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Motivation

Set-valued models (of coherent theories):

groups, rings, local rings, fields, difference fields, modules, lattices,
graphs, sets with an equivalence relation,. . .

E-valued models (of coherent theories):

T E T -models in E

Abelian groups ShpX q sheaf of Abelian groups

local rings ShpX q locally ringed spaces

rings/ fields Setœ difference rings/ fields

arbitrary ShpB, τcanq models in V B

Plan

Develop topos-valued positive model theory.

Tool

External approach to internal models. (Calculus of coherent functors.)

1 / 12



Motivation

Set-valued models (of coherent theories):

groups, rings, local rings, fields, difference fields, modules, lattices,
graphs, sets with an equivalence relation,. . .

E-valued models (of coherent theories):

T E T -models in E

Abelian groups ShpX q sheaf of Abelian groups

local rings ShpX q locally ringed spaces

rings/ fields Setœ difference rings/ fields

arbitrary ShpB, τcanq models in V B

Plan

Develop topos-valued positive model theory.

Tool

External approach to internal models. (Calculus of coherent functors.)

1 / 12



Motivation

Set-valued models (of coherent theories):

groups, rings, local rings, fields, difference fields, modules, lattices,
graphs, sets with an equivalence relation,. . .

E-valued models (of coherent theories):

T E T -models in E

Abelian groups ShpX q sheaf of Abelian groups

local rings ShpX q locally ringed spaces

rings/ fields Setœ difference rings/ fields

arbitrary ShpB, τcanq models in V B

Plan

Develop topos-valued positive model theory.

Tool

External approach to internal models. (Calculus of coherent functors.)

1 / 12



Motivation

Set-valued models (of coherent theories):

groups, rings, local rings, fields, difference fields, modules, lattices,
graphs, sets with an equivalence relation,. . .

E-valued models (of coherent theories):

T E T -models in E

Abelian groups ShpX q sheaf of Abelian groups

local rings ShpX q locally ringed spaces

rings/ fields Setœ difference rings/ fields

arbitrary ShpB, τcanq models in V B

Plan

Develop topos-valued positive model theory.

Tool

External approach to internal models. (Calculus of coherent functors.)
1 / 12



Internal models in ShpX q.
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A sheaf of structures

Example

U

R

V

X

U ÞÑ ContpU,Rq

V Ď U ÞÑ ContpU,Rq restr
ÝÝÑ ContpV ,Rq

ù OpenpX qop Ñ Set

moreover:

Given U “
Ť

Vi and fi : Vi Ñ R
compatible, they glue together to a
unique f : U Ñ R.

Definition

L signature. A sheaf of L-structures
on X is a functor

M : OpenpX qop Ñ L´ str

s.t. the same gluing condition holds.

Example: Contp´,Rq is a sheaf of
LRing -structures, with pointwise
0, 1,´,`, ¨
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A sheaf of models

Stalk at x .

XMx “

colimtU Q xuopMpUq

Definition

T Ď Lgωω. A sheaf of L-structures
M : OpenpX qop Ñ L´ str is a
model of T if for each x P X we
have Mx |ù T .

Example

T is the theory of comm. local rings:
comm. ring & 0 “ 1ñ K &
J ñ Dy : x ¨ y “ 1_ Dy : p1´ xq ¨ y “ 1

T -model in ShpX q: locally ringed space.

E.g. Contp´,Rq.

Is there a model theory of sheaves?
(E.g. study positively closed locally ringed
spaces, etc.)

External approach to internal
models:

T -models in ShpX q =
coherent functors CT Ñ ShpX q
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Translating between the internal and the external view.
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Can we prescribe which statements should be true in which fibers?

J

φ ψ

φ^ ψ

φ_ ψ

K

X

ppφq

ppφ^ ψq

ppψq

p

Closed Form.

Mx |ù φ

x

Definition: ShpX q can realize types, if

for any small coherent cat. C and coherent functor p : SubCp1q Ñ ShpX q,
there is a coherent lift:

SubCp1q ShpX q
p

C

M
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Theorem

If X is an extremally disconnected Stone-space (i.e. X “ SpecpBq for a
complete Boolean algebra) then ShpX q can realize types.

Proof idea: we can assume B “ 2I .

At principal ultrafilters we find arbitrary solutions, at non-principal ones
we take the ultraproduct.

î U r J s

Mi MU “

ś

i MiäU

Question

Can every Grothendieck topos realize types?
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Positively closed models.
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A lattice invariant of ShpX q-valued models

Definition

DLat
SubC

LexpC,Setq

L1 “ LanY SubC

Y

Cop

–

§ L1pMq is the LT-algebra of closed (pos. ex.) formulas with
parameters from M.

§ L1 preserves filtered colimits, regular monos, etc.

§ Goal: model-theoretic properties of M : C Ñ ShpB, τcohq vs algebraic
properties of L1pΓMq.
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”positively closed” is local

Definition

F ,G : C Ñ D lex. A natural transformation α : F ñ G is elementary if
the naturality squares at monos are pullbacks.

Mprφpx⃗qsq

Nprφpx⃗qsq

Mprx⃗ “ x⃗sq “ Mpx1q ˆ . . . ˆMpxnq

Nprx⃗ “ x⃗sq “ Npx1q ˆ . . . ˆ Npxnq

αx1 ˆ . . . ˆ αxn

nat. tr.: homomorphism which preserves the formulas in the fragment
elementary nat. tr.: preserves and reflects.

Definition

C coh, E Grothendieck topos, M : C Ñ E coh. M is positively closed if
every M ñ N nat. tr. with N coherent must be elementary.

(global notion)
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Definition

C coh, E Grothendieck topos, M : C Ñ E coh. M is strongly positively
closed if for every u ãÑ x in C:

Mx “ Mu Y
ď

v ãÑx : uXv“H

Mv

(local notion)

Theorem

If E “ Set then pos. cl. = strongly pos. cl.

Example

X non-discrete extremally disconnected Stone space (i.e. X “ SpecpBq
where B is a complete Boolean alg., B ‰ 2I for I finite).
Then int : ClosedpX q Ñ ClopenpX q Ď ShpX q is coherent, positively
closed, not strongly pos. cl.
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C is coherent, B is a Boolean algebra, M : C Ñ ShpB, τcohq is coherent.
Write L for L1pΓMq.

Theorem

M is strongly pos. cl. iff L is a Boolean algebra iff L – B.

Theorem

If ShpB, τcohq can realize types (e.g. B is complete), then M is pos. cl. iff
there is a unique lift

L␣

L

Id pL␣q

Ó

Theorem

If B is complete then M is pos. cl. iff for every u ãÑ x in C and
s P MxpJq, there is b0 P B with s|b0 P Mupb0q and
␣b0 “

Ť

tb : Dv : s|b P Mvpbq and u X v “ Hu.
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