Representables in fuzzy category theory

Emīls Kalugins

Category Theory 2025 Brno, Czechia, July 17

GL-monoid

Definition

A GL-monoid is a complete lattice enriched a further binary operation *, i.e., a triple $(L, \leq, *)$ such that:

- 1. * is monotone, i.e., $\alpha \leq \beta$ implies $\alpha * \gamma \leq \beta * \gamma \ \forall \alpha, \beta, \gamma \in L$;
- 2. * is commutative, i.e., $\alpha * \beta = \beta * \alpha \forall \alpha, \beta \in L$;
- 3. * is associative, i.e., $\alpha * (\beta * \gamma) = (\alpha * \beta) * \gamma \forall \alpha, \beta, \gamma \in L;$
- 4. $(L, \leq, *)$ is integral, i.e., 1_L acts as the unity: $\alpha * 1_L = \alpha \ \forall \alpha \in L;$
- 5. 0_L acts as the zero element in $(L, \leq, *)$, i.e. $\alpha * 0_L = 0_L \ \forall \alpha \in L;$
- 6. * is distribute over arbitrary joins, i.e., $a*\left(\bigvee_{j}\beta_{j}\right)=\bigvee_{j}(a*\beta_{j})\;\forall\alpha\in L,\forall\{\beta_{j}\mid j\in J\}\subseteq L;$
- 7. $(L, \leq, *)$ is divisble, i.e., $\alpha \leq \beta$ implies the existence of $\gamma \in L$ such that $\alpha = \beta * \gamma$.

L-fuzzy category

Definition

An L-fuzzy category is a quintuple $\mathcal{C} = (\mathcal{O}b(\mathcal{C}), \omega, \mathcal{M}(\mathcal{C}), \mu, \circ)$ where $(\mathcal{O}b(\mathcal{C}), \mathcal{M}(\mathcal{C}), \circ)$ is a classical category and $\omega \colon \mathcal{O}b(\mathcal{C}) \to L$, $\mu \colon \mathcal{M}(\mathcal{C}) \to L$. Additionally ω and μ satisfy the following conditions:

- 1. if $f: X \to Y$, then $\mu(f) \le \omega(X) \wedge \omega(Y)$;
- 2. $\mu(g \circ f) \ge \mu(g) * \mu(f)$ whenever $g \circ f$ is defined;
- 3. if $id_X : X \to X$ is the identity morphism, then $\mu(id_X) = \omega(X)$.

Crisp categories from fuzzy categories

Let $\mathcal{O}b_{\alpha}(\mathcal{C}) = \{X \in \mathcal{O}b(\mathcal{C}) \mid \omega(X) \geq \alpha\}$ be the set of α -objects and $\mathcal{M}_{\alpha}(\mathcal{C}) = \{f \in \mathcal{M}(\mathcal{C}) \mid \mu(f) \geq \alpha\}$ the set of α -morphisms.

Given an L-fuzzy category $\mathcal{C} = (\mathcal{O}b(\mathcal{C}), \omega, \mathcal{M}(\mathcal{C}), \mu, \circ)$ one can obtain a crisp category, called a threshold category, by taking any idempotent element ι of L and setting $C_{\iota} = (\mathcal{O}b_{\iota}(\mathcal{C}), \mathcal{M}_{\iota}(\mathcal{C}), \circ)$.

In the case when $\iota = \bot = 0_L$ we get the crisp category $C_{\bot} = (\mathcal{O}b(\mathcal{C}), \mathcal{M}(\mathcal{C}), \circ)$ which is called the (crisp) bottom frame of \mathcal{C} .

In the case when $\iota = \top = 1_L$ we get the crisp category $C_{\top} = (\mathcal{O}b(\mathcal{C}), \mathcal{M}(\mathcal{C}), \circ)$ which is called the (crisp) top frame of \mathcal{C} .

Fuzzy category FL – Set

Objects of the fuzzy category FL – Set are L-sets, i. e. pairs $\mathcal{X} = (X, A)$, where X is a crisp set and $A \colon X \to L$ is its fuzzy subset. There is a morphism $f \in \mathcal{M}(\mathcal{X}, \mathcal{Y})$ between \mathcal{X} and \mathcal{Y} , where $\mathcal{Y} = (Y, B)$, if and only if the map $f \colon X \to Y$ satisfies $B \circ f \geq A$. The membership degrees are defined as:

$$\omega(\mathcal{X}) = \bigwedge_{x \in X} A(x),$$
$$\mu(f) = \omega(\mathcal{X}) \wedge \omega(\mathcal{Y}).$$

The top frame of this category is **Set**, but the bottom frame is $L - \mathbf{Set}$.

