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Example. Let K be a convex subset of a vector (MOt“’at'o": the Bear and Weiss metric )

space and a,b € K with a # b:

d(a, b) = how far is the ray from b via a in K?

4 )
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lished in: Reprints in Theory and Applications of Categories,
No. 1 (2002), 1-37.
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Example. Let K be a convex subset of a vector
space and a,b € K with a # b:

d(a, b) = how far is the ray from b via a in K?

a=(1—-a)f +ab, ac]0,1].



https://arxiv.org/abs/2105.06832
https://arxiv.org/abs/1705.10189
https://arxiv.org/abs/2110.06591

Example. Let K be a convex subset of a vector
space and a,b € K with a # b:

d(a,b) = inf{-log(ar) | f € K,a in |f, b[}.

a=(1—-a)f +ab, ac]0,1].
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Example. Let K be a convex subset of a vector
space and a,b € K with a # b:

d(a,b) = inf{-log(ar) | f € K,a in |f, b[}.

a=(1—-a)f +ab, ac]0,1].
Lawvere then states:

.. the triangle inequality follows from
the fact that K is actually a «normed
category» ..
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Example. Let K be a convex subset of a vector
space and a,b € K with a # b:

d(a, b) = inf{-log(ar) | f € K,a in |f, b[}.

Definition. A normed category X is an ordi-
nary category with (small) normed hom-sets

=1 X(x,y) — [0, 09]

satisfying 0 > |1,| and |g| + |f| > |g - f|.
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Example. Let K be a convex subset of a vector
space and a,b € K with a # b:

d(a,b) = inf{|f|| f: a — b}.

a=(1—-a)f +ab, ac]0,1].

Lawvere then states:

.. the triangle inequality follows from
the fact that K is actually a «normed
category» ..

Definition. A normed category X is an ordi-
nary category with (small) normed hom-sets

=1 X(x,y) — [0,00]
satisfying 0 > |1, | and |g| + |f| > |g - f|.

Example (continuation). Consider the cat-
egory with objects the elements of K, and an
arrow f: a — b with a # b means

f € Kand a€|f,b], and |f| = -log(ar).
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reader to define a closed category S(R)
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S(R)-valued categories and a «closed
functory inf: S(R) — R which induces
the passage from any «normed cate-
gory» to a metric space ...
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Definition. For a quantale V = (V, ®, k).
® A V-normed set is given by |—|: A — V.
® A V-normed map (A, |—|) = (B,|—|) is a
map f: A — B satisfying

A—F B
[ [
v

This defines the category Set// ).
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Mathematical Society 75.(3), pp. 622—624.
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Definition. For a quantale V = (V, ®, k).
® A V-normed set is given by |—|: A — V.
® A V-normed map (A, |-|) — (B,|—]) is a
map f: A — B satisfying

A—F B
\ < /
[=] [
V
This defines the category Set// ).

Theorem. Set/V is symmetric monoidal closed.

Remark. The internal hom [A, B] has carrier set
Set(A, B) (all mappings ¢: A — B) with

el = A\ llal, lial].
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Remark. The functor s: Set/V — V

f: A= Br— \/lal < \/ |b|
acA beB
is symmetric strict monoidal and induces

s: Cat//V — V-Cat,

X+— (ObX,sX(x,y) = \/ If]).

f: x—y

(Change of base )

(Reminder: The 2-category V-Cat is given by the |
following data:

® A V-category X consists of a set X and a
function X(—, —): X x X — V satisfying

k< X(x,x),  X(x,y)eX(y,z) < X(x,2).
® A V-functor f: X — Y must satisfy
X(x,x") < Y(fx, fx").

® )V-natural transformation: f < f’ whenever,
for all x € X,

k < Y(fx, f'x).
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Definition. Let s = (xy, SLEN Xn)n>meN be a
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Remark. Condition 2 splits in two conditions:
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Proposition. Normed colimits are unique up to
k-isomorphism.

Proposition. Every left adjoint normed functor
F: X — Y preserves normed colimits.

An expected definition:

Definition. For a V-normed category X, we say

that
Sm,n . .
® asequence s = (Xm — Xn)n>men in X is
Cauchy if
k < \/ /\ ISm,nl,

NeIN n>m>N

® and X is Cauchy cocomplete if every
Cauchy sequence in X has a normed
colimit in X.



Definition. A semi-norm ||x||: X — [0, 0] on
a (real) vector space X satisfies:

* [0} = 0.

* lla-xl[=Tal-lxl (a€R,a#0).

