Bicolimit Presentations of Type Theories

Vít Jelínek (jww John Bourke)

CT 2025, Brno

Functorial semantics of Dependent Type Theory (DTT)

Functorial semantics of Dependent Type Theory (DTT) Type theories = small categories with some structure Models of \mathcal{T} ... functors out of \mathcal{T} preserving the structure

Functorial semantics of Dependent Type Theory (DTT) Type theories = small categories with some structure Models of \mathcal{T} ...functors out of \mathcal{T} preserving the structure

Pros = quite simple definition, functors have many nice properties Cons = it is quite hard to present concrete examples of theories

Functorial semantics of Dependent Type Theory (DTT) Type theories = small categories with some structure Models of \mathcal{T} ... functors out of \mathcal{T} preserving the structure

Pros = quite simple definition, functors have many nice properties Cons = it is quite hard to present concrete examples of theories

We take inspiration from universal algebra – to *present* an algebra, we can give its *presentation* (generators + relations). Categorically – colimit of free algebras.

Functorial semantics of Dependent Type Theory (DTT) Type theories = small categories with some structure Models of \mathcal{T} ...functors out of \mathcal{T} preserving the structure

Pros = quite simple definition, functors have many nice propertiesCons = it is quite hard to present concrete examples of theories

We take inspiration from universal algebra – to *present* an algebra, we can give its *presentation* (generators + relations). Categorically – colimit of free algebras.

Goal of this talk:

Show that we can construct examples of type theories via bicolimits of free type theories + explain how this interacts with semantics

Table of Contents

Semantics of DTT

2 A General Definition of Type Theory

3 Bicolimit Presentations of Type Theories

Table of Contents

Semantics of DTT

2 A General Definition of Type Theory

3 Bicolimit Presentations of Type Theories

What needs to be captured?

Types (living in a context)

What needs to be captured?

Types (living in a context)

Terms (living in a context and a type)

What needs to be captured?

Types (living in a context)

Terms (living in a context and a type)

Contexts (can be extended)

Natural Models of DTT

Definition (Representable Natural Transformation) [Algebraic geometers]

Let F, G be presheaves over a category C. Then a natural transformation $\alpha \colon F \to G$ is called *representable* if, for every $\beta \colon \sharp c \to G$, the pullback

is a representable presheaf.

Natural Models of DTT

Definition (Representable Natural Transformation) [Algebraic geometers]

Let F, G be presheaves over a category C. Then a natural transformation $\alpha \colon F \to G$ is called *representable* if, for every $\beta \colon \sharp c \to G$, the pullback

$$\begin{array}{ccc}
\bullet & \longrightarrow & F \\
\downarrow & & \downarrow \alpha \\
\sharp c & \stackrel{\beta}{\longrightarrow} & G
\end{array}$$

is a representable presheaf.

Definition (Natural Model) [Awodey/Fiore]

A natural model in a category $\mathcal C$ with a terminal object is a representable natural transformation $p\colon Tm\to Ty$.

The same as CwA, CwF.

Definition (Natural Model) [Awodey/Fiore]

A *natural model* in a category C with a terminal object is a representable natural transformation $p \colon Tm \to Ty$.

Definition (Natural Model) [Awodey/Fiore]

A *natural model* in a category $\mathcal C$ with a terminal object is a representable natural transformation $p \colon Tm \to Ty$.

 $\mathcal{C}...$ category of contexts and substitutions terminal object... the empty context

Definition (Natural Model) [Awodey/Fiore]

A *natural model* in a category C with a terminal object is a representable natural transformation $p \colon Tm \to Ty$.

 $\mathcal{C}\dots$ category of contexts and substitutions terminal object. . . the empty context

 $Ty(\Gamma)$... well-formed types in the context Γ $Tm(\Gamma)$... well-formed terms in the context Γ p performs typing

Definition (Natural Model) [Awodey/Fiore]

A *natural model* in a category C with a terminal object is a representable natural transformation $p \colon Tm \to Ty$.

