X \in C$, if $\alpha > 0$ is a limit ordinal such that

- $T^{\alpha}(X)$ exists.
- The colimit $T^{\alpha}(X) = Colim_{\beta < \alpha} T^{\beta}(X)$ defining $T^{\alpha}(X)$ is preserved by T.

Then $T^{\alpha}(X)$ is the reflection of X on the category Fix(T) of fixed-points of T.

All this comes from:

BULL. AUSTRAL. MATH. SOC. VOL. 22 (1980), 1-83.

18C15, 18A40, 18D10

A UNIFIED TREATMENT OF TRANSFINITE CONSTRUCTIONS
FOR FREE ALGEBRAS, FREE MONOIDS, COLIMITS,
ASSOCIATED SHEAVES, AND SO ON

G.M. KELLY

Many problems lead to the consideration of "algebras", given by an object A of a category A together with "actions" $T_{\mathcal{K}}A \to A$ on A of one or more endofunctors of A, subjected to equational

10

Example

The small object argument for constructing a **unique** factorization system can be written as iteration of a well-pointed endofunctor.

11

Example

The small object argument for constructing a **unique** factorization system can be written as iteration of a well-pointed endofunctor.

Example

Given an endofunctor,

11

The small object argument for constructing a **unique** factorization system can be written as iteration of a well-pointed endofunctor.

Example

Given an endofunctor, a pointed endofunctor

The small object argument for constructing a **unique** factorization system can be written as iteration of a well-pointed endofunctor.

Example

Given an endofunctor, a pointed endofunctor or a monad M on \mathcal{C} ,

The small object argument for constructing a **unique** factorization system can be written as iteration of a well-pointed endofunctor.

Example

Given an endofunctor, a pointed endofunctor or a monad M on C, Kelly considers a new category

$$\mathcal{D} = (M \downarrow \mathcal{C}) = \{A, B \in \mathcal{C}, \lambda : M(A) \to B\},\$$

The small object argument for constructing a **unique** factorization system can be written as iteration of a well-pointed endofunctor.

Example

Given an endofunctor, a pointed endofunctor or a monad M on C, Kelly considers a new category

$$\mathcal{D} = (M \downarrow \mathcal{C}) = \{A, B \in \mathcal{C}, \lambda : M(A) \to B\},\$$

and a simple well-pointed endofunctor S on \mathcal{D} ,

The small object argument for constructing a **unique** factorization system can be written as iteration of a well-pointed endofunctor.

Example

Given an endofunctor, a pointed endofunctor or a monad M on C, Kelly considers a new category

$$\mathcal{D} = (M \downarrow \mathcal{C}) = \{A, B \in \mathcal{C}, \lambda : M(A) \to B\},\$$

and a simple well-pointed endofunctor S on \mathcal{D} , such that

$$M$$
-Alg $\simeq Fix(S)$

The small object argument for constructing a **unique** factorization system can be written as iteration of a well-pointed endofunctor.

Example

Given an endofunctor, a pointed endofunctor or a monad M on C, Kelly considers a new category

$$\mathcal{D} = (M \downarrow \mathcal{C}) = \{A, B \in \mathcal{C}, \lambda : M(A) \to B\},\$$

and a simple well-pointed endofunctor S on \mathcal{D} , such that

$$M$$
-Alg $\simeq Fix(S)$

Moreover, colimits in \mathcal{D} can be expressed simply in terms of colimits in \mathcal{C} .

The small object argument for constructing a **unique** factorization system can be written as iteration of a well-pointed endofunctor.

Example

Given an endofunctor, a pointed endofunctor or a monad M on C, Kelly considers a new category

$$\mathcal{D} = (M \downarrow \mathcal{C}) = \{A, B \in \mathcal{C}, \lambda : M(A) \to B\},\$$

and a simple well-pointed endofunctor S on \mathcal{D} , such that

$$M$$
-Alg $\simeq Fix(S)$

Moreover, colimits in \mathcal{D} can be expressed simply in terms of colimits in \mathcal{C} .

This allows to give "explicit" constructions of colimits of M-algebras, or of the free M-algebras.

07 - 14

Let M be a commutative monoid in a symmetric monoidal category \mathcal{V} . Let $a: \mathbb{I} \to M$ an element.

lacktriangledown the category of M-modules, that is objects of $\mathcal V$ equipped with an action of M.

- lacktriangledown the category of M-modules, that is objects of $\mathcal V$ equipped with an action of M.
- ② $T: \mathcal{C} \to \mathcal{C}$ the identity functor.

- lacktriangledown the category of M-modules, that is objects of $\mathcal V$ equipped with an action of M.
- $T: \mathcal{C} \to \mathcal{C}$ the identity functor.
- lacktriangledown $t: \operatorname{Id} o T$ (or $\operatorname{Id} o \operatorname{Id}$) is multiplication by a.

- lacktriangledown the category of M-modules, that is objects of $\mathcal V$ equipped with an action of M.
- 2 $T: \mathcal{C} \to \mathcal{C}$ the identity functor.
- \bullet $t: \operatorname{Id} \to T$ (or $\operatorname{Id} \to \operatorname{Id}$) is multiplication by a. Note: a is a morphism of M-modules because M is commutative.

- **1** C the category of M-modules, that is objects of \mathcal{V} equipped with an action of M.
- 2 $T: \mathcal{C} \to \mathcal{C}$ the identity functor.
- \bullet $t: \operatorname{Id} \to T$ (or $\operatorname{Id} \to \operatorname{Id}$) is multiplication by a. Note: a is a morphism of M-modules because M is commutative.

