Notions of Cauchy (co)completeness for normed categories

Dirk Hofmann¹

CIDMA, Department of Mathematics, University of Aveiro, Portugal dirk@ua.pt, http://sweet.ua.pt/dirk

CT2025, Brno, Tuesday, July 15, 2025

¹Based on joint work with Maria Manuel Clementino and Walter Tholen.

d(a, b) = how far is the ray from b via a in K?

LAWVERE, F. WILLIAM (1973). "Metric spaces, generalized logic, and closed categories". In: *Rendiconti del Seminario Matemàtico e Fisico di Milano* **43**.(1), pp. 135–166. Republished in: Reprints in Theory and Applications of Categories, No. 1 (2002), 1–37.

BEAR, HERBERT S. and WEISS, MAX L. (1967). "An intrinsic metric for parts". In: *Proceedings of the American Mathematical Society* **18**.(5), pp. 812–817.

d(a,b) = how far is the ray from b via a in K?

$$\mathbf{a} = (1-\alpha)\mathbf{f} + \alpha\mathbf{b}, \quad \alpha \in]0,1[.$$

$$\textit{d}(\textit{a},\textit{b}) = \inf \{ -\log(\alpha_{\textit{f}}) \mid \textit{f} \in \textit{K}, \textit{a} \text{ in }]\textit{f},\textit{b}[\}.$$

$$a = (1 - \alpha)f + \alpha b, \quad \alpha \in]0, 1[.$$

$$\textit{d(a,b)} = \inf \{ -\log(\alpha_f) \mid f \in \textit{K}, \textit{a in }]f, \textit{b}[\}.$$

$$a = (1 - \alpha)f + \alpha b, \quad \alpha \in]0, 1[.$$

Lawvere then states:

 \dots the triangle inequality follows from the fact that K is actually a «normed category» \dots

$$d(\mathbf{a},\mathbf{b}) = \inf \{ -\log(\alpha_f) \mid f \in K, \mathbf{a} \text{ in }]f, \mathbf{b}[\}.$$

Definition. A **normed category** \mathbb{X} is an ordinary category with (small) normed hom-sets

$$|-|: \mathbb{X}(x,y) \longrightarrow [0,\infty]$$

satisfying $0 \ge |1_x|$ and $|g| + |f| \ge |g \cdot f|$.

PERRONE, PAOLO (2025). "Lifting couplings in Wasserstein spaces". In: Compositionality 7.(2), pp. 1–21. arXiv: 2110.06591 [math.CT].

$$d(a,b) = \inf\{|f| \mid f \colon a \to b\}.$$

$$a = (1 - \alpha)f + \alpha b, \quad \alpha \in]0, 1[.$$

Lawvere then states:

... the triangle inequality follows from the fact that K is actually a «normed category» ... **Definition.** A **normed category** \mathbb{X} is an ordinary category with (small) normed hom-sets

$$|-|: \mathbb{X}(x,y) \longrightarrow [0,\infty]$$

satisfying
$$0 \ge |1_{\mathsf{x}}|$$
 and $|\mathsf{g}| + |f| \ge |\mathsf{g} \cdot f|$.

Example (continuation). Consider the category with objects the elements of K, and an arrow $f: a \rightarrow b$ with $a \neq b$ means

$$f \in K$$
 and $a \in]f, b[$, and $|f| = -\log(\alpha_f)$.

$$d(a,b) = \inf\{|f| \mid f \colon a \to b\}.$$

$$a = (1 - \alpha)f + \alpha b, \quad \alpha \in]0, 1[.$$

Lawvere then states:

 \dots the triangle inequality follows from the fact that K is actually a «normed category» \dots

Definition. A **normed category** X is an ordinary category with (small) normed hom-sets

$$|-|: \mathbb{X}(x, y) \longrightarrow [0, \infty]$$

satisfying $0 \ge |1_x|$ and $|g| + |f| \ge |g \cdot f|$.

Example (continuation). Consider the category with objects the elements of K, and an arrow $f: a \rightarrow b$ with $a \neq b$ means

$$f \in K$$
 and $a \in]f, b[$, and $|f| = -\log(\alpha_f)$.

Given also $g \colon b \to c$ (with $\beta = \alpha_g$ and $\alpha = \alpha_f$):

$$d(a,b) = \inf\{|f| \mid f \colon a \to b\}.$$

$$a = (1 - \alpha)f + \alpha b, \quad \alpha \in]0, 1[.$$

Lawvere then states:

 \dots the triangle inequality follows from the fact that K is actually a «normed category» \dots

Definition. A **normed category** \mathbb{X} is an ordinary category with (small) normed hom-sets

$$|-|: \mathbb{X}(x,y) \longrightarrow [0,\infty]$$

satisfying
$$0 \ge |1_{\mathsf{x}}|$$
 and $|\mathsf{g}| + |f| \ge |\mathsf{g} \cdot f|$.

Example (continuation). Consider the category with objects the elements of K, and an arrow $f: a \rightarrow b$ with $a \neq b$ means

$$f \in K$$
 and $a \in]f, b[$, and $|f| = -\log(\alpha_f)$.

Given also $g \colon b \to c$ (with $\beta = \alpha_g$ and $\alpha = \alpha_f$):

$$a = \underbrace{(1 - \alpha)f + \alpha(1 - \beta)g}_{=(1 - \beta\alpha)(g \cdot f)} + \beta\alpha c.$$

$$d(a,b) = \inf\{|f| \mid f \colon a \to b\}.$$

$$a = (1 - \alpha)f + \alpha b, \quad \alpha \in]0, 1[.$$

Lawvere then states:

... the triangle inequality follows from the fact that K is actually a «normed category» ... **Definition.** A normed category X is an ordinary category with (small) normed hom-sets

$$|-|: \mathbb{X}(x,y) \longrightarrow [0,\infty]$$

satisfying $0 \ge |1_{\mathsf{x}}|$ and $|\mathsf{g}| + |f| \ge |\mathsf{g} \cdot f|$.

Example (continuation). Consider the category with objects the elements of K, and an arrow $f: a \rightarrow b$ with $a \neq b$ means

$$f \in K$$
 and $a \in]f, b[$, and $|f| = -\log(\alpha_f)$.

Given also $g \colon b \to c$ (with $\beta = \alpha_g$ and $\alpha = \alpha_f$):

$$a = \underbrace{(1 - \alpha)f + \alpha(1 - \beta)g}_{=(1 - \beta\alpha)(g \cdot f)} + \beta\alpha c.$$

Finally, adjoin identities freely with norm 0.

$$d(a,b) = \inf\{|f| \mid f \colon a \to b\}.$$

$$\mathbf{a} = (1-\alpha)\mathbf{f} + \alpha\mathbf{b}, \quad \alpha \in]0,1[.$$

Lawvere then states:

... the triangle inequality follows from the fact that K is actually a «normed category» ... **Definition.** A **normed category** X is an ordinary category with (small) normed hom-sets

$$|-|: \mathbb{X}(x,y) \longrightarrow [0,1]$$

satisfying $1 \leq |1_x|$ and $|g| * |f| \leq |g \cdot f|$.

Example (continuation). Consider the category with objects the elements of K, and an arrow $f: a \rightarrow b$ with $a \neq b$ means

$$f \in K$$
 and $a \in]f, b[$, and $|f| = -\log(\alpha_f)$.

Given also $g \colon b \to c$ (with $\beta = \alpha_g$ and $\alpha = \alpha_f$):

$$a = \underbrace{(1 - \alpha)f + \alpha(1 - \beta)g}_{=(1 - \beta\alpha)(g \cdot f)} + \beta\alpha c.$$

Finally, adjoin identities freely with norm 0.

We will leave as an exercise for the reader to define a closed category $\mathcal{S}(\mathbf{R})$ such that «normed categories» are just $\mathcal{S}(\mathbf{R})$ -valued categories and a «closed functor» $\inf\colon \mathcal{S}(\mathbf{R}) \to \mathbf{R}$ which induces the passage from any «normed category» to a metric space …

Normed sets

We will leave as an exercise for the reader to define a closed category $\mathcal{S}(\mathbf{R})$ such that «normed categories» are just $\mathcal{S}(\mathbf{R})$ -valued categories and a «closed functor» $\inf\colon \mathcal{S}(\mathbf{R}) \to \mathbf{R}$ which induces the passage from any «normed category» to a metric space ...

This "exercise" was solved in

BETTI, RENATO and GALUZZI, MASSIMO (1975). "Categorie normate". In: Bollettino dell'Unione Matematica Italiana 4.(11), pp. 66–75.

We will leave as an exercise for the reader to define a closed category $\mathcal{S}(\mathbf{R})$ such that «normed categories» are just $\mathcal{S}(\mathbf{R})$ -valued categories and a «closed functor» $\inf\colon \mathcal{S}(\mathbf{R}) \to \mathbf{R}$ which induces the passage from any «normed category» to a metric space …

This "exercise" was solved in

BETTI, RENATO and GALUZZI, MASSIMO (1975). "Categorie normate". In: Bollettino dell'Unione Matematica Italiana 4.(11), pp. 66–75.