 $\mathcal{C}\dots$ category of contexts and substitutions terminal object...the empty context

 $Ty(\Gamma)$... well-formed types in the context Γ $Tm(\Gamma)$... well-formed terms in the context Γ p performs typing

the object representing the pullback of $A: \&\Gamma \to Ty$ along p is seen as the context extension $\Gamma.A$

Unit Types

A type theory has unit types if we have symbols $1, \star$ together with the following rules:

$$\frac{}{\Gamma\vdash 1 \ Ty} \ ^{1\text{-form}}$$

$$\frac{}{\Gamma\vdash t:1} \ ^{1-\text{intro}}$$

$$\frac{}{\Gamma\vdash t:1} \ ^{1-\eta}$$

Unit Types

A type theory has unit types if we have symbols $1, \star$ together with the following rules:

$$\frac{}{\Gamma \vdash 1 \ Ty} \ ^{1\text{-form}}$$

$$\frac{}{\Gamma \vdash t : 1} \ ^{1\text{-intro}}$$

$$\frac{}{\Gamma \vdash t : 1} \ ^{1-\eta}$$

Definition (Natural Models with Unit Types) [Folklore?]

A natural model with unit types is a natural model $p \colon Tm \to Ty \in \mathbf{Set}^{\mathcal{C}^{op}}$ together with maps $1 \xrightarrow{1} Ty, 1 \xrightarrow{\star} Tm$ such that the following square is a pullback:

$$\begin{array}{ccc}
1 & \xrightarrow{\star} & Tm \\
id \downarrow & & \downarrow p \\
1 & \xrightarrow{1} & Ty.
\end{array}$$

Other Versions of DTT?

What about other constructors? $(0, \Pi, \Sigma, \mathbb{N}, \ldots)$

Other Versions of DTT?

What about other constructors? $(0, \Pi, \Sigma, \mathbb{N}, \ldots)$

Can we have a parametric definition of semantics?

Other Versions of DTT?

What about other constructors? $(0, \Pi, \Sigma, \mathbb{N}, \ldots)$

Can we have a parametric definition of semantics?

First we need a definition of type theory!

Table of Contents

Semantics of DTT

2 A General Definition of Type Theory

3 Bicolimit Presentations of Type Theories

Categories with Representable Maps

Definition (Category with Representable maps) [Uemura]

A category with representable maps (CwR) is a category $\mathcal C$ with finite limits and a class of representable maps $R\subseteq\mathcal C^{\to}$ that

- is closed under compositions and contains every isomorphism;
- is pullback-stable;
- are exponentiable.

Maps in R will be denoted by \rightarrow .

Categories with Representable Maps

Definition (Category with Representable maps) [Uemura]

A category with representable maps (CwR) is a category $\mathcal C$ with finite limits and a class of representable maps $R\subseteq\mathcal C^{\to}$ that

- is closed under compositions and contains every isomorphism;
- is pullback-stable;
- are exponentiable.

Maps in R will be denoted by \rightarrow .

small CwRs = type theories

Categories with Representable Maps

Definition (Category with Representable maps) [Uemura]

A category with representable maps (CwR) is a category $\mathcal C$ with finite limits and a class of representable maps $R\subseteq\mathcal C^{\to}$ that

- is closed under compositions and contains every isomorphism;
- is pullback-stable;
- are exponentiable.

Maps in R will be denoted by \rightarrow .

small CwRs = type theories

Main example: $\mathbf{Set}^{\mathcal{C}^{op}}$ with representable natural transformations.

Let $\mathcal C$ be a CwR, then...

Let C be a CwR, then...

• its objects represent judgement forms (*Ty*, *Tm*,...);

Let C be a CwR, then...

- its objects represent judgement forms (*Ty*, *Tm*,...);
- arrows are derivations;

Let C be a CwR, then...

- its objects represent judgement forms (*Ty*, *Tm*,...);
- arrows are derivations;
- limits are used to create more complicated judgements ($\Gamma \vdash J_1 \Gamma \vdash J_2$, empty judgement, . . .);

Let \mathcal{C} be a CwR, then...

