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Motivation: the Bear and Weiss metricExample. Let K be a convex subset of a vector
space and a, b ∈ K with a 6= b:

d(a, b) = how far is the ray from b via a in K?

b

a

a = (1− α)f + αb, α ∈ ]0, 1[.

Lawvere then states:
… the triangle inequality follows from
the fact that K is actually a «normed
category» …

Definition. A normed category X is an ordi-
nary category with (small) normed hom-sets

|−| : X(x , y) −→ [0,∞]

satisfying 0 ≥ |1x | and |g |+ |f | ≥ |g · f |.

Example (continuation). Consider the cat-
egory with objects the elements of K , and an
arrow f : a → b with a 6= b means

f ∈ K and a ∈]f , b[, and |f | = 9 log(αf ).

Given also g : b → c (with β = αg and α = αf ):

a = (1− α)f + α(1− β)g︸ ︷︷ ︸
=(1−βα)(g·f )

+βαc.

Finally, adjoin identities freely with norm 0.
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Normed setsLawvere then writes:
We will leave as an exercise for the
reader to define a closed category S(R)

such that «normed categories» are just
S(R)-valued categories and a «closed
functor» inf : S(R) → R which induces
the passage from any «normed cate-
gory» to a metric space …

This “exercise” was solved in

Betti, Renato and Galuzzi, Massimo (1975).
“Categorie normate”. In: Bollettino dell’Unione
Matematica Italiana 4.(11), pp. 66–75.

Definition. For a quantale V = (V,⊗, k).
• A V-normed set is given by |−| : A → V.
• A V-normed map (A, |−|) → (B, |−|) is a

map f : A → B satisfying

A B.

V

f

≤
|−| |−|

This defines the category Set//V.

Theorem. Set//V is symmetric monoidal closed.

Remark. The internal hom [A,B] has carrier set
Set(A,B) (all mappings ϕ : A → B) with

|ϕ| =
∧
a∈A

[|a|, |ϕa|].

Goguen, Joseph A. (1969). “Categories of V -sets”. In: Bulletin of the American
Mathematical Society 75.(3), pp. 622–624.
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Normed sets

Lawvere then writes:
We will leave as an exercise for the
reader to define a closed category S(R)

such that «normed categories» are just
S(R)-valued categories and a «closed
functor» inf : S(R) → R which induces
the passage from any «normed cate-
gory» to a metric space …

This “exercise” was solved in
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Normed categoriesDefinition. A V-normed category X is a cate-
gory enriched in Set//V. That is:
• X(x , y) is an object of Set//V.

• The identity E → X(x , x) is in Set//V,
that is, k ≤ |1x |.

• The composition
X(y , z)⊗ X(x , y) → X(x , z)

is in Set//V, that is, |g | ⊗ |f | ≤ |g · f |.
A V-normed functor F : X → Y is a Set//V-
functor: each F : X(x , x ′) → Y(Fx ,Fx ′) is in
Set//V, that is |f | ≤ |Ff |.
A V-normed natural transformation α : T →
S is a Set//V-natural transformation: a family
(αx : E → Y(Tx ,Sx))x … with k ≤ |αx |.

We simpy write Cat//V and CAT//V instead of
(Set//V)-Cat and (Set//V)-CAT, respectively.

For every closed symmetric monoidal category W,

[−,−] : W ×W −→ W

makes W a W-category.

In particular, Set//V becomes a V-normed cate-
gory

• whose objects are V-normed sets,
• but whose normed hom-sets of morphisms

A → B are given by the internal hom [A,B]

of Set//V

, that is, by all Set-maps A → B
with

|ϕ| =
∧
a∈A

[|a|, |ϕa|].

We write Set||V to denote this V-normed category,
then

(Set||V)◦ = Set//V.
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Change of baseRemark. The functor s : Set//V → V

f : A → B 7−→
∨
a∈A

|a| ≤
∨
b∈B

|b|

is symmetric strict monoidal and induces

s : Cat//V −→ V-Cat,

X 7−→ (ObX, sX(x , y) =
∨

f : x→y
|f |).

Remark. The functor s : Set//V → V has a right
adjoint

i : V −→ Set//V, v 7−→ ({?}, |?| = v)

which is symmetric strong monoidal and induces
the functor (right adjoint to s)

i : V-Cat −→ Cat//V,
X 7−→ X “indiscrete”, |(x , y)| = X(x , y).

Theorem. The “norm forgetting” functor

O : Set//V −→ Set

is symmetric strict monoidal and topological.

It induces the topological functor Cat//V → Cat.

Theorem. The category Cat//V is symmetric
monoidal closed.

Remark. (Co)ends of normed functors

T : Xop ⊗ X → Set||V

can be calculated “as in Set”.

Remark. The internal hom [X,Y] is given by the
V-normed functors X → Y and all natural trans-
formations between them, normed by

|α| =
∧

{|αx | | x ∈ ObX}.

Reminder: The 2-category V-Cat is given by the
following data:
• A V-category X consists of a set X and a

function X(−,−) : X × X → V satisfying

k ≤ X(x , x), X(x , y)⊗X(y , z) ≤ X(x , z).