Then T is well-pointed, and

 $Fix(T) \simeq \{M\text{-Module on which } a \text{ acts as an iso.}\} \simeq M[a^{-1}]\text{-Module}$

- **1** C the category of M-modules, that is objects of \mathcal{V} equipped with an action of M.
- ② $T: \mathcal{C} \to \mathcal{C}$ the identity functor.
- § $t: Id \to T$ (or $Id \to Id$) is multiplication by a. Note: a is a morphism of M-modules because M is commutative.

Then T is well-pointed, and

$$Fix(T) \simeq \{M\text{-Module on which } a \text{ acts as an iso.}\} \simeq M[a^{-1}]\text{-Module}$$

So starting with an M-module S, we have the colimit

$$S \stackrel{a}{\rightarrow} S \stackrel{a}{\rightarrow} S \stackrel{a}{\rightarrow} S \stackrel{a}{\rightarrow} S \rightarrow \cdots \rightarrow S[a^{-1}] = S \otimes_{M} M[a^{-1}]$$

Taking S = M will compute $M[a^{-1}]$.

 $lacksquare{1}{3}$ If S and T are well-pointed endofunctors, then their composite ST is also well-pointed,

• If S and T are well-pointed endofunctors, then their composite ST is also well-pointed, and:

$$\mathsf{Fix}(ST) = \mathsf{Fix}(S) \cap \mathsf{Fix}(T)$$

• If S and T are well-pointed endofunctors, then their composite ST is also well-pointed, and:

$$Fix(ST) = Fix(S) \cap Fix(T)$$

② So if \mathcal{C}_1 and \mathcal{C}_2 are two (accessible) reflective subcategories of \mathcal{C} , with reflection $R_1:\mathcal{C}\to\mathcal{C}_1$ and $R_2:\mathcal{C}\to\mathcal{C}_2$, the composite R_1R_2 is a well-pointed endofunctor whose iteration will produce the reflection on $\mathcal{C}_1\cap\mathcal{C}_2$.

Remark

In what follows ∞ -categories means $(\infty, 1)$ -categories.

Remark

In what follows ∞ -categories means $(\infty,1)$ -categories. So by 2-categories, I really mean weak (2,1)-categories.

Remark

In what follows ∞ -categories means $(\infty, 1)$ -categories. So by 2-categories, I really mean weak (2, 1)-categories. Everything applies to 2-categories as well - but just keep in mind that when I talk about a 2-cell I always mean an invertible one, and all colimits are pseudo-colimits.

Example

Let \mathcal{M} be symmetric monoidal category, and $a \in \mathcal{M}$ an object.

Example

Let \mathcal{M} be symmetric monoidal category, and $a \in \mathcal{M}$ an object. We can consider the (pseudo)colimit of the sequence:

$$\mathcal{M} \stackrel{\mathsf{a} \otimes}{\to} \mathcal{M} \stackrel{\mathsf{a} \otimes}{\to} \mathcal{M} \stackrel{\mathsf{a} \otimes}{\to} \dots$$

Example

Let \mathcal{M} be symmetric monoidal category, and $a \in \mathcal{M}$ an object. We can consider the (pseudo)colimit of the sequence:

$$\mathcal{M} \overset{\mathsf{a} \otimes}{\to} \mathcal{M} \overset{\mathsf{a} \otimes}{\to} \mathcal{M} \overset{\mathsf{a} \otimes}{\to} \dots$$

Is this a fixed-point? Does it provide a construction of $\mathcal{M}[a^{-1}]$?

It doesn't work in general!

Theorem (Voevodsky 1998 for 1-categories, Robalo 2015 for ∞-categories)

Given a symmetric monoidal (∞ -)category $\mathcal M$ and $a \in \mathcal M$ an object, the pseudo-colimit

$$\mathcal{M} \stackrel{\mathsf{a} \otimes}{\to} \mathcal{M} \stackrel{\mathsf{a} \otimes}{\to} \mathcal{M} \stackrel{\mathsf{a} \otimes}{\to} \dots$$

of $(\infty$ -)categories is a symmetric monoidal $(\infty$ -)category and has the universal property of $\mathcal{M}[a^{-1}]$ if

Theorem (Voevodsky 1998 for 1-categories, Robalo 2015 for ∞-categories)

Given a symmetric monoidal (∞ -)category $\mathcal M$ and $a \in \mathcal M$ an object, the pseudo-colimit

$$\mathcal{M} \stackrel{\mathsf{a} \otimes}{\to} \mathcal{M} \stackrel{\mathsf{a} \otimes}{\to} \mathcal{M} \stackrel{\mathsf{a} \otimes}{\to} \dots$$

of $(\infty$ -)categories is a symmetric monoidal $(\infty$ -)category and has the universal property of $\mathcal{M}[a^{-1}]$ if

$$\sigma_{(123)}:(a\otimes a\otimes a)\rightarrow (a\otimes a\otimes a)$$

the map induced by the permutation (123) is equivalent to the identity after tensoring by a finite number of copies of a.

Theorem (Voevodsky 1998 for 1-categories, Robalo 2015 for ∞-categories)

Given a symmetric monoidal (∞ -)category $\mathcal M$ and $a \in \mathcal M$ an object, the pseudo-colimit

$$\mathcal{M} \stackrel{\mathsf{a} \otimes}{\to} \mathcal{M} \stackrel{\mathsf{a} \otimes}{\to} \mathcal{M} \stackrel{\mathsf{a} \otimes}{\to} \dots$$

of $(\infty$ -)categories is a symmetric monoidal $(\infty$ -)category and has the universal property of $\mathcal{M}[a^{-1}]$ if and only if

$$\sigma_{(123)}:(a\otimes a\otimes a)\rightarrow (a\otimes a\otimes a)$$

the map induced by the permutation (123) is equivalent to the identity after tensoring by a finite number of copies of a.