* lIx+yll < lixlt+ liyll-
A semi-norm is a norm whenever also

o x| =0 = x=0.

SNVec,, denotes the category of semi-normed
vector spaces and linear maps f: X — Y,

(Example: Normed vector spaces




Definition. A semi-norm ||x||: X — [0, 0] on
a (real) vector space X satisfies:

* [0} = 0.

 lla-x||=la|-[[x]| (a€R, a#0).

* lIx+yll < lixlt+ liyll-
A semi-norm is a norm whenever also

o x| =0 = x=0.

SNVec,, denotes the category of semi-normed

vector spaces and linear maps f: X — Y,

® [0, 00]x-normed by ||f|| = sup,cx w




Definition. A semi-norm ||x||: X — [0, 0] on
a (real) vector space X satisfies:

* [0} = 0.

 lla-x||=la|-[[x]| (a€R, a#0).

* lIx+yll < lixlt+ liyll-
A semi-norm is a norm whenever also

o x| =0 = x=0.

SNVec,, denotes the category of semi-normed

vector spaces and linear maps f: X — Y,

® [0, 00]x-normed by ||f|| = sup,cx w

® [0, 00]4+-normed by ||f|| = sup,cx log® ””fXX”H.




Definition. A semi-norm ||x||: X — [0, 0] on
a (real) vector space X satisfies:

* [0} = 0.

 lla-x||=la|-[[x]| (a€R, a#0).

* lIx+yll < lixlt+ liyll-
A semi-norm is a norm whenever also

o x| =0 = x=0.

SNVec,, denotes the category of semi-normed

vector spaces and linear maps f: X — Y,

® [0, 00]x-normed by ||f|| = sup,cx w

® [0, 00]4+-normed by ||f|| = sup,cx log® ””fXX”H.

Theorem. SNVec,, is Cauchy-cocomplete.

Theorem. NVec, is Cauchy-cocomplete.




Definition. A semi-norm ||x||: X — [0, 0] on
a (real) vector space X satisfies:
* fof =o.

® lla-xl[=1al-lixl (a€R, a#0).

® lIx+yll < lixll+livll-
A semi-norm is a norm whenever also

o x| =0 = x=0.

SNVec,, denotes the category of semi-normed

vector spaces and linear maps f: X — Y,

® [0, 00]x-normed by ||f|| = sup,cx w

® [0, 00]4+-normed by ||f|| = sup,cx log® ””fXX”H.

Theorem. SNVec,, is Cauchy-cocomplete.

Theorem. NVec, is Cauchy-cocomplete.

Theorem. A normed vector space (viewed as a
one-object normed category) is Cauchy cocom-
plete if and only if it is a Banach space.



Definition. A semi-norm ||x||: X — [0, 0] on
a (real) vector space X satisfies:

* [0} = 0.

® lla-x||=la|- x| (a€R, a0).

* lIx+yll < lixlt+ liyll-
A semi-norm is a norm whenever also

o x| =0 = x=0.

SNVec,, denotes the category of semi-normed

vector spaces and linear maps f: X — Y,
f
® [0, 00]x-normed by ||f|| = sup,cx w

® [0, 00]4+-normed by ||f|| = sup,cx log® ””fXX”H.

Theorem. SNVec,, is Cauchy-cocomplete.

Theorem. NVec, is Cauchy-cocomplete.

Theorem. A normed vector space (viewed as a
one-object normed category) is Cauchy cocom-
plete if and only if it is a Banach space.

Remark. For a sequence s = (a,), in X:

ao a
* — kK — % >

® s is Cauchy iff, for all € > 0, there exists
N € IN so that, for all n > m > N,

34

<e.




Definition. A semi-norm ||x||: X — [0, 0] on
a (real) vector space X satisfies:

* [0} = 0.

® lla-x||=la|- x| (a€R, a0).

* lIx+yll < lixlt+ liyll-
A semi-norm is a norm whenever also

o x| =0 = x=0.

SNVec,, denotes the category of semi-normed

vector spaces and linear maps f: X — Y,
f
® [0, 00]x-normed by ||f|| = sup,cx w

® [0, 00]4+-normed by ||f|| = sup,cx log® ””fXX”H.

Theorem. SNVec,, is Cauchy-cocomplete.

Theorem. NVec, is Cauchy-cocomplete.

Theorem. A normed vector space (viewed as a
one-object normed category) is Cauchy cocom-
plete if and only if it is a Banach space.