Definition. For a quantale $V = (V, \otimes, k)$.

- A V-normed set is given by $|-|: A \to V$.
- A V-normed map $(A, |-|) \rightarrow (B, |-|)$ is a map $f: A \rightarrow B$ satisfying

This defines the category $\frac{\text{Set}}{V}$.

We will leave as an exercise for the reader to define a closed category $\mathcal{S}(\mathbf{R})$ such that «normed categories» are just $\mathcal{S}(\mathbf{R})$ -valued categories and a «closed functor» $\inf\colon \mathcal{S}(\mathbf{R}) \to \mathbf{R}$ which induces the passage from any «normed category» to a metric space …

This "exercise" was solved in

BETTI, RENATO and GALUZZI, MASSIMO (1975). "Categorie normate". In: Bollettino dell'Unione Matematica Italiana 4.(11), pp. 66–75.

Definition. For a quantale $V = (V, \otimes, k)$.

- A V-normed set is given by $|-|: A \to V$.
- A V-normed map $(A, |-|) \to (B, |-|)$ is a map $f: A \to B$ satisfying

This defines the category $Set/\!\!/ \mathcal{V}$.

Theorem. Set $/\!\!/ \mathcal{V}$ is symmetric monoidal closed.

We will leave as an exercise for the reader to define a closed category $\mathcal{S}(\mathbf{R})$ such that «normed categories» are just $\mathcal{S}(\mathbf{R})$ -valued categories and a «closed functor» $\inf\colon \mathcal{S}(\mathbf{R}) \to \mathbf{R}$ which induces the passage from any «normed category» to a metric space …

This "exercise" was solved in

BETTI, RENATO and GALUZZI, MASSIMO (1975). "Categorie normate". In: Bollettino dell'Unione Matematica Italiana 4.(11), pp. 66–75.

Definition. For a quantale $V = (V, \otimes, k)$.

- A V-normed set is given by $|-|: A \to V$.
- A V-normed map $(A, |-|) \to (B, |-|)$ is a map $f: A \to B$ satisfying

This defines the category $\mathbf{Set}/\!\!/\mathcal{V}$.

Theorem. Set $/\!\!/ \mathcal{V}$ is symmetric monoidal closed.

Remark. The internal hom [A, B] has carrier set $\mathbf{Set}(A, B)$ (all mappings $\varphi \colon A \to B$) with

$$|\varphi| = \bigwedge_{a \in A} [|a|, |\varphi a|].$$

• $\mathbb{X}(x,y)$ is an object of $\mathbf{Set}/\!\!/\mathcal{V}$.

Normed categories

Definition. A \mathcal{V} -normed category \mathbb{X} is a category enriched in $\mathbf{Set}/\!\!/\mathcal{V}$. That is:

- $\mathbb{X}(x,y)$ is an object of $\mathbf{Set}/\!\!/\mathcal{V}$.
- The identity $E \to \mathbb{X}(x,x)$ is in $\mathbf{Set}/\!\!/\mathcal{V}$, that is, $k \le |1_x|$.
- The composition $\mathbb{X}(y,z)\otimes\mathbb{X}(x,y)\to\mathbb{X}(x,z)$ is in $\mathbf{Set}/\!\!/\mathcal{V}$, that is, $|g|\otimes|f|<|g\cdot f|$.

Definition. A \mathcal{V} -normed category \mathbb{X} is a category enriched in $\mathbf{Set}/\!\!/\mathcal{V}$. That is:

- $\mathbb{X}(x,y)$ is an object of $\mathbf{Set}/\!\!/\mathcal{V}$.
- The identity $E \to \mathbb{X}(x,x)$ is in $\mathbf{Set}/\!\!/\mathcal{V}$, that is, $k \le |1_x|$.
- The composition $\mathbb{X}(y,z)\otimes\mathbb{X}(x,y) o \mathbb{X}(x,z)$

is in Set// \mathcal{V} , that is, $|g| \otimes |f| \leq |g \cdot f|$.

A \mathcal{V} -normed functor $F \colon \mathbb{X} \to \mathbb{Y}$ is a $\mathbf{Set} /\!\!/ \mathcal{V}$ -functor: each $F \colon \mathbb{X}(x,x') \to \mathbb{Y}(Fx,Fx')$ is in $\mathbf{Set} /\!\!/ \mathcal{V}$, that is $|f| \le |Ff|$.

- $\mathbb{X}(x,y)$ is an object of $\mathbf{Set}/\!\!/\mathcal{V}$.
- The identity $E \to \mathbb{X}(x,x)$ is in $\mathbf{Set}/\!\!/ \mathcal{V}$, that is, $k \le |1_x|$.
- The composition $\mathbb{X}(y,z)\otimes\mathbb{X}(x,y)\to\mathbb{X}(x,z)$ is in Set $/\!\!/\mathcal{V}$, that is, $|g|\otimes|f|<|g\cdot f|$.

A \mathcal{V} -normed functor $F \colon \mathbb{X} \to \mathbb{Y}$ is a $\mathbf{Set} /\!\!/ \mathcal{V}$ -functor: each $F \colon \mathbb{X}(x,x') \to \mathbb{Y}(Fx,Fx')$ is in $\mathbf{Set} /\!\!/ \mathcal{V}$, that is $|f| \le |Ff|$.

A \mathcal{V} -normed natural transformation $\alpha \colon T \to S$ is a $\mathbf{Set}/\!\!/\mathcal{V}$ -natural transformation: a family $(\alpha_x \colon E \to \mathbb{Y}(Tx, Sx))_x$... with $k \le |\alpha_x|$.

- $\mathbb{X}(x,y)$ is an object of $\mathbf{Set}/\!\!/\mathcal{V}$.
- The identity $E \to \mathbb{X}(x,x)$ is in $\mathbf{Set}/\!\!/\mathcal{V}$, that is, $k \le |1_x|$.
- The composition $\mathbb{X}(y,z)\otimes\mathbb{X}(x,y) o \mathbb{X}(x,z)$

is in $\operatorname{Set}/\!\!/\mathcal{V}$, that is, $|g|\otimes |f|\leq |g\cdot f|$.

A \mathcal{V} -normed functor $F \colon \mathbb{X} \to \mathbb{Y}$ is a $\mathbf{Set} /\!\!/ \mathcal{V}$ -functor: each $F \colon \mathbb{X}(x,x') \to \mathbb{Y}(Fx,Fx')$ is in $\mathbf{Set} /\!\!/ \mathcal{V}$, that is $|f| \le |Ff|$.

A \mathcal{V} -normed natural transformation $\alpha \colon T \to S$ is a $\mathbf{Set}/\!\!/ \mathcal{V}$ -natural transformation: a family $(\alpha_x \colon E \to \mathbb{Y}(Tx, Sx))_x$... with $k \le |\alpha_x|$.

We simpy write Cat/V and CAT/V instead of (Set/V)-Cat and (Set/V)-CAT, respectively.

• $\mathbb{X}(x,y)$ is an object of $\mathbf{Set}/\!\!/\mathcal{V}$.

The composition

Set $/\!\!/ \mathcal{V}$, that is |f| < |Ff|.

- The identity $E \to \mathbb{X}(x,x)$ is in $\mathbf{Set}/\!\!/\mathcal{V}$, that is, $k \le |1_x|$.
- $\mathbb{X}(y,z)\otimes\mathbb{X}(x,y)\to\mathbb{X}(x,z)$ is in Set $/\!\!/\mathcal{V}$, that is, $|g|\otimes|f|<|g\cdot f|$.

A \mathcal{V} -normed functor $F \colon \mathbb{X} \to \mathbb{Y}$ is a $\mathbf{Set} / \!\!/ \mathcal{V}$ -functor: each $F \colon \mathbb{X}(x, x') \to \mathbb{Y}(Fx, Fx')$ is in

A \mathcal{V} -normed natural transformation $\alpha \colon T \to S$ is a Set $/\!\!/ \mathcal{V}$ -natural transformation: a family $(\alpha_x \colon E \to \mathbb{Y}(Tx, Sx))_x$... with $k < |\alpha_x|$.

We simpy write Cat/V and CAT/V instead of (Set/V)-Cat and (Set/V)-CAT, respectively.

For every closed symmetric monoidal category \mathcal{W} ,

$$[-,-]: \mathcal{W} \times \mathcal{W} \longrightarrow \mathcal{W}$$

makes ${\mathcal W}$ a ${\mathcal W}$ -category.

- $\mathbb{X}(x,y)$ is an object of $\mathbf{Set}/\!\!/\mathcal{V}$.
- The identity $E \to \mathbb{X}(x,x)$ is in $\operatorname{Set}/\!\!/ \mathcal{V}$, that is, $k < |1_x|$.
- The composition $\mathbb{X}(y,z)\otimes\mathbb{X}(x,y)\to\mathbb{X}(x,z)$ is in Set $/\!\!/\mathcal{V}$, that is, $|g|\otimes|f|<|g\cdot f|$.