If $\mathcal M$ is a E_∞ -monoid in the ∞ -category of spaces and $a\in \mathcal M$, the homotopy colimit of

$$\mathcal{M} \overset{\text{a}}{\rightarrow} \mathcal{M} \overset{\text{a}}{\rightarrow} \mathcal{M} \overset{\text{a}}{\rightarrow} \mathcal{M} \overset{\text{a}}{\rightarrow} \dots$$

is homologically equivalent to $\mathcal{M}[a^{-1}]$ (defined in a proper up to homotopy sense).

If $\mathcal M$ is a E_∞ -monoid in the ∞ -category of spaces and $a\in \mathcal M$, the homotopy colimit of

$$\mathcal{M} \overset{a}{\rightarrow} \mathcal{M} \overset{a}{\rightarrow} \mathcal{M} \overset{a}{\rightarrow} \mathcal{M} \overset{a}{\rightarrow} \dots$$

is homologically equivalent to $\mathcal{M}[a^{-1}]$ (defined in a proper up to homotopy sense).

Remark

In fact the actual localization can be constructed from this colimit by applying **Quillen's** +-construction.

If $\mathcal M$ is a E_∞ -monoid in the ∞ -category of spaces and $a\in \mathcal M$, the homotopy colimit of

$$\mathcal{M} \overset{\text{a}}{\rightarrow} \mathcal{M} \overset{\text{a}}{\rightarrow} \mathcal{M} \overset{\text{a}}{\rightarrow} \mathcal{M} \overset{\text{a}}{\rightarrow} \dots$$

is homologically equivalent to $\mathcal{M}[a^{-1}]$ (defined in a proper up to homotopy sense).

Remark

In fact the actual localization can be constructed from this colimit by applying **Quillen's** +-construction.

This is a fairly involved construction in topology that "kills off" a normal perfect^a subgroup of the π_1 of a space without changing its homology (but completely transforming the higher homotopy groups).

If $\mathcal M$ is a E_∞ -monoid in the ∞ -category of spaces and $a\in\mathcal M$, the homotopy colimit of

$$\mathcal{M} \overset{\text{a}}{\rightarrow} \mathcal{M} \overset{\text{a}}{\rightarrow} \mathcal{M} \overset{\text{a}}{\rightarrow} \mathcal{M} \overset{\text{a}}{\rightarrow} \dots$$

is homologically equivalent to $\mathcal{M}[a^{-1}]$ (defined in a proper up to homotopy sense).

Remark

In fact the actual localization can be constructed from this colimit by applying **Quillen's** +-construction.

This is a fairly involved construction in topology that "kills off" a normal perfect^a subgroup of the π_1 of a space without changing its homology (but completely transforming the higher homotopy groups).

 $^{{}^{}a}G$ is perfect if the commutator subgroup [G, G] is G.

Definition

A **pointed endofunctor** on an ∞ -category \mathcal{C} is a functor $\mathcal{T}: \mathcal{C} \to \mathcal{C}$ together with a natural transformation $t: \mathsf{Id} \to \mathcal{T}$.

Definition

A **pointed endofunctor** on an ∞ -category \mathcal{C} is a functor $\mathcal{T}: \mathcal{C} \to \mathcal{C}$ together with a natural transformation $t: \mathsf{Id} \to \mathcal{T}$.

A braided endofunctor on an ∞ -category $\mathcal C$ is triple $(\mathcal T,t, au)$ where $(\mathcal T,t)$ is a pointed endofunctor on $\mathcal C$ and au is a (invertible) 2-cell

$$\tau: T \otimes t \to t \otimes T$$

in End(C).

Definition

A **pointed endofunctor** on an ∞ -category \mathcal{C} is a functor $\mathcal{T}: \mathcal{C} \to \mathcal{C}$ together with a natural transformation $t: \mathsf{Id} \to \mathcal{T}$.

A braided endofunctor on an ∞ -category $\mathcal C$ is triple $(\mathcal T,t, au)$ where $(\mathcal T,t)$ is a pointed endofunctor on $\mathcal C$ and au is a (invertible) 2-cell

$$\tau: T \otimes t \rightarrow t \otimes T$$

in End(C).

Remark

If (T, t, τ) is a braided endofunctor on an ∞ -category C, then (T, t) is a well-pointed endofunctor on the homotopy category Ho(C).

Theorem (A., H.)

Theorem (A., H. ... but mostly Kelly)

Theorem (A., H. ... but mostly Kelly)

Let C be an ∞ -category with a braided endofunctor (T, t, τ) then the following ∞ -categories are equivalent:

- The full subcategory of C of objects X such that t_x is an isomorphism.
- The ∞ -category of T-algebras (for the pointed endofunctor T).
- The full subcategory of objects of C that are orthogonal to t_Y for all y.

These equivalent categories are denoted by Fix(T).

The proof is mostly the same as for 1-categories.

Theorem (A., H. ... but mostly Kelly)

Let C be an ∞ -category with a braided endofunctor (T, t, τ) then the following ∞ -categories are equivalent:

- The full subcategory of C of objects X such that t_x is an isomorphism.
- The ∞ -category of T-algebras (for the pointed endofunctor T).
- The full subcategory of objects of C that are orthogonal to t_Y for all y.

These equivalent categories are denoted by Fix(T).

The proof is mostly the same as for 1-categories. In fact most of it happens in the homotopy category, and we don't even need τ to be natural.

The problems start with the second theorem.

The problems start with the second theorem. Let's examine its proof:

The problems start with the second theorem. Let's examine its proof: Consider $Y = \operatorname{Colim}_{i < \omega} T^i(X)$ and assume that this colimit is preseved by T.