• A V-functor f : X → Y must satisfy

X(x , x ′) ≤ Y (f x , f x ′).

• V-natural transformation: f ≤ f ′ whenever,
for all x ∈ X ,

k ≤ Y (f x , f ′x).

5
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Normed convergence
Definition. Let s = (xm

sm,n−−→ xn)n≥m∈N be a
sequence in the V-normed category X.

An object
x is a normed colimit of s in X if

1. x is a colimit of s in the ordinary category
X, with a colimit cocone (xn

γn−→ x) so that

2. for all objects y in X, the canonical
Set-bijection

s

Nat(s,∆y) −→ X(x , y)

is an isomorphism in Set//V, that is∧
n∈N

|f · γn| = |f |.

Remark. Condition 2 splits in two conditions:

2a.
∨

N∈N
∧

n≥N |γn| ≥ k.
2b.

∨
N∈N

∧
n≥N |f · γn| ≤ |f |.

Proposition. Normed colimits are unique up to
k-isomorphism.

Proposition. Every left adjoint normed functor
F : X → Y preserves normed colimits.

An expected definition:

Definition. For a V-normed category X, we say
that
• a sequence s = (xm

sm,n−−→ xn)n≥m∈N in X is
Cauchy if

k ≤
∨

N∈N

∧
n≥m≥N

|sm,n|,

• and X is Cauchy cocomplete if every
Cauchy sequence in X has a normed
colimit in X.

Clementino, Maria Manuel, Hofmann, Dirk, and Tholen, Walter (2025).
“Cauchy convergence in V-normed categories”. In: Advances in Mathematics 470,
p. 110247.
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Example: Normed vector spacesDefinition. A semi-norm ‖x‖ : X → [0,∞] on
a (real) vector space X satisfies:
• ‖0‖ = 0.
• ‖a · x‖ = |a| · ‖x‖ (a ∈ R, a 6= 0).
• ‖x + y‖ ≤ ‖x‖+ ‖y‖.

A semi-norm is a norm whenever also
• ‖x‖ = 0 =⇒ x = 0.

SNVec∞ denotes the category of semi-normed
vector spaces and linear maps f : X → Y ,

• [0,∞]×-normed by ‖f ‖ = supx∈X
‖f x‖
‖x‖ .

• [0,∞]+-normed by ‖f ‖ = supx∈X log◦ ‖f x‖
‖x‖ .

Theorem. SNVec∞ is Cauchy-cocomplete.

Theorem. NVec∞ is Cauchy-cocomplete.

Theorem. A normed vector space (viewed as a
one-object normed category) is Cauchy cocom-
plete if and only if it is a Banach space.

Remark. For a sequence s = (an)n in X :
? ? ?

?

a0

γ0

a1

γ1 γ2

• s is Cauchy iff, for all ε > 0, there exists
N ∈ N so that, for all n ≥ m ≥ N,∥∥∥ n∑

i=m
ai

∥∥∥ ≤ ε.

• γ1 = γ0 − a0, γ2 = γ0 − (a0 + a1), …

• (γn)n is normed colimit of s iff γ0 =

∞∑
i=0

ai .
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Comparison with the quantale caseExample. A sequence s = (xn) in a V-category
X is forward Cauchy whenever

k ≤
∨

N∈N

∧
n≥m≥N

X(xm, xn).

An element x ∈ X is a forward limit of s if

X(x , y) =
∨

N∈N

∧
n≥N

X(xn, y),

for all y ∈ X , and X is (forward) complete when-
ever every forward Cauchy sequence converges.

Remark. For a V-category X :

X complete ⇐⇒ i(X) Cauchy cocomplete.

Remark. Via the normed functor

i(V) −→ Set||V, v 7−→ ({?}, |?| = v),

[(?, u), (?, v)] = V(u, v),

i(V) is closed in Set||V under normed colimits.

Theorem. For every quantale V, the V-normed
category Set||V is Cauchy cocomplete.

Remark. Under certain conditions on V:
• Presheaf categories are Cauchy

cocomplete.
• Normed colimits are weighted colimits.
• Cauchy cocompleteness is stable for

internal homs, products, strict equifiers, …

Bonsangue, Marcello M., Breugel, Franck van, and Rutten, Jan (1998). “Gen-
eralized metric spaces: completion, topology, and powerdomains via the Yoneda embedding”.
In: Theoretical Computer Science 193.(1-2), pp. 1–51.
Flagg, Robert C., Sünderhauf, Philipp, and Wagner, Kim (1996). “A Logical

Approach to Quantitative Domain Theory”. In: Topology Atlas Preprint (23).
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Quantale-enriched and ordinary categoriesDefinition. A V-category X is Lawvere com-
plete if every adjunction ϕ a ψ is representable.

For ϕ : E −◦−→ X and ψ : X −◦−→ E :

ϕ a ψ ⇐⇒

{
k ≤

∨
x ψ(x)⊗ ϕ(x),

ϕ(y)⊗ ψ(x) ≤ X(x , y).

Representable adjunction: X(x ,−) a X(−, x).