A \mathcal{V} -normed functor $F \colon \mathbb{X} \to \mathbb{Y}$ is a $\mathbf{Set} /\!\!/ \mathcal{V}$ -functor: each $F \colon \mathbb{X}(x,x') \to \mathbb{Y}(Fx,Fx')$ is in $\mathbf{Set} /\!\!/ \mathcal{V}$, that is $|f| \le |Ff|$.

A \mathcal{V} -normed natural transformation $\alpha \colon T \to S$ is a $\mathbf{Set}/\!\!/\mathcal{V}$ -natural transformation: a family $(\alpha_x \colon E \to \mathbb{Y}(Tx, Sx))_x$... with $k \le |\alpha_x|$.

We simpy write Cat/V and CAT/V instead of (Set/V)-Cat and (Set/V)-CAT, respectively.

For every closed symmetric monoidal category ${\mathcal W},$

$$[-,-]: \mathcal{W} \times \mathcal{W} \longrightarrow \mathcal{W}$$

makes ${\mathcal W}$ a ${\mathcal W}$ -category.

In particular, $\mathbf{Set}/\!\!/\mathcal{V}$ becomes a $\mathcal{V}\text{-normed}$ category

ullet whose objects are ${\cal V} ext{-normed}$ sets,

- $\mathbb{X}(x,y)$ is an object of $\mathbf{Set}/\!\!/\mathcal{V}$.
- The identity $E \to \mathbb{X}(x,x)$ is in $\mathbf{Set}/\!\!/ \mathcal{V}$, that is, $k < |1_x|$.
- The composition $\mathbb{X}(y,z)\otimes\mathbb{X}(x,y)\to\mathbb{X}(x,z)$ is in Set $/\!\!/\mathcal{V}$, that is, $|g|\otimes|f|<|g\cdot f|$.

A \mathcal{V} -normed functor $F \colon \mathbb{X} \to \mathbb{Y}$ is a $\mathbf{Set}/\!\!/\mathcal{V}$ -functor: each $F \colon \mathbb{X}(x,x') \to \mathbb{Y}(Fx,Fx')$ is in $\mathbf{Set}/\!\!/\mathcal{V}$, that is $|f| \le |Ff|$.

A \mathcal{V} -normed natural transformation $\alpha \colon T \to S$ is a $\operatorname{Set} /\!\!/ \mathcal{V}$ -natural transformation: a family $(\alpha_x \colon E \to \mathbb{Y}(Tx, Sx))_x$... with $k \le |\alpha_x|$.

We simpy write Cat/V and CAT/V instead of (Set/V)-Cat and (Set/V)-CAT, respectively.

For every closed symmetric monoidal category ${\mathcal W},$

$$[-,-]: \mathcal{W} \times \mathcal{W} \longrightarrow \mathcal{W}$$

makes $\mathcal W$ a $\mathcal W$ -category.

with

In particular, $\mathbf{Set} /\!\!/ \mathcal{V}$ becomes a $\mathcal{V}\text{-normed}$ category

- whose objects are \mathcal{V} -normed sets.
- but whose normed hom-sets of morphisms $A \to B$ are given by the internal hom [A, B] of $\mathbf{Set}/\!\!/ \mathcal{V}$, that is, by all \mathbf{Set} -maps $A \to B$

$$|\varphi| = \bigwedge_{\alpha \in A} [|a|, |\varphi a|].$$

- $\mathbb{X}(x,y)$ is an object of $\mathbf{Set}/\!\!/\mathcal{V}$.
- The identity $E \to \mathbb{X}(x,x)$ is in $\mathbf{Set}/\!\!/ \mathcal{V}$, that is, $k < |1_x|$.
- The composition $\mathbb{X}(y,z)\otimes\mathbb{X}(x,y) o\mathbb{X}(x,z)$

A \mathcal{V} -normed functor $F \colon \mathbb{X} \to \mathbb{Y}$ is a $\mathbf{Set} /\!\!/ \mathcal{V}$ -functor: each $F \colon \mathbb{X}(x,x') \to \mathbb{Y}(Fx,Fx')$ is in $\mathbf{Set} /\!\!/ \mathcal{V}$, that is |f| < |Ff|.

is in Set $/\!\!/ \mathcal{V}$, that is, $|g| \otimes |f| < |g \cdot f|$.

A \mathcal{V} -normed natural transformation $\alpha \colon T \to S$ is a $\mathbf{Set} /\!\!/ \mathcal{V}$ -natural transformation: a family $(\alpha_x \colon E \to \mathbb{Y}(Tx, Sx))_x$... with $k < |\alpha_x|$.

We simpy write Cat/V and CAT/V instead of (Set/V)-Cat and (Set/V)-CAT, respectively.

For every closed symmetric monoidal category \mathcal{W} ,

$$[-,-]: \mathcal{W} \times \mathcal{W} \longrightarrow \mathcal{W}$$

makes ${\mathcal W}$ a ${\mathcal W}$ -category.

with

In particular, $\mathbf{Set} /\!\!/ \mathcal{V}$ becomes a $\mathcal{V}\text{-normed}$ category

- whose objects are \mathcal{V} -normed sets,
- but whose normed hom-sets of morphisms $A \rightarrow B$ are given by the internal hom [A, B]

$$|\varphi| = \bigwedge [|\mathsf{a}|, |\varphi \mathsf{a}|].$$

of Set $/\!/ \mathcal{V}$, that is, by all Set-maps $A \to B$

We write $\mathbf{Set} \| \mathcal{V}$ to denote this $\mathcal{V}\text{-normed}$ category, then

$$(\mathbf{Set} \| \mathcal{V})_{\circ} = \mathbf{Set} / \!\!/ \mathcal{V}.$$

Remark. The functor $s \colon \mathbf{Set} /\!\!/ \mathcal{V} o \mathcal{V}$

$$f \colon A \to B \longmapsto \bigvee_{a \in A} |a| \le \bigvee_{b \in B} |b|$$

is symmetric strict monoidal and induces $s \colon \mathbf{Cat} /\!\!/ \mathcal{V} \longrightarrow \mathcal{V}\text{-}\mathbf{Cat}.$

$$\mathbb{X} \longmapsto (\mathrm{Ob}\,\mathbb{X}, s\mathbb{X}(x, y) = \bigvee |f|).$$

Change of base

Reminder: The 2-category *V*-Cat is given by the following data:

• A $\mathcal V$ -category X consists of a set X and a function $X(-,-)\colon X\times X\to \mathcal V$ satisfying

$$k \leq X(x,x), \qquad X(x,y) \otimes X(y,z) \leq X(x,z).$$

• A V-functor $f: X \to Y$ must satisfy

$$X(x,x') \leq Y(fx,fx').$$

• V-natural transformation: $f \le f'$ whenever, for all $x \in X$,

$$k \leq Y(fx, f'x).$$

Remark. The functor $s \colon \mathbf{Set} /\!\!/ \mathcal{V} o \mathcal{V}$

$$f \colon A \to B \longmapsto \bigvee_{a \in A} |a| \le \bigvee_{b \in B} |b|$$

is symmetric strict monoidal and induces

$$s: \mathbf{Cat} /\!\!/ \mathcal{V} \longrightarrow \mathcal{V}\text{-}\mathbf{Cat},$$

$$\mathbb{X} \longmapsto (\mathrm{Ob}\,\mathbb{X}, s\mathbb{X}(x, y) = \bigvee_{f: x \mapsto Y} |f|).$$

Remark. The functor $s \colon \mathbf{Set} /\!\!/ \mathcal{V} \to \mathcal{V}$ has a right adjoint

$$i \colon \mathcal{V} \longrightarrow \mathbf{Set} /\!\!/ \mathcal{V}, \quad v \longmapsto (\{\star\}, |\star| = v)$$
 which is symmetric strong monoidal and induces the functor (right adjoint to s)

$$i \colon \mathcal{V}\text{-}\mathbf{Cat} \longrightarrow \mathbf{Cat}/\!\!/\mathcal{V},$$

$$X \longmapsto \mathbb{X} \text{ "indiscrete", } |(x,y)| = X(x,y).$$

Reminder: The 2-category V-Cat is given by the following data:

• A V-category X consists of a set X and a

function $X(-,-)\colon X\times X\to \mathcal{V}$ satisfying

$$k \leq X(x,x), \qquad X(x,y) \otimes X(y,z) \leq X(x,z).$$

$$X(x,x') \leq Y(fx,fx').$$

• A V-functor $f: X \to Y$ must satisfy

• V-natural transformation: $f \le f'$ whenever, for all $x \in X$,

$$k \leq Y(fx, f'x).$$

Remark. The functor $s : \mathbf{Set} /\!\!/ \mathcal{V} \to \mathcal{V}$

$$f \colon A \to B \longmapsto \bigvee_{a \in A} |a| \le \bigvee_{b \in B} |b|$$

is symmetric strict monoidal and induces

$$\mathbb{X} \longmapsto (\mathrm{Ob}\,\mathbb{X}, s\mathbb{X}(x,y) = \bigvee |f|).$$

Remark. The functor $s \colon \mathbf{Set} /\!\!/ \mathcal{V} \to \mathcal{V}$ has a right adjoint

$$i \colon \mathcal{V} \longrightarrow \mathbf{Set} /\!\!/ \mathcal{V}, \quad \mathbf{v} \longmapsto (\{\star\}, |\star| = \mathbf{v})$$

which is symmetric strong monoidal and induces the functor (right adjoint to s)

$$i: \mathcal{V}\text{-}\mathbf{Cat} \longrightarrow \mathbf{Cat}/\!\!/\mathcal{V}.$$

 $s : \mathbf{Cat} / \mathcal{V} \longrightarrow \mathcal{V}\text{-}\mathbf{Cat}.$

$$X \longmapsto \mathbb{X}$$
 "indiscrete", $|(x,y)| = X(x,y)$.