The problems start with the second theorem. Let's examine its proof: Consider $Y = \operatorname{Colim}_{i < \omega} T^i(X)$ and assume that this colimit is preserved by T. We only need to construct a T-algebra structure on Y to conclude, i.e. a retraction of the map $t_Y: Y \to T(Y)$.

The problems start with the second theorem. Let's examine its proof: Consider $Y = \operatorname{Colim}_{i < \omega} T^i(X)$ and assume that this colimit is preserved by T. We only need to construct a T-algebra structure on Y to conclude, i.e. a retraction of the map $t_Y : Y \to T(Y)$. The map t_Y can be obtained as the colimit of:

$$X \xrightarrow{t} T(X) \xrightarrow{tT} T^{2}(X) \xrightarrow{tT^{2}} \dots \longrightarrow Y$$

$$\downarrow^{t} \qquad \downarrow^{tT} \qquad \downarrow^{t}$$

$$T(X) \xrightarrow{Tt} T^{2}(X) \xrightarrow{TtT} T^{3}(X) \xrightarrow{TtT} \dots \longrightarrow T(Y)$$

The problems start with the second theorem. Let's examine its proof: Consider $Y = \operatorname{Colim}_{i < \omega} T^i(X)$ and assume that this colimit is preserved by T. We only need to construct a T-algebra structure on Y to conclude, i.e. a retraction of the map $t_Y : Y \to T(Y)$. The map t_Y can be obtained as the colimit of:

The problems start with the second theorem. Let's examine its proof: Consider $Y = \operatorname{Colim}_{i < \omega} T^i(X)$ and assume that this colimit is preserved by T. We only need to construct a T-algebra structure on Y to conclude, i.e. a retraction of the map $t_Y : Y \to T(Y)$. The map t_Y can be obtained as the colimit of:

It works in 1-category theory because shifting the diagram preserve the colimit:

$$\begin{array}{ccccc}
X & \xrightarrow{t} & TX & \xrightarrow{tT} & T^2X & \xrightarrow{tT^2} & \dots & \longrightarrow & Y \\
\downarrow^t & & \downarrow^{tT} & & \downarrow^{tT^2} & & \downarrow^{\text{Id}} \\
TX & \xrightarrow{tT} & T^2X & \xrightarrow{tT^2} & T^3X & \xrightarrow{tT^3} & \dots & \longrightarrow & Y
\end{array}$$

It works in 1-category theory because shifting the diagram preserve the colimit:

and this diagram is the same as the outer part of the previous one:

But for this to work in ∞ -category theory (or 2-category theory), we also need the 2-cells of these two diagram to be the same: Changing the 2-cell making the square commute can affect the morphism between the colimits!

But for this to work in ∞ -category theory (or 2-category theory), we also need the 2-cells of these two diagram to be the same: Changing the 2-cell making the square commute can affect the morphism between the colimits!

That is we need that for each object X:

But for this to work in ∞ -category theory (or 2-category theory), we also need the 2-cells of these two diagram to be the same: Changing the 2-cell making the square commute can affect the morphism between the colimits!

That is we need that for each object X:

$$\begin{array}{ccccc}
X & \xrightarrow{t} & T(X) & & & X & \xrightarrow{t} & T(X) \\
\downarrow^t & & \downarrow^{tT} & & & & \downarrow & & \downarrow \\
T(X) & \xrightarrow{Tt} & T^2(X) & & = & \downarrow^t & = & \downarrow^{tT} \\
\downarrow^t & & \downarrow^t & & \downarrow^t & & \downarrow^t \\
T(X) & \xrightarrow{tT} & T^2(X) & & & T(X) & \xrightarrow{tT} & T^2(X)
\end{array}$$

We call $\tau^{(2)}(X)$ the 2-cell inside the left rectangle.

Importantly, $\tau_X^{(2)}$ is an endomorphism 2-cell, that is its source and target are the same 1-cells.

Theorem (A.,H.)

Let (T, t, τ) be a braided endofunctor on an ∞ -category. Let X be an object and $\alpha > 0$ a limit ordinal such that:

Theorem (A.,H.)

Let (T, t, τ) be a braided endofunctor on an ∞ -category. Let X be an object and $\alpha > 0$ a limit ordinal such that:

• $T^{\alpha}(X)$ exists.

Theorem (A.,H.)

Let (T, t, τ) be a braided endofunctor on an ∞ -category. Let X be an object and $\alpha > 0$ a limit ordinal such that:

- $T^{\alpha}(X)$ exists.
- ② T preserves the colimit $T^{\alpha}(X) = Colim_{\beta < \alpha} T^{\beta}(X)$.

Theorem (A.,H.)

Let (T, t, τ) be a braided endofunctor on an ∞ -category. Let X be an object and $\alpha > 0$ a limit ordinal such that:

- $T^{\alpha}(X)$ exists.
- ② T preserves the colimit $T^{\alpha}(X) = Colim_{\beta < \alpha} T^{\beta}(X)$.

Theorem (A.,H.)

Let (T, t, τ) be a braided endofunctor on an ∞ -category. Let X be an object and $\alpha > 0$ a limit ordinal such that:

- $T^{\alpha}(X)$ exists.
- ② T preserves the colimit $T^{\alpha}(X) = Colim_{\beta < \alpha} T^{\beta}(X)$.
- **3** $\forall \beta < \alpha$, $\tau^{(2)}(T^{\beta}(X)) \sim 1$.

Then $T^{\alpha}(X)$ is a reflection of X on the category of fixed-points of T.

Theorem (A.,H.)

Let (T, t, τ) be a braided endofunctor on an ∞ -category. Let X be an object and $\alpha > 0$ a limit ordinal such that:

- $T^{\alpha}(X)$ exists.
- ② T preserves the colimit $T^{\alpha}(X) = Colim_{\beta < \alpha} T^{\beta}(X)$.

