Towards a FoonDation for General Systems Theory

Towards a louble operation throng of systems

Sophie Libkind

Loose Binsdulus
and Heir construction
Juson Brown
Levin Carlson
Sophic Robkind

Strict Discrete Opfibration Classifier for 2-algebraic structures una Mattro Capacci

Pable functored representation of Indeped Monoida Structures Sosé Signeira

General Systems Theory

- · A system is a complex structure formed by interacting component systems
- · Tausks of General Systems Theory:
 - 1 The design of complex systems
 - 1 The analysis of system behavior
 - 3 The specification of desirable system behavior and the analysis of its Satisfaction
 - ... all with a focus on compositionality.

- Compositionality

 A system is a complex structure formed by interacting component systems
 - · Focus on the compositionality of our tasks
 - O Modular Design through interacting components
 - 2) Analysis of Composite behavior in terms of component behavior
 - 3 Assume-Guarantee reasoning about the satisfaction of component specs, assuming that the guarantees provided by other interacting components are met.

Examples of Systems Theories

- O Systems of Ordinary Differhid Eggs
- o Machiner & Automata
- o Markou decision processes
- o System "diagrams"
 - o Circuit Olugrans

 - O Stock of low divergences
 O Flow Charts / Trusistion Systems
- o Petri Wets
- · Hamiltonius / Lagrangians
- · Portial DiEfential Eggs

Jan Willers Behavioral Control Thing

- · Systems are defined as the verying sets of behaviors.
 - O Systems compose by Shaving vanishes o "Zooming, Tearing, Linking"...

Double Operadic Systems Theory
Takeaways: any kind of system!
D Systems and their maps organize into algebras for CAT-operals (weber)
double greads of interactions,
2 Behaviors of systems are often representable
Behaviors of systems are often representable giving (law) morphism Sys(c,+) Span(Set) Willems' behavioral' Systems through
Systems thong
(3) Families of representables indexed by categories of "clocks" e land in Sheaves on clocks. Sys Span (Sh(e, i))
land in Sheaves on clocks. Sys(c-,+)
Sys Span (Sh(e, i))
The internal logic of these shewer support modulities, giving a "temporal" logic for specifications of these systems.
giving a "temporal" logic for specifications of these systems.

Analogy with Mathematical Logic

Category Theory	Model Theory	Systems Theory
Strature-presenting	element	behavior
Genetical	model	System
Christian Category	theory	theory of systems
1 2-category	Doctrine	Doctrine

Logical Doctrines Theory Model Both 2-algebraic (Alg(t) for a 2-monard T), but o Theory is of K2-type o Model might not be

Coherent -> Ultracat

Zex -> RFP

Doctrines of Systems Theories

· Composition of systems is via interactions

- interactions must be specified as part of the Systems theory

Systems Theory -> 2-Algebia of Systems, interacting Interaction Theory ______ 2-Algebra for Interactions

Why is 2-algebra important? O Suppose K is a 2-cat w/ pullbacks of discrete ophbrahlous and a discrete ophbrahlous classifier IZEK Thm (Capucci-M.): For any 2-monal T: K-K, cartesian along and preserving Discrete opfibrations, then the classifying map and it classifies strict discrete ophirations in Alguar(T).

O IF K = [GP, Cut] Hun I2(g) = [GJg]^P, Set] is an algoria of generalized Spans [Mesiti

=> representable feutures of systems compose as generalized spours!

Symmetric Monoidel Loose Right Modules Double categories are pseudo-categories in Cat

Do Do

Symmetric Monoided Loose Right Modules o Double categories are pseudo-categories in Cat

S	ymmetric Monoidel Lioose Right Modules
	o Double categories are pseudo-categories in Cat
	a Loose right modules are right pseudo-modules
	Quick "double barrel" definition: £0 +> 13
	Quick "double barrel" definition: £0 +> 13 lMog Dbl l Loose "walking loose arrow"
	* > Db
	lMod, is a cartesian 2-category.
ſ	Def: A symmetric monoidal loose right module is a symmetric pseudo-monoid in RMady

Constructing Loose Right Modeles
O Lloose ~ -: Obl x >> Obl & Loose gives
loose hon binodules.
Thin (Brawn - Carlson-Libkins - M.):
Restriction of loose bimodulus gives a cortesian pseul-Renche
Niche × > Dol I Loose
Cor: Restriction of Symmetric monoidal loose right modules along lax symmetric monoidal louble functors whose unitors and laxifors are commute transformations is Still symmetric monoidal
CURITARS Sine Committee transformations 13 Still Symmetric Mondida
$\mathcal{E}.g.$
11 res. j
$\mathbb{D} \xrightarrow{\mathcal{D}} \mathbb{D}$

Note: Every catarium category has a simple fibration

Censes in the simple fibration of a free catesian cat are

Directed wiring diagrams

So we revowed the Schult: Spirak-Vari larkopoulou celgebrs

Specifications & Graphical Regular Logic (Chingman, Fong - Spruk) Specifications compose by sharing variables, like the behaviors of systems Thm (Giquenen): A regular hyperdoctrine Ctx Pros corresponds to a lax monoidal darble frater Spen (Etx) Pres. (EtcPos)
whose unitors + laxitors are companion commuter (equiv. to Frobenius) If $Ctx = (Fin LT)^{on}$: free lex on a set of "types" T, Hen $O(Fin LT)^{op}$ Cospen (Fin LT) = "Graphical

Pred'

Coyic"

Děkuji