Theorem. The "norm forgetting" functor

 $\mathit{O}\colon \mathbf{Set}/\!\!/\mathcal{V} \longrightarrow \mathbf{Set}$

is symmetric strict monoidal and topological.

It induces the topological functor $\mathbf{Cat}/\!\!/\mathcal{V} \to \mathbf{Cat}.$

Remark. The functor $s \colon \mathbf{Set} /\!\!/ \mathcal{V} \to \mathcal{V}$

$$f \colon A \to B \longmapsto \bigvee_{a \in A} |a| \le \bigvee_{b \in B} |b|$$

is symmetric strict monoidal and induces $% \left(1\right) =\left(1\right) \left(1\right$

$$s : \mathbf{Cat} /\!\!/ \mathcal{V} \longrightarrow \mathcal{V}\text{-}\mathbf{Cat},$$

$$\mathbb{X} \longmapsto (\mathbf{Ob}\,\mathbb{X}, s\mathbb{X}(x, y) = \bigvee |f|).$$

Remark. The functor $s \colon \mathbf{Set} /\!\!/ \mathcal{V} \to \mathcal{V}$ has a right adjoint

$$i \colon \mathcal{V} \longrightarrow \mathbf{Set} /\!\!/ \mathcal{V}, \quad \mathbf{v} \longmapsto (\{\star\}, |\star| = \mathbf{v})$$

which is symmetric strong monoidal and induces the functor (right adjoint to s)

$$i: \mathcal{V}\text{-}\mathbf{Cat} \longrightarrow \mathbf{Cat}/\!\!/\mathcal{V},$$

$$X \longmapsto \mathbb{X}$$
 "indiscrete", $|(x,y)| = X(x,y)$.

Theorem. The "norm forgetting" functor

 $\mathit{O}\colon \mathbf{Set}/\!\!/\mathcal{V} \longrightarrow \mathbf{Set}$

is symmetric strict monoidal and topological.

It induces the topological functor $\mathbf{Cat}/\!\!/\mathcal{V} \to \mathbf{Cat}.$

Theorem. The category $Cat/\!\!/\mathcal{V}$ is symmetric monoidal closed.

Remark. The functor $s \colon \mathbf{Set} /\!\!/ \mathcal{V} \to \mathcal{V}$

$$f \colon A \to B \longmapsto \bigvee_{a \in A} |a| \le \bigvee_{b \in B} |b|$$

is symmetric strict monoidal and induces

$$s : \mathbf{Cat} /\!\!/ \mathcal{V} \longrightarrow \mathcal{V}\text{-}\mathbf{Cat},$$

$$\mathbb{X} \longmapsto (\mathbf{Ob}\,\mathbb{X}, s\mathbb{X}(x, y) = \bigvee |f|).$$

Remark. The functor
$$s \colon \mathbf{Set} /\!\!/ \mathcal{V} \to \mathcal{V}$$
 has a right

$$i \colon \mathcal{V} \longrightarrow \mathbf{Set} /\!\!/ \mathcal{V}, \quad v \longmapsto (\{\star\}, |\star| = v)$$

which is symmetric strong monoidal and induces the functor (right adjoint to s)

$$i \colon \mathcal{V}\text{-}\mathbf{Cat} \longrightarrow \mathbf{Cat}/\!\!/\mathcal{V},$$

adioint

$$X \longmapsto \mathbb{X}$$
 "indiscrete", $|(x,y)| = X(x,y)$.

Theorem. The "norm forgetting" functor

 $O\colon \mathbf{Set}/\!\!/\mathcal{V} \longrightarrow \mathbf{Set}$

is symmetric strict monoidal and topological.

It induces the topological functor $\mathbf{Cat}/\!\!/\mathcal{V} \to \mathbf{Cat}.$

Theorem. The category $\operatorname{Cat}/\!\!/\mathcal{V}$ is symmetric monoidal closed.

Remark. (Co)ends of normed functors

$$T\colon \mathbb{X}^{\mathrm{op}}\otimes \mathbb{X} o \mathbf{Set} \| \mathcal{V}$$

can be calculated "as in \mathbf{Set} ".

Remark. The functor $s : \mathbf{Set} /\!\!/ \mathcal{V} \to \mathcal{V}$ $f: A \to B \longmapsto \bigvee |a| \leq \bigvee |b|$ b∈B

is symmetric strict monoidal and induces

$$s \colon \mathbf{Cat} /\!\!/ \mathcal{V} \longrightarrow \mathcal{V}\text{-}\mathbf{Cat},$$

Remark. The functor $s : \mathbf{Set} /\!\!/ \mathcal{V} \to \mathcal{V}$ has a right adioint

 $\mathbb{X} \longmapsto (\mathrm{Ob}\,\mathbb{X}, s\mathbb{X}(x,y) = \bigvee |f|).$

 $i: \mathcal{V} \longrightarrow \mathbf{Set}/\!\!/\mathcal{V}, \quad \mathbf{v} \longmapsto (\{\star\}, |\star| = \mathbf{v})$

which is symmetric strong monoidal and induces the functor (right adjoint to s)

 $i \colon \mathcal{V}\text{-}\mathbf{Cat} \longrightarrow \mathbf{Cat} /\!\!/ \mathcal{V}$. $X \longmapsto \mathbb{X}$ "indiscrete", |(x,y)| = X(x,y).

Theorem. The "norm forgetting" functor $O \colon \mathbf{Set} /\!\!/ \mathcal{V} \longrightarrow \mathbf{Set}$ is symmetric strict monoidal and topological.

It induces the topological functor $\mathbf{Cat}/\mathcal{V} \to \mathbf{Cat}$.

Theorem. The category Cat/\mathcal{V} is symmetric monoidal closed.

 $T: \mathbb{X}^{\mathrm{op}} \otimes \mathbb{X} \to \mathbf{Set} \mathbb{I} \mathcal{V}$ can be calculated "as in Set".

Remark. (Co)ends of normed functors

Remark. The internal hom [X, Y] is given by the \mathcal{V} -normed functors $\mathbb{X} \to \mathbb{Y}$ and all natural trans-

formations between them, normed by $|\alpha| = \bigwedge \{ |\alpha_x| \mid x \in \mathrm{Ob} \, \mathbb{X} \}.$ **Definition.** Let $s = (x_m \xrightarrow{s_{m,n}} x_n)_{n \geq m \in \mathbb{N}}$ be a sequence in the \mathcal{V} -normed category \mathbb{X} .

Normed convergence

Definition. Let $s = (x_m \xrightarrow{s_{m,n}} x_n)_{n \geq m \in \mathbb{N}}$ be a sequence in the \mathcal{V} -normed category \mathbb{X} . An object x is a **normed colimit** of s in \mathbb{X} if

- 1. x is a colimit of s in the ordinary category \mathbb{X} , with a colimit cocone $(x_n \xrightarrow{\gamma_n} x)$ so that
- 2. for all objects *y* in X, the canonical **Set**-bijection

$$\operatorname{Nat}(s, \Delta y) \longrightarrow \mathbb{X}(x, y)$$

is an isomorphism in $\mathbf{Set}/\!\!/\mathcal{V}$, that is

$$\bigwedge_{n\in\mathbb{N}}|f\cdot\gamma_n|=|f|.$$

Definition. Let $s = (x_m \xrightarrow{s_{m,n}} x_n)_{n \geq m \in \mathbb{N}}$ be a sequence in the \mathcal{V} -normed category \mathbb{X} . An object x is a **normed colimit** of s in \mathbb{X} if

- 1. x is a colimit of s in the ordinary category \mathbb{X} , with a colimit cocone $(x_n \xrightarrow{\gamma_n} x)$ so that
- 2. for all objects *y* in X, the canonical **Set**-bijections

$$\operatorname{Nat}(s|_{N}, \Delta y) \longrightarrow \mathbb{X}(x, y)$$

form a colimit in $\mathbf{Set}/\!\!/\mathcal{V}$, that is

$$\bigvee_{N\in\mathbb{N}}\bigwedge_{n\geq N}|f\cdot\gamma_n|=|f|.$$

CLEMENTINO, MARIA MANUEL, HOFMANN, DIRK, and THOLEN, WALTER (2025). "Cauchy convergence in V-normed categories". In: *Advances in Mathematics* **470**, p. 110247.