Then $T^{\alpha}(X)$ is a reflection of X on the category of fixed-points of T.

Returning to the example of a symmetric monoid $\mathcal M$ in a monoidal ∞ -category $\mathcal V$ and a an element of $\mathcal M$.

Returning to the example of a symmetric monoid \mathcal{M} in a monoidal ∞ -category \mathcal{V} and a an element of \mathcal{M} . We have a braided endofunctor (Id, $a \times _$) as before.

Returning to the example of a symmetric monoid \mathcal{M} in a monoidal ∞ -category \mathcal{V} and a an element of \mathcal{M} . We have a braided endofunctor (Id, $a \times _$) as before. Then $\tau^{(2)}$ is:

Returning to the example of a symmetric monoid \mathcal{M} in a monoidal ∞ -category \mathcal{V} and a an element of \mathcal{M} . We have a braided endofunctor (Id, $a \times _$) as before. Then $\tau^{(2)}$ is:

Returning to the example of a symmetric monoid \mathcal{M} in a monoidal ∞ -category \mathcal{V} and a an element of \mathcal{M} . We have a braided endofunctor (Id, $a \times _$) as before. Then $\tau^{(2)}$ is:

$$X \xrightarrow{t} T(X) \qquad X \xrightarrow{a} X$$

$$\downarrow t \qquad \qquad \downarrow tT \qquad \downarrow a \qquad \qquad \sigma_2 \qquad \downarrow a$$

$$T(X) \xrightarrow{Tt} T^2(X) = X \xrightarrow{a} X$$

$$\parallel \qquad \qquad \qquad \parallel \qquad \qquad \parallel \qquad = \qquad \parallel$$

$$T(X) \xrightarrow{tT} T^2(X) \qquad X \xrightarrow{a} X$$

So to ensure convergence with the above theorem and compute $\mathcal{M}[a^{-1}]$, we need to know that the isomorphism

$$\sigma_{12}: a \otimes a \rightarrow a \otimes a$$

is trivial.

Returning to the example of a symmetric monoid \mathcal{M} in a monoidal ∞ -category \mathcal{V} and a an element of \mathcal{M} . We have a braided endofunctor (Id, $a \times _$) as before. Then $\tau^{(2)}$ is:

$$X \xrightarrow{t} T(X) \qquad X \xrightarrow{a} X$$

$$\downarrow^{t} \qquad \downarrow^{tT} \qquad \downarrow^{a} \qquad \sigma_{2} \qquad \downarrow^{a}$$

$$T(X) \xrightarrow{Tt} T^{2}(X) = X \xrightarrow{a} X$$

$$\parallel \qquad \qquad \parallel \qquad \parallel \qquad = \qquad \parallel$$

$$T(X) \xrightarrow{tT} T^{2}(X) \qquad X \xrightarrow{a} X$$

So to ensure convergence with the above theorem and compute $\mathcal{M}[a^{-1}]$, we need to know that the isomorphism

$$\sigma_{12}: a \otimes a \rightarrow a \otimes a$$

is trivial. This is a stronger requirement than the 3-cycle condition we mentioned earlier.

We can do better. Let's go back to our diagram:

So to ensure convergence, we can replace $\tau^{(2)}$ by:

So to ensure convergence, we can replace $\tau^{(2)}$ by:

$$\tau^{(3)}(X) \in \pi_1\left(\operatorname{Hom}(X, T^3X), \bullet\right)$$

So to ensure convergence, we can replace $\tau^{(2)}$ by:

$$\tau^{(3)}(X) \in \pi_1\left(\operatorname{Hom}(X, T^3X), \bullet\right)$$

In the special case of multiplication by an element in a symmetric monoid (or by an object in a symmetric monoidal category) that we discussed earlier, $\tau^{(3)}$ is the 3-cycle

$$a \otimes a \otimes a \rightarrow a \otimes a \otimes a$$

Theorem (A.,H.)

Let (T, t, τ) be a braided endofunctor on an ∞ -category. Let X be an object and α a limit ordinal such that:

- $T^{\alpha}(X)$ exists.
- **②** T preserves the colimit $T^{\alpha}(X) = Colim_{\beta < \alpha} T^{\beta}(X)$.

Then $T^{\alpha}(X)$ is a reflection of X on the category of fixed-points of T.

Theorem (A.,H.)

Let (T, t, τ) be a braided endofunctor on an ∞ -category. Let X be an object and α a limit ordinal such that:

- $T^{\alpha}(X)$ exists.
- ② T preserves the colimit $T^{\alpha}(X) = Colim_{\beta < \alpha} T^{\beta}(X)$.

Then $T^{\alpha}(X)$ is a reflection of X on the category of fixed-points of T.

Moreover, the point of using this $(\tau^{(2)})^{-1}$ in the definition of $\tau^{(3)}$, is so that we have:

Proposition (A., H.)

If Y is a fixed-point of T, then $\tau^{(3)}(Y) \sim Id$. In particular, the last condition is necessary in the previous theorem.

Definition (A.,H.)

We say that a Braided endofunctor (T, t, τ) is

- Strongly well-pointed if $\tau_X^{(2)} \sim \text{Id for all } X$.
- **②** Well-pointed if $\tau_X^{(3)} \sim \text{Id for all } X$.
- **Solution Eventually well-pointed** if for each object X, $\tau_{T^{\alpha}(X)}^{(3)} \sim \text{Id}$ for α large enough.

Definition (A.,H.)

We say that a Braided endofunctor (T, t, τ) is

- Strongly well-pointed if $\tau_X^{(2)} \sim \text{Id for all } X$.
- **②** Well-pointed if $\tau_X^{(3)} \sim \text{Id for all } X$.
- **3** Eventually well-pointed if for each object X, $\tau_{T^{\alpha}(X)}^{(3)} \sim \text{Id for } \alpha$ large enough.