Proposition. A left adjoint V-distributor
ϕ : E −◦−→ X (with right adjoint ψ : X −◦−→ E) is
representable if and only if there exist a ∈ X
and “elements” k ≤ ϕ(a) and k ≤ ψ(a).

Remark. By the Yoneda lemma, k ≤ ϕ(a) and
k ≤ ψ(a) imply X(a,−) ≤ ϕ and X(−, a) ≤ ψ;
with the Isbell adjunction,
X(a,−) = X(−, a)∨ ≥ ψ∨ = ϕ.

For ϕ : E −◦−→ A a ψ : A −◦−→ E of Set-distributors:

η : 1 −→
∫ x
ψ(x)× ϕ(x) =

∑
x ψ(x)× ϕ(x)/

∼.

In addition, u ∈ ϕ(a) and v ∈ ψ(a) give
A(a,−) → ϕ, A(−, a) → ψ, and ψ∨ → A(a,−).

Lemma. For natural transformations

α : A(a,−) −→ ϕ and β : ϕ −→ A(a,−).

Then
ϕ a ϕ∨ with unit η = [(v , u)] ⇐⇒ αβ = 1Φ.

Theorem. ϕ : E −◦−→ A is left adjoint if and only
if ϕ is a split retract of a representable.

Theorem. A category A is Lawvere complete if
and only if A is idempotent complete.

Reminder:
• V-distributor ϕ : X −◦−→ Y = ϕ : Xop ⊗Y → V.
• Composite with ψ : Y −◦−→ Z :

ψ · ϕ(x , z) =
∨

y∈Y
ϕ(x , y)⊗ ψ(y , z).

Reminder: Isbell conjugation adjunction:

[X ,V]op [Xop,V]
(−)∨

(−)∨

`
ϕ : E −◦−→ X left adjoint =⇒ ϕ a ϕ∨

ϕ : E −◦−→ X left adjoint =⇒ ϕ ∼= ϕ∨∨

For more information, see (for instance)

Avery, Tom and Leinster, Tom (2021). “Isbell
conjugacy and the reflexive completion”. In: Theory
and Applications of Categories 36.(12), pp. 306–
347.

Reminder:
• Distributor ϕ : X −◦−→ Y = ϕ : Xop × Y → Set.
• Composite with ψ : Y −◦−→ Z:

ψ · ϕ(x , z) =
∫ y∈Y

ϕ(x , y)× ψ(y , z).

Borceux, Francis (1994). Handbook of cate-
gorical algebra 1. Basic category theory. Vol. 50.
Encyclopedia of Mathematics and its Applications.
Cambridge University Press, pp. xvi + 345.
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The normed caseLemma. Let ϕ : E −◦−→ A in Dist//V and

α : A(a,−) −→ ϕ and β : ϕ −→ A(a,−)

be (ordinary) natural transformations, here
• α corresponds to u ∈ ϕ(a) and
• β∨ : A(−, a) → ϕ∨ to v = β ∈ ϕ∨(a).

Then the following assertions are equivalent.

(i) ϕ a ϕ∨ in Dist//V with unit η = [(v , u)]
where k ≤ |u| and k ≤ |v |.

(ii) α, β are V-normed & αβ = 1ϕ in Dist//V.

Definition. A left adjoint V-normed distributor
ϕ : E −◦−→ A has a presentable unit if (i).

Theorem. A is Lawvere complete if and only if
A◦ is idempotent complete and every left adjoint
ϕ : E −◦−→ A has a presentable unit.

Example. For V = 1 and for V = 2, a V-normed
small category A is Lawvere complete if and only
if A◦ is idempotent complete.

Example. Let X be a V-category. Then X is
Lawvere complete if and only if the V-normed
category i(X) is Lawvere complete.

Remark. X Cauchy cocomplete =⇒ X◦ idem-
potent complete.

Reminder: Normed coends can be calculated “as in Set”.
In particular, for ϕ : E −◦−→ A a ψ : A −◦−→ E:

1
∫ x

(ψ(x)⊗ ϕ(x)) η(?) = [(v , u)], k ≤ |[v , u]|

ψ(x)⊗ ϕ(x) |(u, v)| = |u| ⊗ |v |

η

final
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(ii) α, β are V-normed & αβ = 1ϕ in Dist//V.

Definition. A left adjoint V-normed distributor
ϕ : E −◦−→ A has a presentable unit if (i).

Theorem. A is Lawvere complete if and only if
A◦ is idempotent complete and every left adjoint
ϕ : E −◦−→ A has a presentable unit.

Example. For V = 1 and for V = 2, a V-normed
small category A is Lawvere complete if and only
if A◦ is idempotent complete.

Example. Let X be a V-category. Then X is
Lawvere complete if and only if the V-normed
category i(X) is Lawvere complete.

Remark. X Cauchy cocomplete =⇒ X◦ idem-
potent complete.

Reminder: Normed coends can be calculated “as in Set”.
In particular, for ϕ : E −◦−→ A a ψ : A −◦−→ E:

1
∫ x

(ψ(x)⊗ ϕ(x)) η(?) = [(v , u)], k ≤ |[v , u]|

ψ(x)⊗ ϕ(x) |(u, v)| = |u| ⊗ |v |

η

final
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