Definition. Let $s = (x_m \xrightarrow{s_{m,n}} x_n)_{n \ge m \in \mathbb{N}}$ be a sequence in the \mathcal{V} -normed category \mathbb{X} . An object x is a **normed colimit** of s in \mathbb{X} if

- 1. x is a colimit of s in the ordinary category \mathbb{X} , with a colimit cocone $(x_n \xrightarrow{\gamma_n} x)$ so that
- 2. for all objects *y* in X, the canonical **Set**-bijections

$$\operatorname{Nat}(s|_{N}, \Delta y) \longrightarrow \mathbb{X}(x, y)$$

form a colimit in $\mathbf{Set}/\!\!/\mathcal{V}$, that is

$$\bigvee_{N\in\mathbb{N}}\bigwedge_{n>N}|f\cdot\gamma_n|=|f|.$$

Remark. Condition 2 splits in two conditions:

- 2a. $\bigvee_{N\in\mathbb{N}} \bigwedge_{n\geq N} |\gamma_n| \geq k$.
- 2b. $\bigvee_{N\in\mathbb{N}} \bigwedge_{n\geq N} |f \cdot \gamma_n| \leq |f|$.

Definition. Let $s = (x_m \xrightarrow{s_{m,n}} x_n)_{n \ge m \in \mathbb{N}}$ be a sequence in the \mathcal{V} -normed category \mathbb{X} . An object x is a normed colimit of s in \mathbb{X} if

- 1. x is a colimit of s in the ordinary category \mathbb{X} , with a colimit cocone $(x_n \xrightarrow{\gamma_n} x)$ so that
- 2. for all objects *y* in X, the canonical **Set**-bijections

$$\operatorname{Nat}(s|_{N}, \Delta y) \longrightarrow \mathbb{X}(x, y)$$

form a colimit in $\mathbf{Set}/\!\!/\mathcal{V}$, that is

$$\bigvee_{N\in\mathbb{N}}\bigwedge_{n>N}|f\cdot\gamma_n|=|f|.$$

Remark. Condition 2 splits in two conditions:

- 2a. $\bigvee_{N\in\mathbb{N}} \bigwedge_{n\geq N} |\gamma_n| \geq k$.
- 2b. $\bigvee_{N\in\mathbb{N}} \bigwedge_{n\geq N} |f \cdot \gamma_n| \leq |f|$.

Proposition. Normed colimits are unique up to k-isomorphism.

Proposition. Every left adjoint normed functor $F \colon \mathbb{X} \to \mathbb{Y}$ preserves normed colimits.

Definition. Let $s = (x_m \xrightarrow{s_{m,n}} x_n)_{n \ge m \in \mathbb{N}}$ be a sequence in the \mathcal{V} -normed category \mathbb{X} . An object x is a **normed colimit** of s in \mathbb{X} if

- 1. x is a colimit of s in the ordinary category \mathbb{X} , with a colimit cocone $(x_n \xrightarrow{\gamma_n} x)$ so that
- 2. for all objects *y* in X, the canonical Set-bijections

$$\operatorname{Nat}(s|_{N}, \Delta y) \longrightarrow \mathbb{X}(x, y)$$

form a colimit in $\mathbf{Set}/\!\!/\mathcal{V}$, that is

$$\bigvee_{N\in\mathbb{N}}\bigwedge_{n\geq N}|f\cdot\gamma_n|=|f|.$$

Remark. Condition 2 splits in two conditions:

- 2a. $\bigvee_{N\in\mathbb{N}} \bigwedge_{n\geq N} |\gamma_n| \geq k$.
- 2b. $\bigvee_{N\in\mathbb{N}} \bigwedge_{n\geq N} |f \cdot \gamma_n| \leq |f|$.

Proposition. Normed colimits are unique up to k-isomorphism.

Proposition. Every left adjoint normed functor $F \colon \mathbb{X} \to \mathbb{Y}$ preserves normed colimits.

An expected definition:

Definition. For a $\mathcal{V}\text{-normed}$ category \mathbb{X} , we say that

• a sequence $s = (x_m \xrightarrow{s_{m,n}} x_n)_{n \geq m \in \mathbb{N}}$ in \mathbb{X} is Cauchy if

$$k \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq m \geq N} |s_{m,n}|,$$

 and X is Cauchy cocomplete if every Cauchy sequence in X has a normed colimit in X.

- ||0|| = 0.
- $||a \cdot x|| = |a| \cdot ||x||$ $(a \in \mathbb{R}, a \neq 0).$
- $||x + y|| \le ||x|| + ||y||$.

A semi-norm is a **norm** whenever also

• $||x|| = 0 \implies x = 0.$

 \mathbf{SNVec}_{∞} denotes the category of semi-normed vector spaces and linear maps $f: X \to Y$,

Example: Normed vector spaces

- ||0|| = 0.
- $||a \cdot x|| = |a| \cdot ||x||$ $(a \in \mathbb{R}, a \neq 0).$
- $||x + y|| \le ||x|| + ||y||$.

A semi-norm is a **norm** whenever also

• $||x|| = 0 \implies x = 0.$

 \mathbf{SNVec}_{∞} denotes the category of semi-normed vector spaces and linear maps $f\colon X o Y$,

• $[0,\infty]_{\times}$ -normed by $\|f\|=\sup_{x\in X}\frac{\|fx\|}{\|x\|}.$

- ||0|| = 0.
- $||a \cdot x|| = |a| \cdot ||x||$ $(a \in \mathbb{R}, a \neq 0).$
- $||x + y|| \le ||x|| + ||y||$.

A semi-norm is a **norm** whenever also

• $||x|| = 0 \implies x = 0.$

 \mathbf{SNVec}_{∞} denotes the category of semi-normed vector spaces and linear maps $f\colon X \to Y$,

- $[0,\infty]_{\times}$ -normed by $\|f\|=\sup_{x\in X}\frac{\|fx\|}{\|x\|}.$
- $[0,\infty]_+$ -normed by $\|f\|=\sup_{x\in X}\log^\circ\frac{\|fx\|}{\|x\|}.$

- ||0|| = 0.
- $||a \cdot x|| = |a| \cdot ||x||$ $(a \in \mathbb{R}, a \neq 0).$
- $||x + y|| \le ||x|| + ||y||$.

A semi-norm is a **norm** whenever also

• $||x|| = 0 \implies x = 0.$

 \mathbf{SNVec}_{∞} denotes the category of semi-normed vector spaces and linear maps $f: X \to Y$,

- $[0,\infty]_{\times}$ -normed by $\|f\|=\sup_{x\in X}\frac{\|fx\|}{\||x\|\|}.$
- $[0,\infty]_+$ -normed by $\|f\| = \sup_{x \in X} \log^{\circ} \frac{\|f_X\|}{\|x\|}$.
- **Theorem.** \mathbf{SNVec}_{∞} is Cauchy-cocomplete.
- **Theorem.** \mathbf{NVec}_{∞} is Cauchy-cocomplete.

- ||0|| = 0.
- $||a \cdot x|| = |a| \cdot ||x||$ $(a \in \mathbb{R}, a \neq 0).$
- $||x + y|| \le ||x|| + ||y||$.

A semi-norm is a norm whenever also

• $||x|| = 0 \implies x = 0.$

 \mathbf{SNVec}_{∞} denotes the category of semi-normed vector spaces and linear maps $f\colon X o Y$,

- $[0,\infty]_X$ -normed by $\|f\|=\sup_{x\in X}\frac{\|fx\|}{\|x\|}.$
- $[0,\infty]_+$ -normed by $\|f\| = \sup_{x \in X} \log^{\circ} \frac{\|fx\|}{\|x\|}$.
- **Theorem.** \mathbf{SNVec}_{∞} is Cauchy-cocomplete.
- **Theorem.** \mathbf{NVec}_{∞} is Cauchy-cocomplete.

Theorem. A normed vector space (viewed as a one-object normed category) is Cauchy cocomplete if and only if it is a Banach space.

- ||0|| = 0.
- $||a \cdot x|| = |a| \cdot ||x||$ $(a \in \mathbb{R}, a \neq 0).$
- $||x + y|| \le ||x|| + ||y||$.

A semi-norm is a **norm** whenever also

• $||x|| = 0 \implies x = 0.$

 \mathbf{SNVec}_{∞} denotes the category of semi-normed vector spaces and linear maps $f\colon X o Y$,

- $[0,\infty]_X$ -normed by $\|f\|=\sup_{x\in X}\frac{\|fx\|}{\|x\|}.$
- $[0,\infty]_+$ -normed by $\|f\|=\sup_{\mathbf{x}\in \mathbf{X}}\log^\circ\frac{\|f\mathbf{x}\|}{\|\mathbf{x}\|}.$
- **Theorem.** \mathbf{SNVec}_{∞} is Cauchy-cocomplete.
- **Theorem.** $NVec_{\infty}$ is Cauchy-cocomplete.

Theorem. A normed vector space (viewed as a one-object normed category) is Cauchy cocomplete if and only if it is a Banach space.

Remark. For a sequence $s = (a_n)_n$ in X:

$$\star \xrightarrow{a_0} \star \xrightarrow{a_1} \star \cdots \cdots \rangle$$

• s is Cauchy iff, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ so that, for all n > m > N,

$$\left\|\sum_{i=1}^{n}a_{i}\right\|\leq\varepsilon.$$

- ||0|| = 0.
- $||a \cdot x|| = |a| \cdot ||x||$ $(a \in \mathbb{R}, a \neq 0).$
- $||x + y|| \le ||x|| + ||y||$.