Theorem (A., H.)

Let S and T be two braided endofunctors, then ST is a braided endofunctor and

$$Fix(ST) = Fix(S) \cap Fix(T)$$

Definition (A.,H.)

We say that a Braided endofunctor (T, t, τ) is

- Strongly well-pointed if $\tau_X^{(2)} \sim \text{Id for all } X$.
- **2** Well-pointed if $\tau_X^{(3)} \sim \text{Id for all } X$.
- **Solution Eventually well-pointed** if for each object X, $\tau_{T^{\alpha}(X)}^{(3)} \sim \text{Id}$ for α large enough.

Theorem (A., H.)

Let S and T be two braided endofunctors, then ST is a braided endofunctor and

$$Fix(ST) = Fix(S) \cap Fix(T)$$

Moreover, if S and T are (strongly) well-pointed then ST is (strongly) well-pointed.

In order to better understand the role of the various map (and higher arrows) we can build by combining t and τ let's consider:

Definition

Let $\mathcal B$ be the free monoidal ∞ -category generated by a "braided object".

In order to better understand the role of the various map (and higher arrows) we can build by combining t and τ let's consider:

Definition

Let $\mathcal B$ be the free monoidal ∞ -category generated by a "braided object". That is generated by:

In order to better understand the role of the various map (and higher arrows) we can build by combining t and τ let's consider:

Definition

Let ${\cal B}$ be the free monoidal ∞ -category generated by a "braided object". That is generated by:

lacktriangledown an object T,

In order to better understand the role of the various map (and higher arrows) we can build by combining t and τ let's consider:

Definition

Let $\mathcal B$ be the free monoidal ∞ -category generated by a "braided object". That is generated by:

- lacktriangledown an object T,
- 2 together with an arrow $t: 1 \rightarrow T$.

In order to better understand the role of the various map (and higher arrows) we can build by combining t and τ let's consider:

Definition

Let $\mathcal B$ be the free monoidal ∞ -category generated by a "braided object". That is generated by:

- \odot an object T,
- 2 together with an arrow $t: 1 \rightarrow T$,
- **3** a 2-cell $\tau : T \otimes t \simeq t \otimes T \in \text{Hom}(T, T^2)$.

In order to better understand the role of the various map (and higher arrows) we can build by combining t and τ let's consider:

Definition

Let $\mathcal B$ be the free monoidal ∞ -category generated by a "braided object". That is generated by:

- \odot an object T,
- 2 together with an arrow $t: 1 \rightarrow T$,
- **3** a 2-cell $\tau : T \otimes t \simeq t \otimes T \in \text{Hom}(T, T^2)$.

That is, a braided endofunctor on $\mathcal C$ is the same as a monoidal functor $\mathcal B \to \operatorname{End}(\mathcal C)$, i.e. an action of $\mathcal B$ on $\mathcal C$.

Theorem (A., H.)

 \mathcal{B} has objects T^n and morphism spaces are given by

$$Hom(T^n, T^m) =$$

Theorem (A., H.)

 \mathcal{B} has objects T^n and morphism spaces are given by

$$Hom(T^n, T^m) = \begin{cases} \emptyset & \text{if } m < n, \end{cases}$$

Theorem (A., H.)

 \mathcal{B} has objects T^n and morphism spaces are given by

$$Hom(T^n, T^m) = \begin{cases} \varnothing & \text{if } m < n, \\ B(B_{m-n}) & \text{if } m \geqslant n, \end{cases}$$

Theorem (A., H.)

 ${\cal B}$ has objects ${\cal T}^n$ and morphism spaces are given by

$$Hom(T^n, T^m) = \begin{cases} \emptyset & \text{if } m < n, \\ B(B_{m-n}) & \text{if } m \geqslant n, \end{cases}$$

where B_i is the braid group on i strands (with $B_0 = B_1 = \{1\}$), and $B(B_i)$ is its classifying space.

Theorem (A., H.)

 \mathcal{B} has objects T^n and morphism spaces are given by

$$Hom(T^n, T^m) = \begin{cases} \emptyset & \text{if } m < n, \\ B(B_{m-n}) & \text{if } m \geqslant n, \end{cases}$$

where B_i is the braid group on i strands (with $B_0 = B_1 = \{1\}$), and $B(B_i)$ is its classifying space. That is essentially a one object groupoid with B_i as its automorphism group.

Theorem (A., H.)

 \mathcal{B} has objects T^n and morphism spaces are given by

$$Hom(T^n, T^m) = \begin{cases} \emptyset & \text{if } m < n, \\ B(B_{m-n}) & \text{if } m \geqslant n, \end{cases}$$

where B_i is the braid group on i strands (with $B_0 = B_1 = \{1\}$), and $B(B_i)$ is its classifying space. That is essentially a one object groupoid with B_i as its automorphism group.

So ${\cal B}$ is a 2-category, and the 2-cells correspond to braids.

Theorem (A., H.)

 ${\cal B}$ is equivalent to a strictly monoidal strict 2-category, in which all 2-arrows have inverses.

Theorem (A., H.)

 ${\cal B}$ is equivalent to a strictly monoidal strict 2-category, in which all 2-arrows have inverses.

Let's describe this "strict" version of \mathcal{B} :

Theorem (A., H.)

 ${\cal B}$ is equivalent to a strictly monoidal strict 2-category, in which all 2-arrows have inverses.

Let's describe this "strict" version of \mathcal{B} :

1 Objects are integer $n \ge 0$.

Theorem (A., H.)

 ${\cal B}$ is equivalent to a strictly monoidal strict 2-category, in which all 2-arrows have inverses.