Functors

Definition

Let $\mathcal{C} = (\mathcal{O}b(\mathcal{C}), \omega_{\mathcal{C}}, \mathcal{M}(\mathcal{C}), \mu_{\mathcal{C}}, \circ)$ and $\mathcal{D} = (\mathcal{O}b(\mathcal{D}), \omega_{\mathcal{D}}, \mathcal{M}(\mathcal{D}), \mu_{\mathcal{D}}, \circ)$ be L-fuzzy categories and let $F_1 \colon \mathcal{O}b(\mathcal{C}) \to \mathcal{O}b(\mathcal{D})$ and $F_2 \colon \mathcal{M}(\mathcal{C}) \to \mathcal{M}(\mathcal{D})$ be maps. The quadruple $F = (\mathcal{C}, \mathcal{D}, F_1, F_2)$ is a called a δ -functor from \mathcal{C} to \mathcal{D} $(F \colon \mathcal{C} \to \mathcal{D})$ provided the following properties are satisfied:

- 1. $f \in \mathcal{M}_{\mathcal{C}}(X,Y)$ implies $F_2(f) \in \mathcal{M}_{\mathcal{D}}(F_1(X),F_2(X))$;
- 2. F preserves identities, i.e, $F_2(\mathrm{id}_X) = \mathrm{id}_{F_1(X)}$ for any $X \in \mathcal{O}b(\mathcal{C})$;
- 3. F_2 preserves composition, i.e. $F_2(g \circ f) = F_2(g) \circ F_2(f)$ provided the composition $g \circ f$ is defined;
- 4. $\mu_{\mathcal{C}}(f) * \delta \leq \mu_{\mathcal{D}}(F_2(f))$ for any $f \in \mathcal{M}(\mathcal{C})$.

L-set category

Theorem [A. Pultr, 1976]

Let $Q = (L, \leq, *, 1_L)$ be a quantale, where * is a t-norm, then the structure $(L - \mathbf{Set}, \otimes, (\{\star\}, 1))$ is a symmetric monoidal closed category, where \otimes is Cartesian product, that is matched with the t-norm *.

Representable V-enriched functors

Representable V-enriched functor

Let \mathcal{C} be a \mathcal{V} -category, where \mathcal{V} is a symmetrical monoidal closed category. A \mathcal{V} -enriched functor $F: \mathcal{C} \to \mathcal{V}$ is called representable if there is a $K \in \mathcal{O}b(\mathcal{C})$ and a \mathcal{V} -enriched natural transformation $\eta: F \Longrightarrow \mathcal{C}(K, -)$.

Functors in threshold categories

Proposition

If $F: \mathcal{C} \to \mathcal{D}$ is a δ -functor and δ is an idempotent element, then the restriction of F to the threshold categories $F_{\delta}: \mathcal{C}_{\delta} \to \mathcal{D}_{\delta}$ is a crisp functor between the corresponding categories.

Proposition

A functor $F: \mathcal{C} \to \mathcal{D}$ is a 0-functor if and only if the restriction of F to the bottom frame categories $F_{\perp}: \mathcal{C}_{\perp} \to \mathcal{D}_{\perp}$ is a crisp functor between the corresponding categories.

Fuzzy functor representation

Suppose $C = (\mathcal{O}b(\mathcal{C}), \omega, \mathcal{M}(\mathcal{C}), \mu, \circ)$ is a fuzzy category and $F \colon \mathcal{C} \to \mathbf{FL}\text{-Set}$ is an α -functor and there is an α -object $K \in \mathcal{O}b(\mathcal{C})$ and an α -natural transformation $\eta \colon F \Longrightarrow \operatorname{Hom}_{\mathcal{C}}(K, -)$.

Then for each idempotent $\iota \leq \alpha$

- 1. $F_{\iota} : \mathcal{C}_{\iota} \to \mathbf{FL}\text{-}\mathbf{Set}_{\iota}$ is a functor;
- 2. $K \in \mathcal{O}b(\mathcal{C}_{\iota});$
- 3. $\eta_{\iota} : F_{\iota} \Longrightarrow \operatorname{Hom}_{\mathcal{C}_{\iota}}(K, -)$ is a natural transformation

Fuzzy functor representation

Since C is a fuzzy category, the threshold category C_{ι} can inherit morphism membership degrees from C.

Each morphism from $\operatorname{Hom}_{\mathcal{C}_{\iota}}(A,B)$ can be assigned a value from the lattice L.

This means that if C is a locally small category, then $\operatorname{Hom}_{C_{\iota}}(A,B)$ can be considered as a hom-object from the monoidal category $L-\operatorname{Set}$.

Fuzzy functor representation

Theorem

Suppose $C = (\mathcal{O}b(\mathcal{C}), \omega, \mathcal{M}(\mathcal{C}), \mu, \circ)$ is a fuzzy category and $F \colon \mathcal{C} \to \mathbf{FL}\text{-}\mathbf{Set}$ is an α -functor and there is an α -object $K \in \mathcal{O}b(\mathcal{C})$ and an α -natural transformation $\eta \colon F \Longrightarrow \operatorname{Hom}_{\mathcal{C}}(K, -)$. Then for each idempotent $\iota \leq \alpha$ the functor F_{ι} is a representable $\mathbf{L} - \mathbf{Set}$ -functor when \mathbb{C}_{ι} is viewed as an enriched category over $\mathbf{L} - \mathbf{Set}$.

References

- B. Day. On closed categories of functors. In: Reports of the Midwest Category Seminar IV, Lecture Notes in Mathematics, Vol. 137., S. Maclane, et al (Eds.), Springer, Berlin/Heidelberg, 1970, 1 38.
- A. Pultr. On categories over the closed categories of fuzzy sets. In: Abstracta. 4th Winter School on Abstract Analysis, Zdeněk Frolík (Ed.), Czechoslovak Academy of Sciences, Praha, 1976, 47 – 63.
- A. Šostak. Fuzzy categories versus categories of fuzzily structured sets: Elements of the the theory of fuzzy categories. Mathematik-Arbeitspapiere 48, 1997, 407–438

Thank you for your attention!