A semi-norm is a **norm** whenever also

• $||x|| = 0 \implies x = 0.$

 \mathbf{SNVec}_{∞} denotes the category of semi-normed vector spaces and linear maps $f\colon X o Y$,

- $[0,\infty]_X$ -normed by $\|f\|=\sup_{x\in X}\frac{\|fx\|}{\|x\|}.$
- $[0,\infty]_+$ -normed by $\|f\|=\sup_{\mathbf{x}\in\mathbf{X}}\log^\circ\frac{\|f\mathbf{x}\|}{\|\mathbf{x}\|}.$
- $oxed{Theorem.}\ \mathbf{SNVec}_{\infty}$ is Cauchy-cocomplete.
- **Theorem.** \mathbf{NVec}_{∞} is Cauchy-cocomplete.

Theorem. A normed vector space (viewed as a one-object normed category) is Cauchy cocomplete if and only if it is a Banach space.

Remark. For a sequence $s = (a_n)_n$ in X:

• s is Cauchy iff, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ so that, for all n > m > N,

$$\left\|\sum_{i=m}^n a_i\right\| \leq \varepsilon.$$

• $\gamma_1 = \gamma_0 - a_0$, $\gamma_2 = \gamma_0 - (a_0 + a_1)$, ...

- ||0|| = 0.
- $||a \cdot x|| = |a| \cdot ||x||$ $(a \in \mathbb{R}, a \neq 0).$
- $||x + y|| \le ||x|| + ||y||$.

A semi-norm is a **norm** whenever also

• $||x|| = 0 \implies x = 0.$

 \mathbf{SNVec}_{∞} denotes the category of semi-normed vector spaces and linear maps $f\colon X \to Y$,

- $[0,\infty]_{\times}$ -normed by $\|f\|=\sup_{x\in X} \frac{\|fx\|}{\|x\|}.$
- $[0,\infty]_+$ -normed by $\|f\|=\sup_{x\in X}\log^\circ\frac{\|fx\|}{\|x\|}.$
- $oxed{Theorem.}\ \mathbf{SNVec}_{\infty}$ is Cauchy-cocomplete.
- **Theorem.** \mathbf{NVec}_{∞} is Cauchy-cocomplete.

Theorem. A normed vector space (viewed as a one-object normed category) is Cauchy cocomplete if and only if it is a Banach space.

Remark. For a sequence $s = (a_n)_n$ in X:

• s is Cauchy iff, for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ so that, for all n > m > N.

$$\left\|\sum_{i=m}^n a_i\right\| \leq \varepsilon.$$

- $\gamma_1 = \gamma_0 a_0$, $\gamma_2 = \gamma_0 (a_0 + a_1)$, ...
- $(\gamma_n)_n$ is normed colimit of s iff $\gamma_0 = \sum_{i=1}^{\infty} a_i$.

Comparison with the quantale case

Example. A sequence $s = (x_n)$ in a \mathcal{V} -category X is forward Cauchy whenever

$$k \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq m \geq N} X(x_m, x_n).$$

An element $x \in X$ is a forward limit of s if

$$X(x,y) = \bigvee_{N \in \mathbb{N}} \bigwedge_{n > N} X(x_n, y),$$

for all $y \in X$, and X is (forward) complete whenever every forward Cauchy sequence converges.

Approach to Quantitative Domain Theory". In: Topology Atlas Preprint (23).

$$k \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq m \geq N} X(x_m, x_n).$$

An element $x \in X$ is a **forward limit** of s if

$$X(x,y) = \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x_n, y),$$

for all $y \in X$, and X is (forward) complete whenever every forward Cauchy sequence converges.

Remark. For a V-category X:

X complete $\iff i(X)$ Cauchy cocomplete.

$$k \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq m \geq N} X(x_m, x_n).$$

An element $x \in X$ is a forward limit of s if

$$X(x,y) = \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x_n, y),$$

for all $y \in X$, and X is (forward) complete whenever every forward Cauchy sequence converges.

Remark. For a V-category X:

X complete $\iff i(X)$ Cauchy cocomplete.

Remark. Via the normed functor

$$i(\mathcal{V}) \longrightarrow \mathbf{Set} \| \mathcal{V}, \quad v \longmapsto (\{\star\}, |\star| = v),$$
$$[(\star, u), (\star, v)] = \mathcal{V}(u, v),$$

 $i(\mathcal{V})$ is closed in $\mathbf{Set} \| \mathcal{V}$ under normed colimits.

$$k \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq m \geq N} X(x_m, x_n).$$

An element $x \in X$ is a forward limit of s if

$$X(x,y) = \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x_n, y),$$

for all $y \in X$, and X is (forward) complete whenever every forward Cauchy sequence converges.

Remark. For a V-category X:

X complete $\iff i(X)$ Cauchy cocomplete.

Remark. Via the normed functor

$$i(\mathcal{V}) \longrightarrow \mathbf{Set} \| \mathcal{V}, \quad \mathbf{v} \longmapsto (\{\star\}, |\star| = \mathbf{v}),$$
$$[(\star, \mathbf{u}), (\star, \mathbf{v})] = \mathcal{V}(\mathbf{u}, \mathbf{v}),$$

 $i(\mathcal{V})$ is closed in $\mathbf{Set} \| \mathcal{V}$ under normed colimits.

Theorem. For every quantale V, the V-normed category $\mathbf{Set} \| V$ is Cauchy cocomplete.

$$k \leq \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq m \geq N} X(x_m, x_n).$$

An element $x \in X$ is a forward limit of s if

$$X(x,y) = \bigvee_{N \in \mathbb{N}} \bigwedge_{n \geq N} X(x_n, y),$$

for all $y \in X$, and X is (forward) complete whenever every forward Cauchy sequence converges.

Remark. For a V-category X:

X complete $\iff i(X)$ Cauchy cocomplete.

Remark. Via the normed functor

$$i(\mathcal{V}) \longrightarrow \mathbf{Set} \| \mathcal{V}, \quad \mathbf{v} \longmapsto (\{\star\}, |\star| = \mathbf{v}),$$

$$[(\star, \mathbf{u}), (\star, \mathbf{v})] = \mathcal{V}(\mathbf{u}, \mathbf{v}),$$

 $i(\mathcal{V})$ is closed in $\mathbf{Set} || \mathcal{V}$ under normed colimits.

Theorem. For every quantale V, the V-normed category $\mathbf{Set} \| \mathcal{V}$ is Cauchy cocomplete.

Remark. Under certain conditions on V:

- Presheaf categories are Cauchy cocomplete.
- Normed colimits are weighted colimits.
- Cauchy cocompleteness is stable for internal homs, products, strict equifiers, ...

Definition. A V-category X is Lawvere complete if every adjunction $\varphi \dashv \psi$ is representable.

Quantale-enriched and ordinary categories

For $\varphi \colon E \to X$ and $\psi \colon X \to E$:

$$\varphi \dashv \psi \iff \begin{cases} k \leq \bigvee_{x} \psi(x) \otimes \varphi(x), \\ \varphi(y) \otimes \psi(x) \leq X(x, y). \end{cases}$$

Representable adjunction: $X(x, -) \dashv X(-, x)$.

Reminder:

- \mathcal{V} -distributor $\varphi \colon X \, {\ensuremath{\,\leftrightarrow\,}} \, Y = \varphi \colon X^{\mathrm{op}} \otimes Y \to \mathcal{V}.$
- Composite with $\psi: Y \Leftrightarrow Z$:

$$\psi \cdot \varphi(x, z) = \bigvee_{y \in X} \varphi(x, y) \otimes \psi(y, z).$$

Definition. A \mathcal{V} -category X is Lawvere complete if every adjunction $\varphi \dashv \psi$ is representable.

For $\varphi \colon E \to X$ and $\psi \colon X \to E$:

$$\varphi \dashv \psi \iff \begin{cases} k \leq \bigvee_{x} \psi(x) \otimes \varphi(x), \\ \varphi(y) \otimes \psi(x) \leq X(x, y). \end{cases}$$

Representable adjunction: $X(x, -) \dashv X(-, x)$.

Proposition. A left adjoint \mathcal{V} -distributor $\varphi \colon E \nrightarrow X$ (with right adjoint $\psi \colon X \nrightarrow E$) is representable if and only if there exist $a \in X$ and "elements" $k \leq \varphi(a)$ and $k \leq \psi(a)$.

Definition. A V-category X is Lawvere com**plete** if every adjunction $\varphi \dashv \psi$ is representable.

For $\varphi \colon E \to X$ and $\psi \colon X \to E$:

$$\varphi \dashv \psi \iff \begin{cases} k \leq \bigvee_{x} \psi(x) \otimes \varphi(x), \\ \varphi(y) \otimes \psi(x) \leq X(x, y). \end{cases}$$

Representable adjunction: $X(x, -) \dashv X(-, x)$.