Let's describe this "strict" version of \mathcal{B} :

- Objects are integer $n \ge 0$.
- ② 1-morphism $m \to n$ are order preserving injections $\{1, \dots, m\} \to \{1, \dots, n\}$.

Theorem (A., H.)

 ${\cal B}$ is equivalent to a strictly monoidal strict 2-category, in which all 2-arrows have inverses.

Let's describe this "strict" version of \mathcal{B} :

- Objects are integer $n \ge 0$.
- ② 1-morphism m o n are order preserving injections $\{1,\ldots,m\} o \{1,\ldots,n\}$.
- **3** 2-morphism $f \Rightarrow g$ are braids on m-n strand connecting the m-n points not in the image of f to the m-n points not in the image of g.

We draw 1-morphism by putting circle around the element in the image, for example

1 2

is the map 1 to 3 sending 1 to 2.

We draw 1-morphism by putting circle around the element in the image, for example

1 2 3

is the map 1 to 3 sending 1 to 2.

2-morphisms are braids connecting the non-circled elements:

The tensor product is horizontal concatenation:

The tensor product is horizontal concatenation:

"Vertical" composition of 2-cells is vertical stacking:

"Vertical" composition of 2-cells is vertical stacking:

"Vertical" composition of 2-cells is vertical stacking:

Horizontal Composition is stacking in the remaining direction:

Horizontal Composition is stacking in the remaining direction:

Horizontal Composition is stacking in the remaining direction:

T is the object 1,

T is the object 1, so that

$$\mathsf{Id}_{\mathcal{T}} = \overbrace{1}$$
 $t =$

T is the object 1, so that

$$\operatorname{\mathsf{Id}}_{\mathcal{T}} = \underbrace{1} \qquad t = 1$$

And:

$$\begin{array}{ccc}
\operatorname{Id} & \xrightarrow{t} & T \\
\downarrow^{t} & & \downarrow^{tT} \\
\downarrow^{t} & & \downarrow^{tT} \\
T & \xrightarrow{Tt} & T^{2} \\
\parallel & \tau & \parallel \\
T & \xrightarrow{tT} & T^{2}
\end{array}$$

$$\tau^{(2)} = \begin{array}{cccc} \operatorname{Id} & \xrightarrow{t} & \operatorname{Id} \\ \downarrow^{t} & & \downarrow^{tT} & \downarrow^{t} \\ T & \xrightarrow{Tt} & T^{2} & = & T & \xrightarrow{Tt} & T^{2} \\ \parallel & \tau & \parallel & \parallel & \tau & \parallel \\ T & \xrightarrow{tT} & T^{2} & & T & \xrightarrow{tT} & T^{2} \end{array}$$

Is a 3-cycle realized as an element of degree 0.

The abelianization of the Braid group B_n is \mathbb{Z} (for $n \ge 2$).

The abelianization of the Braid group B_n is \mathbb{Z} (for $n \ge 2$). The abelianization morphisms is:

 $degree:B_n\to \mathbb{Z}$

The abelianization of the Braid group B_n is \mathbb{Z} (for $n \ge 2$). The abelianization morphisms is:

 $degree:B_n\to \mathbb{Z}$

which count the number of overcrossing minus the number of under-crossing.

The abelianization of the Braid group B_n is \mathbb{Z} (for $n \ge 2$). The abelianization morphisms is:

 $degree: B_n \to \mathbb{Z}$

which count the number of overcrossing minus the number of under-crossing. Moreover for $n \ge 3$, the element $\tau^{(3)}$ generates the kernel of this map as a normal subgroup:

The abelianization of the Braid group B_n is \mathbb{Z} (for $n \ge 2$). The abelianization morphisms is:

$$degree: B_n \to \mathbb{Z}$$

which count the number of overcrossing minus the number of under-crossing. Moreover for $n \ge 3$, the element $\tau^{(3)}$ generates the kernel of this map as a normal subgroup: That is for a morphism $f: B_n \to G$ the following are equivalent:

- $f(\tau^{(3)}) = 1.$
- ② f factor through the degree map $B_n \to \mathbb{Z}$.

The abelianization of the Braid group B_n is \mathbb{Z} (for $n \ge 2$). The abelianization morphisms is:

$$degree: B_n \to \mathbb{Z}$$

which count the number of overcrossing minus the number of under-crossing. Moreover for $n \ge 3$, the element $\tau^{(3)}$ generates the kernel of this map as a normal subgroup: That is for a morphism $f: B_n \to G$ the following are equivalent:

- $f(\tau^{(3)}) = 1.$
- ② f factor through the degree map $B_n \to \mathbb{Z}$.

In particular:

Remark

- **1** T is strongly well-pointed iff all the $B_n \to \pi_1(Hom(X, T^nX))$ induced by T are trivial.
- ② T is well-pointed iff all the $B_n \to \pi_1(Hom(X, T^nX))$ factor through the degree map.

If in C, all the $\pi_1(Hom(X,Y), \bullet)$ are abelian groups, then every braided endofunctor on C is well-pointed (i.e. $\tau^{(3)} \sim 1$).

If in C, all the $\pi_1(Hom(X,Y), \bullet)$ are abelian groups, then every braided endofunctor on C is well-pointed (i.e. $\tau^{(3)} \sim 1$). This happens for example when C is an ∞ -category of chain complexes, or more generally a stable or additive ∞ -category.

If in C, all the $\pi_1(Hom(X,Y), \bullet)$ are abelian groups, then every braided endofunctor on C is well-pointed (i.e. $\tau^{(3)} \sim 1$). This happens for example when C is an ∞ -category of chain complexes, or more generally a stable or additive ∞ -category.