- its objects represent judgement forms (*Ty*, *Tm*, ...);
- arrows are derivations;
- limits are used to create more complicated judgements ($\Gamma \vdash J_1 \Gamma \vdash J_2$, empty judgement, ...);
- representable arrows are used to describe judgements that can appear in contexts and exponentials along those are used to bind variables (moving the judgements in contexts).

Definition (Model of a CwR) [Uemura]

A model of a CwR $\mathcal T$ consists of a category $\mathcal C$ with a terminal object and a CwR functor $M\colon \mathcal T\to \mathbf{Set}^{\mathcal C^{op}}$.

Definition (Model of a CwR) [Uemura]

A model of a CwR \mathcal{T} consists of a category \mathcal{C} with a terminal object and a CwR functor $M \colon \mathcal{T} \to \mathbf{Set}^{\mathcal{C}^{op}}$.

'Examples'

• Let NM be the CwR that is freely generated by $Tm \rightarrow Ty$. Then models of NM are natural models.

Definition (Model of a CwR) [Uemura]

A model of a CwR \mathcal{T} consists of a category \mathcal{C} with a terminal object and a CwR functor $M \colon \mathcal{T} \to \mathbf{Set}^{\mathcal{C}^{op}}$.

'Examples'

- Let NM be the CwR that is freely generated by $Tm \rightarrow Ty$. Then models of NM are natural models.
- Let $NM_{1,\star,\eta}$ be the CwR freely generated by

$$\begin{array}{ccc} 1 & \xrightarrow{\hspace{1em} \star} & Tm \\ \downarrow^{id} \downarrow & & \downarrow^{p} \\ 1 & \xrightarrow{\hspace{1em} 1} & Ty. \end{array}$$

Then its models are natural models with unit types.

Definition (Model of a CwR) [Uemura]

A model of a CwR \mathcal{T} consists of a category \mathcal{C} with a terminal object and a CwR functor $M \colon \mathcal{T} \to \mathbf{Set}^{\mathcal{C}^{op}}$.

'Examples'

- Let NM be the CwR that is freely generated by $Tm \rightarrow Ty$. Then models of NM are natural models.
- Let $NM_{1,\star,\eta}$ be the CwR freely generated by

$$\begin{array}{ccc} 1 & \xrightarrow{\hspace{1em} \star} & Tm \\ \downarrow^{id} \downarrow & & \downarrow^{p} \\ 1 & \xrightarrow{\hspace{1em} 1} & Ty. \end{array}$$

Then its models are natural models with unit types.

What does it mean to freely generate? Is it always possible?

Table of Contents

Semantics of DTT

2 A General Definition of Type Theory

3 Bicolimit Presentations of Type Theories

Definition (**Rep**) [Uemura]

We denote **Rep** the 2-category that has

- 0-cells...small CwRs;
- 1-cells... functors preserving all the CwR structure;
- 2-cells...natural transformations such that naturality square at a representable arrow is a pullback.

Definition (**Rep**) [Uemura]

We denote **Rep** the 2-category that has

- 0-cells...small CwRs;
- 1-cells...functors preserving all the CwR structure;
- 2-cells... natural transformations such that naturality square at a representable arrow is a pullback.

Theorem (Rep is nice) [Bourke & J.]

Rep is an accessible 2-category with flexible limits.

Definition (**Rep**) [Uemura]

We denote **Rep** the 2-category that has

- 0-cells...small CwRs;
- 1-cells...functors preserving all the CwR structure;
- 2-cells...natural transformations such that naturality square at a representable arrow is a pullback.

Theorem (Rep is nice) [Bourke & J.]

Rep is an accessible 2-category with flexible limits.

Corollary (Rep is nicer) [Bourke, Lack, Vokřínek]

Rep has all bicolimits.