Proposition. A left adjoint V-distributor $\varphi \colon E \to X$ (with right adjoint $\psi \colon X \to E$) is representable if and only if there exist $a \in X$ and "elements" $k \leq \varphi(a)$ and $k \leq \psi(a)$.

Remark. By the Yoneda lemma, $k \leq \varphi(a)$ and $k \leq \psi(a)$ imply $X(a, -) \leq \varphi$ and $X(-, a) \leq \psi$; with the Isbell adjunction.

 $X(a, -) = X(-, a)^{\vee} > \psi^{\vee} = \varphi.$

Reminder: Isbell conjugation adjunction:

$$[X,\mathcal{V}]^{\mathrm{op}}$$
 $\xrightarrow{(-)^{\vee}}$ $[X^{\mathrm{op}},\mathcal{V}]$

$$\varphi \colon E \xrightarrow{\Theta} X \text{ left adjoint } \Longrightarrow \varphi \dashv \varphi^{\vee}$$

$$\varphi \colon E \xrightarrow{\Theta} X \text{ left adjoint } \Longrightarrow \varphi \cong \varphi^{\vee}$$

For more information, see (for instance)

AVERY, TOM and LEINSTER, TOM (2021). "Isbell conjugacy and the reflexive completion". In: Theory and Applications of Categories 36.(12), pp. 306-347.

Definition. A V-category X is Lawvere complete if every adjunction $\varphi \dashv \psi$ is representable.

For $\varphi \colon E \to X$ and $\psi \colon X \to E$:

$$\varphi \dashv \psi \iff \begin{cases} k \leq \bigvee_{x} \psi(x) \otimes \varphi(x), \\ \varphi(y) \otimes \psi(x) \leq X(x, y). \end{cases}$$

Representable adjunction: $X(x, -) \dashv X(-, x)$.

Proposition. A left adjoint \mathcal{V} -distributor $\varphi \colon E \nrightarrow X$ (with right adjoint $\psi \colon X \nrightarrow E$) is representable if and only if there exist $a \in X$ and "elements" $k < \varphi(a)$ and $k < \psi(a)$.

Remark. By the Yoneda lemma, $k \leq \varphi(a)$ and $k \leq \psi(a)$ imply $X(a, -) \leq \varphi$ and $X(-, a) \leq \psi$; with the Isbell adjunction.

 $X(a, -) = X(-, a)^{\vee} > \psi^{\vee} = \varphi.$

For $\varphi \colon \mathbf{E} \nrightarrow \mathbf{A} \dashv \psi \colon \mathbf{A} \nrightarrow \mathbf{E}$ of Set-distributors:

$$\eta: 1 \longrightarrow \int_{-\infty}^{x} \psi(x) \times \varphi(x) = \sum_{x} \psi(x) \times \varphi(x) /_{\sim}.$$

In addition, $u \in \varphi(a)$ and $v \in \psi(a)$ give $\mathbf{A}(a,-) \to \varphi$, $\mathbf{A}(-,a) \to \psi$, and $\psi^{\vee} \to \mathbf{A}(a,-)$.

Reminder:

- Distributor $\varphi \colon \mathbf{X} \Leftrightarrow \mathbf{Y} = \varphi \colon \mathbf{X}^{\mathrm{op}} \times \mathbf{Y} \to \mathbf{Set}$.
- Composite with $\psi \colon \mathbf{Y} \to \mathbf{Z}$:

$$\psi \cdot \varphi(x, z) = \int_{-\infty}^{y \in Y} \varphi(x, y) \times \psi(y, z).$$

BORCEUX, FRANCIS (1994). Handbook of categorical algebra 1. Basic category theory. Vol. 50. Encyclopedia of Mathematics and its Applications. Cambridge University Press, pp. xvi + 345.

Definition. A V-category X is Lawvere com**plete** if every adjunction $\varphi \dashv \psi$ is representable.

For $\varphi \colon E \to X$ and $\psi \colon X \to E$:

$$\varphi \dashv \psi \iff \begin{cases} k \leq \bigvee_{x} \psi(x) \otimes \varphi(x), \\ \varphi(y) \otimes \psi(x) \leq X(x, y). \end{cases}$$

Representable adjunction: $X(x, -) \dashv X(-, x)$.

 $\varphi \colon E \to X$ (with right adjoint $\psi \colon X \to E$) is representable if and only if there exist $a \in X$ and "elements" $k \leq \varphi(a)$ and $k \leq \psi(a)$.

Remark. By the Yoneda lemma, $k \leq \varphi(a)$ and

Proposition. A left adjoint V-distributor

 $k \leq \psi(a)$ imply $X(a, -) \leq \varphi$ and $X(-, a) \leq \psi$; with the Isbell adjunction. $X(a, -) = X(-, a)^{\vee} > \psi^{\vee} = \varphi$

For $\varphi \colon \mathbf{E} \to \mathbf{A} \dashv \psi \colon \mathbf{A} \to \mathbf{E}$ of Set-distributors:

$$\eta: 1 \longrightarrow \int_{-\infty}^{x} \psi(x) \times \varphi(x) = \sum_{x} \psi(x) \times \varphi(x) /_{\sim}.$$

In addition, $u \in \varphi(a)$ and $v \in \psi(a)$ give $\mathbf{A}(a,-) \to \varphi$. $\mathbf{A}(-,a) \to \psi$. and $\psi^{\vee} \to \mathbf{A}(a,-)$.

Lemma. For natural transformations

$$\alpha \colon \mathbf{A}(\mathbf{a}, -) \longrightarrow \varphi \quad \text{and} \quad \beta \colon \varphi \longrightarrow \mathbf{A}(\mathbf{a}, -).$$

Then

 $\varphi \dashv \varphi^{\vee}$ with unit $\eta = [(v, u)] \iff \alpha\beta = 1_{\Phi}$.

Definition. A V-category X is Lawvere com**plete** if every adjunction $\varphi \dashv \psi$ is representable.

For $\varphi \colon E \to X$ and $\psi \colon X \to E$:

$$\varphi \dashv \psi \iff \begin{cases} k \leq \bigvee_{x} \psi(x) \otimes \varphi(x), \\ \varphi(y) \otimes \psi(x) \leq X(x, y). \end{cases}$$

Representable adjunction: $X(x, -) \dashv X(-, x)$.

 $\varphi \colon E \to X$ (with right adjoint $\psi \colon X \to E$) is representable if and only if there exist $a \in X$ and "elements" $k \leq \varphi(a)$ and $k \leq \psi(a)$.

Proposition. A left adjoint V-distributor

Remark. By the Yoneda lemma, $k \leq \varphi(a)$ and $k \leq \psi(a)$ imply $X(a, -) \leq \varphi$ and $X(-, a) \leq \psi$; with the Isbell adjunction, $X(a, -) = X(-, a)^{\vee} > \psi^{\vee} = \varphi.$

For $\varphi \colon \mathbf{E} \to \mathbf{A} \dashv \psi \colon \mathbf{A} \to \mathbf{E}$ of Set-distributors:

$$\eta: 1 \longrightarrow \int_{-\infty}^{x} \psi(x) \times \varphi(x) = \sum_{x} \psi(x) \times \varphi(x) /_{\sim}.$$

In addition, $u \in \varphi(a)$ and $v \in \psi(a)$ give $\mathbf{A}(a,-) \to \varphi, \ \mathbf{A}(-,a) \to \psi, \ \text{and} \ \psi^{\vee} \to \mathbf{A}(a,-).$

Lemma. For natural transformations

$$\alpha \colon \mathbf{A}(\mathbf{a}, -) \longrightarrow \varphi \quad \text{and} \quad \beta \colon \varphi \longrightarrow \mathbf{A}(\mathbf{a}, -).$$

Then $\varphi \dashv \varphi^{\vee}$ with unit $\eta = [(v, u)] \iff \alpha\beta = 1_{\Phi}$.

Theorem. $\varphi \colon \mathbf{E} \to \mathbf{A}$ is left adjoint if and only if φ is a split retract of a representable.

Theorem. A category A is Lawvere complete if and only if A is idempotent complete.

Lemma. Let $\varphi \colon \mathbb{E} \, {\ensuremath{\,\leftrightarrow\,}} \, \mathbb{A}$ in $\mathbf{Dist} /\!\!/ \mathcal{V}$ and

 $\mathrm{st}/\!\!/\mathcal{V}$ and

- $\alpha \colon \mathbb{A}(a,-) \longrightarrow \varphi$ and $\beta \colon \varphi \longrightarrow \mathbb{A}(a,-)$ be (ordinary) natural transformations, here
 - α corresponds to $u \in \varphi(a)$ and
- $\beta^{\vee} : \mathbf{A}(-, a) \to \varphi^{\vee}$ to $\mathbf{v} = \beta \in \varphi^{\vee}(a)$.

Then the following assertions are equivalent.

- (i) $\varphi \dashv \varphi^{\vee}$ in $\mathbf{Dist}/\!\!/\mathcal{V}$ with unit $\eta = [(v, u)]$ where $k \leq |u|$ and $k \leq |v|$.
- (ii) α, β are \mathcal{V} -normed & $\alpha\beta = 1_{\omega}$ in $\mathbf{Dist}/\!\!/\mathcal{V}$.