Remark. For a sequence s = (a,), in X:

*

/J«
© Y
o
2
2
[§)

® s is Cauchy iff, for all € > 0, there exists
N € IN so that, for all n > m > N,

34

® 1 =1 —ao, Y2 =" — (a0 + a1), -

<e.




Definition. A semi-norm ||x||: X — [0, 0] on
a (real) vector space X satisfies:

* [0} = 0.

® lla-x||=la|- x| (a€R, a0).

* lIx+yll < lixlt+ liyll-
A semi-norm is a norm whenever also

o x| =0 = x=0.

SNVec,, denotes the category of semi-normed

vector spaces and linear maps f: X — Y,
f
® [0, 00]x-normed by ||f|| = sup,cx w

® [0, 00]4+-normed by ||f|| = sup,cx log® ””fXX”H.

Theorem. SNVec,, is Cauchy-cocomplete.

Theorem. NVec, is Cauchy-cocomplete.

Theorem. A normed vector space (viewed as a
one-object normed category) is Cauchy cocom-
plete if and only if it is a Banach space.

Remark. For a sequence s = (a,), in X:

*

/J«
© Y
o
2
2
[§)

® s is Cauchy iff, for all € > 0, there exists
N € IN so that, for all n > m > N,

34

® 1 =1 —ao, Y2 =" — (a0 + a1), -

<e.

oo
® (vn)n is normed colimit of s iff vo = Z aj.
i=0



Example. A sequence s = (x,) in a V-category (Comparlson with the quantale case )

X is forward Cauchy whenever

k< \/ /\ X (Xmy Xn)-

NeIN n>m>N

An element x € X is a forward limit of s if

X(x,y) = \/ /\ X(xn,¥),

NEN n>N

for all y € X, and X is (forward) complete when-
ever every forward Cauchy sequence converges.

4 N\

[§ BONSANGUE, MARCELLO M., BREUGEL, FRANCK VAN, and RUTTEN, JAN (1998). “Gen-
eralized metric spaces: completion, topology, and powerdomains via the Yoneda embedding".
In: Theoretical Computer Science 193.(1-2), pp. 1-51.

[M Fracc, ROBERT C., SUNDERHAUF, PHILIPP, and WAGNER, KIM (1996). “A Logical
Approach to Quantitative Domain Theory”. In: Topology Atlas Preprint (23).
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X is forward Cauchy whenever

k< \/ /\ X (Xmy Xn)-

NeN n>m>N

An element x € X is a forward limit of s if

X(x,y) = \/ /\ X(xn,¥),

NeNn>N

for all y € X, and X is (forward) complete when-
ever every forward Cauchy sequence converges.

Remark. For a V-category X:

X complete <= i(X) Cauchy cocomplete.

Remark. Via the normed functor

i(V) — Set|V, v— ({x}, x| =v),

[(*’ u)7 (*, V)] = V(uv V),

i(V) is closed in Set|V under normed colimits.

Theorem. For every quantale V, the V-normed
category Set|)V is Cauchy cocomplete.

Remark. Under certain conditions on V:

® Presheaf categories are Cauchy
cocomplete.

® Normed colimits are weighted colimits.

® Cauchy cocompleteness is stable for
internal homs, products, strict equifiers, ..



Definition. A V-category X is Lawvere com- (Quantale-enriched and ordinary categories )

plete if every adjunction ¢ = v is representable.

For ¢: E = X and ¢: X e E:

{k <V, #(x) ® o),
o(y) ® ¥(x) < X(x,y).
Representable adjunction: X(x, —) 4 X(—, x).

p Y <=

(. R )
Reminder:

® V-distributor p: X e Y = p: XPRY = V.

® Composite with ¢: Y = Z:

p-o(x,2) = \/ oxy) ® ¥y, 2).

yey
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{k <V, 900 @ 9(0),
p(y) @ Y(x) < X(x,y).
Representable adjunction: X(x, —) 4 X(—, x).

p Y <=

Proposition. A left adjoint V-distributor
p: E e X (with right adjoint ¢: X <> E) is
representable if and only if there exist a € X
and “elements” k < ¢(a) and k < v(a).
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Proposition. A left adjoint V-distributor
p: E e X (with right adjoint ¢: X <> E) is
representable if and only if there exist a € X
and “elements” k < ¢(a) and k < v(a).

Remark. By the Yoneda lemma, k < ¢(a) and
k <(a) imply X(a,—) < ¢ and X(—,a) <
with the Isbell adjunction,

X(a7_) = X(_7a)v > wv = p.