Definition (**Rep**) [Uemura]

We denote **Rep** the 2-category that has

- 0-cells...small CwRs;
- 1-cells...functors preserving all the CwR structure;
- 2-cells... natural transformations such that naturality square at a representable arrow is a pullback.

Theorem (Rep is nice) [Bourke & J.]

Rep is an accessible 2-category with flexible limits.

Corollary (Rep is nicer) [Bourke, Lack, Vokřínek]

Rep has all bicolimits.

Type theories can be glued!

Generators

Definition (Marked Category with Squares) [Bourke & J.]

A marked category with squares is a category \mathcal{C} equipped with a class of arrows $M \subseteq \mathcal{C}^{\rightarrow}$ and a class of commutative squares $S \subseteq Sq(\mathcal{C})$ such that any square whose domain and codomain are isos is in S, and both arrows and squares are closed under composition.

Generators

Definition (Marked Category with Squares) [Bourke & J.]

A marked category with squares is a category \mathcal{C} equipped with a class of arrows $M \subseteq \mathcal{C}^{\rightarrow}$ and a class of commutative squares $S \subseteq Sq(\mathcal{C})$ such that any square whose domain and codomain are isos is in S, and both arrows and squares are closed under composition.

Definition (Cat_m) [Bourke & J.]

We denote Cat_m the 2-category that has

- 0-cells...small marked categories with squares;
- 1-cells...functors preserving all the marking;
- 2-cells...natural transformations such that naturality square at a marked arrow is marked.

Generators

Definition (Marked Category with Squares) [Bourke & J.]

A marked category with squares is a category \mathcal{C} equipped with a class of arrows $M \subseteq \mathcal{C}^{\rightarrow}$ and a class of commutative squares $S \subseteq Sq(\mathcal{C})$ such that any square whose domain and codomain are isos is in S, and both arrows and squares are closed under composition.

Definition (Cat_m) [Bourke & J.]

We denote Cat_m the 2-category that has

- 0-cells...small marked categories with squares;
- 1-cells...functors preserving all the marking;
- 2-cells...natural transformations such that naturality square at a marked arrow is marked.

Theorem (Cat_m is nice) [Bourke & J.]

 \mathbf{Cat}_m is an accessible 2-category with all 2-limits and 2-colimits.

Free Generation

We have a forgetful 2-functor $U \colon \mathbf{Rep} \to \mathbf{Cat}_m$ sending \mathcal{T} to \mathcal{T} with representable maps and pullback squares.

Free Generation

We have a forgetful 2-functor $U \colon \mathbf{Rep} \to \mathbf{Cat}_m$ sending \mathcal{T} to \mathcal{T} with representable maps and pullback squares.

Theorem (U is nice) [Bourke & J.]

U preserves directed colimits and flexible limits.

Corollary (U is nicer) [Bourke, Lack, Vokřínek]

U has a left biadjoint $F: \mathbf{Cat}_m \to \mathbf{Rep}$.

Categories of Models

Definition (Category of Models of a CwR)

Let \mathcal{T} be a CwR, its category of models $Mod(\mathcal{T})$ has models of \mathcal{T} as objects and a morphism from $M\colon \mathcal{T}\to \mathbf{Set}^{\mathcal{C}^{op}}$ to $N\colon \mathcal{T}\to \mathbf{Set}^{\mathcal{D}^{op}}$ is a terminal object preserving functor $F\colon \mathcal{C}\to \mathcal{D}$ together with a natural transformation α

satisfying some form of the Beck-Chevalley condition.

Categories of Models

Definition (Category of Models of a CwR)

Let \mathcal{T} be a CwR, its category of models $Mod(\mathcal{T})$ has models of \mathcal{T} as objects and a morphism from $M\colon \mathcal{T}\to \mathbf{Set}^{\mathcal{C}^{op}}$ to $N\colon \mathcal{T}\to \mathbf{Set}^{\mathcal{D}^{op}}$ is a terminal object preserving functor $F\colon \mathcal{C}\to \mathcal{D}$ together with a natural transformation α

satisfying some form of the Beck-Chevalley condition.