Reminder: Normed coends can be calculated "as in Set".

In particular, for $\varphi \colon \mathbb{E} \, \Leftrightarrow \mathbb{A} \dashv \psi \colon \mathbb{A} \, \Leftrightarrow \mathbb{E}$:

$$\uparrow$$
 final $\psi(x)\otimes arphi(x) \ |(u,v)| = |u|\otimes |v|$

 $1 \xrightarrow{\eta} \int_{-\infty}^{\infty} (\psi(x) \otimes \varphi(x)) \qquad \eta(\star) = [(v, u)], \ k \leq |[v, u]|$

Lemma. Let $\varphi \colon \mathbb{E} \twoheadrightarrow \mathbb{A}$ in $\mathbf{Dist} /\!\!/ \mathcal{V}$ and

$$\alpha \colon \mathbb{A}(\mathbf{a}, -) \longrightarrow \varphi \quad \text{and} \quad \beta \colon \varphi \longrightarrow \mathbb{A}(\mathbf{a}, -)$$

be (ordinary) natural transformations, here

- α corresponds to $\mathbf{u} \in \varphi(\mathbf{a})$ and
- $\beta^{\vee} : \mathbf{A}(-, \mathbf{a}) \to \varphi^{\vee}$ to $\mathbf{v} = \beta \in \varphi^{\vee}(\mathbf{a})$.

Then the following assertions are equivalent.

- (i) $\varphi \dashv \varphi^{\vee}$ in $\mathbf{Dist}/\!\!/\mathcal{V}$ with unit $\eta = [(v, u)]$ where $k \leq |u|$ and $k \leq |v|$.
- (ii) α, β are \mathcal{V} -normed & $\alpha\beta = 1_{\varphi}$ in $\mathbf{Dist}/\!\!/\mathcal{V}$.

Definition. A left adjoint \mathcal{V} -normed distributor $\varphi \colon \mathbb{E} \to \mathbb{A}$ has a presentable unit if (i).

Lemma. Let $\varphi \colon \mathbb{E} \, {\ensuremath{\, \oplus \,}} \, \mathbb{A}$ in $\operatorname{Dist} /\!\!/ \mathcal{V}$ and

• α corresponds to $u \in \varphi(a)$ and

 $\alpha \colon \mathbb{A}(a,-) \longrightarrow \varphi \quad \text{and} \quad \beta \colon \varphi \longrightarrow \mathbb{A}(a,-)$

- be (ordinary) natural transformations, here
 - $\beta^{\vee} : \mathbf{A}(-, \mathbf{a}) \to \varphi^{\vee}$ to $\mathbf{v} = \beta \in \varphi^{\vee}(\mathbf{a})$.

Then the following assertions are equivalent.

- (i) $\varphi \dashv \varphi^{\vee}$ in $\mathbf{Dist}/\!\!/ \mathcal{V}$ with unit $\eta = [(v, u)]$ where $k \leq |u|$ and $k \leq |v|$.
- (ii) α, β are \mathcal{V} -normed & $\alpha\beta = 1_{\varphi}$ in $\mathbf{Dist}/\!\!/\mathcal{V}$.

Definition. A left adjoint \mathcal{V} -normed distributor $\varphi \colon \mathbb{E} \, \xrightarrow{} \, \mathbb{A}$ has a presentable unit if (i).

Theorem. \mathbb{A} is Lawvere complete if and only if \mathbb{A}_{\circ} is idempotent complete and every left adjoint $\varphi \colon \mathbb{E} \, \Leftrightarrow \mathbb{A}$ has a presentable unit.

Lemma. Let $\varphi \colon \mathbb{E} \, {\ensuremath{\,\leftrightarrow\,}} \, \mathbb{A}$ in $\mathbf{Dist} /\!\!/ \mathcal{V}$ and

$$\alpha \colon \mathbb{A}(a,-) \longrightarrow \varphi$$
 and $\beta \colon \varphi \longrightarrow \mathbb{A}(a,-)$ be (ordinary) natural transformations, here

- α corresponds to $u \in \varphi(a)$ and
- $\beta^{\vee} : \mathbf{A}(-, a) \to \varphi^{\vee}$ to $\mathbf{v} = \beta \in \varphi^{\vee}(a)$.

Then the following assertions are equivalent.

- (i) $\varphi \dashv \varphi^{\vee}$ in $\mathbf{Dist}/\!\!/\mathcal{V}$ with unit $\eta = [(v, u)]$ where $k \leq |u|$ and $k \leq |v|$.
- (ii) α, β are $\mathcal V$ -normed & $\alpha\beta=1_{\varphi}$ in $\mathbf{Dist}/\!\!/\mathcal V$.

Definition. A left adjoint \mathcal{V} -normed distributor $\varphi \colon \mathbb{E} \to \mathbb{A}$ has a presentable unit if (i).

Theorem. \mathbb{A} is Lawvere complete if and only if \mathbb{A}_{\circ} is idempotent complete and every left adjoint $\varphi \colon \mathbb{E} \to \mathbb{A}$ has a presentable unit.

Example. For $\mathcal{V}=1$ and for $\mathcal{V}=2$, a \mathcal{V} -normed small category \mathbb{A} is Lawvere complete if and only if \mathbb{A}_{\circ} is idempotent complete.

Lemma. Let $\varphi \colon \mathbb{E} \, {\:
ightarrow} \, \mathbb{A}$ in $\mathbf{Dist} /\!\!/ \mathcal{V}$ and

 $\alpha \colon \mathbb{A}(a,-) \longrightarrow \varphi$ and $\beta \colon \varphi \longrightarrow \mathbb{A}(a,-)$ be (ordinary) natural transformations, here

- α corresponds to $u \in \varphi(a)$ and
- $\beta^{\vee} : \mathbf{A}(-, \mathbf{a}) \to \varphi^{\vee}$ to $\mathbf{v} = \beta \in \varphi^{\vee}(\mathbf{a})$.

Then the following assertions are equivalent. (i) $\varphi \dashv \varphi^{\vee}$ in **Dist**// \mathcal{V} with unit $\eta = [(v, u)]$

- where $k \leq |u|$ and $k \leq |v|$. (ii) α, β are \mathcal{V} -normed & $\alpha\beta = 1_{\varphi}$ in $\mathbf{Dist}/\!\!/\mathcal{V}$.
- **Definition.** A left adjoint V-normed distributor $\varphi \colon \mathbb{E} \to \mathbb{A}$ has a presentable unit if (i).

Theorem. A is Lawvere complete if and only if A_o is idempotent complete and every left adjoint $\varphi \colon \mathbb{E} \to A$ has a presentable unit.

Example. For $\mathcal{V}=1$ and for $\mathcal{V}=2$, a \mathcal{V} -normed small category \mathbb{A} is Lawvere complete if and only if \mathbb{A}_{\circ} is idempotent complete.

Example. Let X be a \mathcal{V} -category. Then X is Lawvere complete if and only if the \mathcal{V} -normed category i(X) is Lawvere complete.

Lemma. Let $\varphi \colon \mathbb{E} \, {\:
ightarrow} \, \mathbb{A}$ in $\mathbf{Dist} /\!\!/ \mathcal{V}$ and

 $\alpha \colon \mathbb{A}(a,-) \longrightarrow \varphi$ and $\beta \colon \varphi \longrightarrow \mathbb{A}(a,-)$ be (ordinary) natural transformations, here

- α corresponds to $u \in \varphi(a)$ and
- $\beta^{\vee} \colon \mathbf{A}(-, \mathbf{a}) \to \varphi^{\vee}$ to $\mathbf{v} = \beta \in \varphi^{\vee}(\mathbf{a})$.

Then the following assertions are equivalent.

- (i) $\varphi \dashv \varphi^{\vee}$ in **Dist**// \mathcal{V} with unit $\eta = [(v, u)]$ where $k \leq |u|$ and $k \leq |v|$.
- (ii) α, β are $\mathcal V$ -normed & $\alpha\beta=1_{\varphi}$ in $\mathbf{Dist}/\!\!/\mathcal V$.

Definition. A left adjoint V-normed distributor $\varphi \colon \mathbb{E} \to \mathbb{A}$ has a presentable unit if (i).

Theorem. \mathbb{A} is Lawvere complete if and only if \mathbb{A}_{\circ} is idempotent complete and every left adjoint $\varphi \colon \mathbb{E} \to \mathbb{A}$ has a presentable unit.

Example. For $\mathcal{V}=1$ and for $\mathcal{V}=2$, a \mathcal{V} -normed small category \mathbb{A} is Lawvere complete if and only if \mathbb{A}_{\circ} is idempotent complete.

Example. Let X be a \mathcal{V} -category. Then X is Lawvere complete if and only if the \mathcal{V} -normed category i(X) is Lawvere complete.

Remark. $\mathbb X$ Cauchy cocomplete $\implies \mathbb X_\circ$ idempotent complete.

Acknowledgement

Partially supported by the Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT – Fundação para a Ciência e a Tecnologia) Multi-Annual Financing Program for R&D Units.

