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Motivation
Set-valued models (of coherent theories):

groups, rings, local rings, fields, difference fields, modules, lattices,
graphs, sets with an equivalence relation,. ..

E-valued models (of coherent theories):

T £ T-models in €

Abelian groups Sh(X) sheaf of Abelian groups

local rings Sh(X) locally ringed spaces
rings/ fields Set® difference rings/ fields
arbitrary Sh(B, Tean) models in VB

Plan

Develop topos-valued positive model theory.

Tool

External approach to internal models. (Calculus of coherent functors.)
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Internal models in Sh(X).
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A sheaf of structures
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A sheaf of structures

Example

X
>SS
%

U+ Cont(U,R)
V < U~ Cont(U,R) =% Cont(V,R)
v Open(X)P — Set
moreover:
Given U=JViand f;: V; > R
compatible, they glue together to a

unique f : U — R.
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A sheaf of structures

Example

X

%

N

U+ Cont(U,R)

V < U~ Cont(U,R) =% Cont(V,R)
v Open(X)P — Set

moreover:

Given U=JViand f;: V; > R
compatible, they glue together to a
unique f : U — R.

Definition
L signature. A sheaf of L-structures
on X is a functor

M : Open(X)° — L — str

s.t. the same gluing condition holds.

Example: Cont(—,R) is a sheaf of
LRing-structures, with pointwise
07 17 =,y
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Definition

T < L8,,. A sheaf of L-structures
M : Open(X)°? — L —str is a
model of T if for each x € X we
have M, = T.

Example

T is the theory of comm. local rings:
comm. ring & 0=1= 1 &
T=3y:x-y=1viy:(1-x)-y=1
T-model in Sh(X): locally ringed space.
E.g. Cont(—,R).

Is there a model theory of sheaves?
(E.g. study positively closed locally ringed
spaces, etc.)

External approach to internal
models:

T-models in Sh(X) =

coherent functors C+ — Sh(X)
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Translating between the internal and the external view.
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Can we prescribe which statements should be true in which fibers?

Closed Form.
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Can we prescribe which statements should be true in which fibers?

T

% v L\ Closed Form.
A7
\

@ ¥

pAY

1

Definition: Sh(X) can realize types, if

for any small coherent cat. C and coherent functor p : Subc(1) — Sh(X),
there is a coherent lift:

Sube (1 é Sh(X

L
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Theorem

If X is an extremally disconnected Stone-space (i.e. X = Spec(B) for a
complete Boolean algebra) then Sh(X) can realize types.

Proof idea: we can assume B = 2.

At principal ultrafilters we find arbitrary solutions, at non-principal ones
we take the ultraproduct.

M; My = [T Mi/U
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Theorem
If X is an extremally disconnected Stone-space (i.e. X = Spec(B) for a

complete Boolean algebra) then Sh(X) can realize types.
Proof idea: we can assume B = 2/.

At principal ultrafilters we find arbitrary solutions, at non-principal ones
we take the ultraproduct.

M; My = [T Mi/U

Question

Can every Grothendieck topos realize types?
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Positively closed models.
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A lattice invariant of Sh(X)-valued models
Definition

Subc
cer DLat

lle

L' = LanySubc
Lex(C, Set)
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A lattice invariant of Sh(X)-valued models
Definition

Subc
cer DLat

lle

Y
L' = LanySubc
Lex(C, Set)

» [1(M) is the LT-algebra of closed (pos. ex.) formulas with
parameters from M.

» L' preserves filtered colimits, regular monos, etc.

» Goal: model-theoretic properties of M : C — Sh(B, 7con) vs algebraic
properties of L}(T'M).
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" positively closed” is local
Definition

F,G :C — D lex. A natural transformation o : F = G is elementary if
the naturality squares at monos are pullbacks.
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Definition
F,G :C — D lex. A natural transformation o : F = G is elementary if
the naturality squares at monos are pullbacks.

M([p(x)])  C M([% =%]) = M(x1) x ... x M(xy)
N(ex)])  C N([% =X]) = N(x1) x ... x N(xy)

nat. tr.. homomorphism which preserves the formulas in the fragment
elementary nat. tr.: preserves and reflects.

Definition

C coh, & Grothendieck topos, M : C — £ coh. M is positively closed if
every M = N nat. tr. with N coherent must be elementary.

(global notion)
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Definition
C coh, £ Grothendieck topos, M : C — & coh. M is strongly positively
closed if for every u < x in C:

Mx = Mu u U My

VX unv=_g

(local notion)
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Definition
C coh, £ Grothendieck topos, M : C — & coh. M is strongly positively
closed if for every u < x in C:

Mx = Mu u U My

VX unv=_g

(local notion)

Theorem
If € = Set then pos. cl. = strongly pos. cl.

Example

X non-discrete extremally disconnected Stone space (i.e. X = Spec(B)
where B is a complete Boolean alg., B # 2/ for / finite).

Then int : Closed(X) — Clopen(X) < Sh(X) is coherent, positively
closed, not strongly pos. cl.
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C is coherent, B is a Boolean algebra, M : C — Sh(B, Tcon) is coherent.
Write L for LY(TM).

Theorem
M is strongly pos. cl. iff L is a Boolean algebra iff L ~ B.
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C is coherent, B is a Boolean algebra, M : C — Sh(B, Tcon) is coherent.
Write L for LY(TM).

Theorem
M is strongly pos. cl. iff L is a Boolean algebra iff L ~ B.

Theorem

If Sh(B, Tcon) can realize types (e.g. B is complete), then M is pos. cl. iff

there is a unique lift
!
L7 ——— Id(L7)
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Theorem

If B is complete then M is pos. cl. iff for every u — x in C and
s € Mx(T), there is by € B with s|, € Mu(bo) and
—bo = | J{b:3v:s|,e Mv(b) and unv = }.
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