We have a functor $Mod(\mathcal{T}) \to \mathbf{CatT}$ (\mathbf{CatT} are categories with a terminal object) sending (M, \mathcal{C}) to \mathcal{C} and (α, F) to F.

We have a 2-functor $Mod: \mathbf{Rep}^{op} \to \mathbf{CAT}/\mathbf{CatT}$ that sends a type theory to its category of models.

We have a 2-functor $Mod \colon \mathbf{Rep}^{op} \to \mathbf{CAT}/\mathbf{CatT}$ that sends a type theory to its category of models.

Theorem [Uemura]

Mod preserves all (2, 1)-bilimits.

We have a 2-functor $Mod \colon \mathbf{Rep}^{op} \to \mathbf{CAT}/\mathbf{CatT}$ that sends a type theory to its category of models.

Theorem [Uemura]

Mod preserves all (2, 1)-bilimits.

We have also models of marked categories with squares:

Definition (Model of a Marked Category with Squares)

A model of $\mathcal{C} \in \mathbf{Cat}_m$ in a category \mathcal{D} with a terminal object is a \mathbf{CAT}_m functor $\mathcal{C} \to \mathbf{Set}^{\mathcal{D}^{op}}$ (where marked arrows are the representable natural transformations and squares are pullback squares).

We have a 2-functor $Mod \colon \mathbf{Rep}^{op} \to \mathbf{CAT}/\mathbf{CatT}$ that sends a type theory to its category of models.

Theorem [Uemura]

Mod preserves all (2, 1)-bilimits.

We have also models of marked categories with squares:

Definition (Model of a Marked Category with Squares)

A model of $\mathcal{C} \in \mathbf{Cat}_m$ in a category \mathcal{D} with a terminal object is a \mathbf{CAT}_m functor $\mathcal{C} \to \mathbf{Set}^{\mathcal{D}^{op}}$ (where marked arrows are the representable natural transformations and squares are pullback squares).

Theorem [Bourke & J.]

For every $C \in \mathbf{Cat}_m$, we have $Mod(FC) \simeq Mod(C)$.

Examples of Type Theories I

• Set $NM := F(Tm \xrightarrow{p} Ty)$, then Mod(NM) is equivalent to natural models.

Examples of Type Theories I

- Set $NM := F(Tm \xrightarrow{p} Ty)$, then Mod(NM) is equivalent to natural models.
- Models of the following bipushout in Rep

$$F(a \ b \xrightarrow{\alpha} c) \xrightarrow{(a \mapsto 1, \alpha \mapsto p)} NM$$

$$\downarrow \qquad \qquad \downarrow$$

$$F(a \to b \to c) \xrightarrow{\Gamma} NM_{1,\star}$$

are natural models with two maps $\star\colon 1\to Tm$ and $\mathbb{1}\colon 1\to Ty$ such that $p\star=\mathbb{1}.$

Examples of Type Theories II

• Let $C \in \mathbf{Cat}_m$ be the free commutative square and D the free marked commutative square. Then models of the following bipushout in **Rep**

where f is the map choosing the square $\begin{pmatrix} 1 & \stackrel{\frown}{\longrightarrow} & Tm \\ \downarrow_{id} & & \downarrow_p \end{pmatrix}$, are natural $1 & \stackrel{1}{\longrightarrow} & Ty$

models with unit types.

Work in Progress/Wishes

- The forgetful 2-functor $U \colon \mathbf{Rep} \to \mathbf{Cat}_m$ is pseudomonadic and the induced pseudomonad is colax-idempotent.
- Mod: Rep^{op} → CAT/CatT preserves all bilimits.

Work in Progress/Wishes

- The forgetful 2-functor $U \colon \mathbf{Rep} \to \mathbf{Cat}_m$ is pseudomonadic and the induced pseudomonad is colax-idempotent.
- Mod: Rep^{op} → CAT/CatT preserves all bilimits.

Thank you for your attention!