In fact, because the kernel of the degree map is a perfect group for $n \ge 5$ we have the stronger result:

If in C, all the $\pi_1(\operatorname{Hom}(X,Y), \bullet)$ are abelian groups, then every braided endofunctor on C is well-pointed (i.e. $\tau^{(3)} \sim 1$). This happens for example when C is an ∞ -category of chain complexes, or more generally a stable or additive ∞ -category.

In fact, because the kernel of the degree map is a perfect group for $n \ge 5$ we have the stronger result:

Proposition (A.,H.)

If in C, all the $\pi_1(Hom(X,Y))$ are hypoabelian^a groups, then every braided endofunctor on C is eventually well-pointed.

^aA hypoabelian group is a group that has no perfect subgroups. Solvable groups are hypoabelian.

If in C, all the $\pi_1(Hom(X,Y), \bullet)$ are abelian groups, then every braided endofunctor on C is well-pointed (i.e. $\tau^{(3)} \sim 1$). This happens for example when C is an ∞ -category of chain complexes, or more generally a stable or additive ∞ -category.

In fact, because the kernel of the degree map is a perfect group for $n \ge 5$ we have the stronger result:

Proposition (A.,H.)

If in C, all the $\pi_1(Hom(X,Y))$ are hypoabelian^a groups, then every braided endofunctor on C is eventually well-pointed. This happen for example when C is the essential image of Quillen's +-construction.

^aA hypoabelian group is a group that has no perfect subgroups. Solvable groups are hypoabelian.

If T is a braided endofunctor on C which has colimits, there is a quotient $T^{\omega} \to S$ so that S is strongly well-pointed and has the same fixed-point as T.

If T is a braided endofunctor on C which has colimits, there is a quotient $T^{\omega} \to S$ so that S is strongly well-pointed and has the same fixed-point as T. S is defined by:

$$\mathit{Hom}(S(X),Y)\simeq \left\{f:T^\omega(X) o Y\right\}$$

If T is a braided endofunctor on C which has colimits, there is a quotient $T^{\omega} \to S$ so that S is strongly well-pointed and has the same fixed-point as T. S is defined by:

$$extit{Hom}(S(X),Y)\simeq \left\{f:T^\omega(X)
ightarrow Yigg|egin{array}{ccc} orall i<\omega,& f(au_i^{(3)})\sim Id\ where\ au_i^{(3)}\in extit{Hom}(T^i(X),T^\omega(X)). \end{array}
ight\}$$

If T is a braided endofunctor on $\mathcal C$ which has colimits, there is a quotient $T^\omega \to S$ so that S is strongly well-pointed and has the same fixed-point as T. S is defined by:

$$extit{Hom}(S(X),Y)\simeq \left\{f:T^\omega(X)
ightarrow Yigg|egin{array}{ccc} orall i<\omega,& f(au_i^{(3)})\sim Id \ where \ au_i^{(3)}\in extit{Hom}(T^i(X),T^\omega(X)). \end{array}
ight\}$$

Remark

Here we really mean that Hom(S(X), Y) is a subspace of $Hom(T^{\omega}(X), Y)$, not elements of $Hom(T^{\omega}(X), Y)$ equipped with an additional homotopies trivializing these cells.

If T is a braided endofunctor on $\mathcal C$ which has colimits, there is a quotient $T^\omega \to S$ so that S is strongly well-pointed and has the same fixed-point as T. S is defined by:

$$extit{Hom}(S(X),Y)\simeq \left\{f:T^\omega(X)
ightarrow Yigg|egin{array}{ccc} orall i<\omega,& f(au_i^{(3)})\sim Id \ where \ au_i^{(3)}\in extit{Hom}(T^i(X),T^\omega(X)). \end{array}
ight\}$$

Remark

Here we really mean that Hom(S(X), Y) is a subspace of $Hom(T^{\omega}(X), Y)$, not elements of $Hom(T^{\omega}(X), Y)$ equipped with an additional homotopies trivializing these cells.

The fact that this sort of thing is possible is closely related to Quillen's +-construction and the fact that the Kernel of the degree map is a perfect group (for $n \ge 5$).

If T is a braided endofunctor on $\mathcal C$ which has colimits, there is a quotient $T^\omega \to S$ so that S is strongly well-pointed and has the same fixed-point as T. S is defined by:

$$extit{Hom}(S(X),Y)\simeq \left\{f:T^\omega(X)
ightarrow Y \left| egin{array}{ccc} orall i<\omega, & f(au_i^{(3)})\sim Id \ where \ au_i^{(3)}\in extit{Hom}(T^i(X),T^\omega(X)). \end{array}
ight\}$$

Remark

Here we really mean that Hom(S(X), Y) is a subspace of $Hom(T^{\omega}(X), Y)$, not elements of $Hom(T^{\omega}(X), Y)$ equipped with an additional homotopies trivializing these cells.

The fact that this sort of thing is possible is closely related to Quillen's +-construction and the fact that the Kernel of the degree map is a perfect group (for $n \ge 5$).

However, this last quotient can be quite complicated...

Conjecture (Structure theorem for strongly well-pointed endofunctors)

The poset \mathbb{N} , equipped with the addition as a monoidal structure, is equivalent to the free monoidal ∞ -category generated by **strongly well-pointed object**,

Thank you!

Conjecture (Structure theorem for strongly well-pointed endofunctors)

The poset \mathbb{N} , equipped with the addition as a monoidal structure, is equivalent to the free monoidal ∞ -category generated by **strongly well-pointed object**, i.e.:

- An object T.
- A map $t: 1 \rightarrow T$.
- A "braiding" 2-cell $\tau : T \otimes t \to t \otimes T$.
- A 3-cell Θ : $\tau^{(2)} \simeq$ Id witnessing that the previous braided object is strongly well-pointed.

Thank you!