(Reminder: Isbell conjugation adjunction:

(=)

VP T R xR,V

(=)
@: E o+ X left adjoint = ¢ 4"

p: E o> X left adjoint = ¢ = wv\/

For more information, see (for instance)

347.

\

@ AVERY, TOM and LEINSTER, ToMm (2021). “Isbell
conjugacy and the reflexive completion™. In: Theory
and Applications of Categories 36.(12), pp. 306—
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(| .
Reminder:

@ BorcEUX, FrRANCIS (1994). Handbook of cate-

~\

® Distributor ¢: X > Y = ¢: X°P x Y — Set.
® Composite with 1: Y = Z:

yeY

¥ p(x,2) = / 206, ¥) X By, 2).

gorical algebra 1. Basic category theory. \ol. 50.
Encyclopedia of Mathematics and its Applications.
Cambridge University Press, pp. xvi + 345.
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Definition. A V-category X is Lawvere com-
plete if every adjunction ¢ = v is representable.

For o: E e X and ¥: X = E:

{k <V, 900 @ 9(0),
e(y) @ P(x) < X(x,y).
Representable adjunction: X(x, —) 4 X(—, x).

p Y <=

Proposition. A left adjoint V-distributor
p: E e X (with right adjoint ¢: X <> E) is
representable if and only if there exist a € X
and “elements” k < ¢(a) and k < v(a).

Remark. By the Yoneda lemma, k < ¢(a) and
k <(a) imply X(a,—) < ¢ and X(—,a) <
with the Isbell adjunction,

X(a7_) = X(_7a)v > ¢v = p.

For ¢: E o> A H1: A = E of Set-distributors:

n:l—s /qu(x) x p(x) = 2x Y(x) X 9(x) /

In addition, u € ¢(a) and v € (a) give
A(a,—) = p, A(—,a) > ¢, and ¥V — A(a, —).
Lemma. For natural transformations
a:A(a,—) — ¢ and B:p — A(a,—).
Then
@ 1Y with unit n = [(v,v)] <= af = 1s.

Theorem. ¢: E o> A is left adjoint if and only

if o is a split retract of a representable.

Theorem. A category A is Lawvere complete if
and only if A is idempotent complete.



Lemma. Let o: E <5 A in Dist//V and (The normed case

a:A(a,—) — ¢ and B:p — A(a,—)

be (ordinary) natural transformations, here

® « corresponds to u € p(a)

o BV:iA(—,a) > pY tov=

Then the following assertions are equivalent.

(i) ¢ 1Y in Dist/V with unit = [(v, u)]

where k < |u| and k < |v|.

(i) o, 8 are V-normed & aff = 1, in Dist//V.

and

B ev’(a)

(Reminder: Normed coends can be calculated “as in Set".
In particular, for p: E o> A 41 A = E:

1 " [*((x) @ p(x)) n(x) = [(v,v)], k < |[v, u]|
Tfina|
P(x) ® p(x) |(u, v)| = |u| @ |v|
\_

~\
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Lemma. Let ¢: E <> A in Dist//V and
a:A(a,—) — ¢ and B:p— A(a,—)
be (ordinary) natural transformations, here
® « corresponds to u € ¢(a) and
® BV:A(—,a) > pY tov=pL€p’(a).
Then the following assertions are equivalent.
(i) ¢ 1Y in Dist/V with unit = [(v, u)]
where k < |u| and k < |v|.
(i) o, 8 are V-normed & aff = 1, in Dist//V.

Definition. A left adjoint V-normed distributor
¢: E > A has a presentable unit if (i).
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Lemma. Let ¢: E <> A in Dist//V and
a: A(a,—) —
be (ordinary) natural transformations, here

and fS:p — A(a,—)

® « corresponds to u € ¢(a) and
® BV:A(—,a) > pY tov=pL€p’(a).
Then the following assertions are equivalent.
(i) ¢ 1Y in Dist/V with unit = [(v, u)]
where k < |u| and k < |v|.
(i) o, 8 are V-normed & aff = 1, in Dist//V.

Definition. A left adjoint V-normed distributor
¢: E > A has a presentable unit if (i).

Theorem. A is Lawvere complete if and only if
A, is idempotent complete and every left adjoint
p: E > A has a presentable unit.

Example. For V =1 and for V = 2, a V-normed
small category A is Lawvere complete if and only
if A, is idempotent complete.

Example. Let X be a V-category. Then X is
Lawvere complete if and only if the V-normed
category i(X) is Lawvere complete.

Remark. X Cauchy cocomplete — X, idem-
potent complete.
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