Positively closed topos-valued models

Kristóf Kanalas

2025

Set-valued models (of coherent theories):

groups, rings, local rings, fields, difference fields, modules, lattices, graphs, sets with an equivalence relation,...

Set-valued models (of coherent theories):

groups, rings, local rings, fields, difference fields, modules, lattices, graphs, sets with an equivalence relation,...

 \mathcal{E} -valued models (of coherent theories):

T	${\cal E}$	${\mathcal T}$ -models in ${\mathcal E}$
Abelian groups	Sh(X)	sheaf of Abelian groups
local rings	Sh(X)	locally ringed spaces
rings/ fields	Set [♡]	difference rings/ fields
arbitrary	$Sh(B, au_{can})$	models in V^B

Set-valued models (of coherent theories):

groups, rings, local rings, fields, difference fields, modules, lattices, graphs, sets with an equivalence relation,...

 \mathcal{E} -valued models (of coherent theories):

T	${\cal E}$	${\mathcal T}$ -models in ${\mathcal E}$
Abelian groups	Sh(X)	sheaf of Abelian groups
local rings	Sh(X)	locally ringed spaces
rings/ fields	Set^{\circlearrowright}	difference rings/ fields
arbitrary	$\mathit{Sh}(B, au_{\mathit{can}})$	models in V^B

Plan

Develop topos-valued positive model theory.

Set-valued models (of coherent theories):

groups, rings, local rings, fields, difference fields, modules, lattices, graphs, sets with an equivalence relation,...

 \mathcal{E} -valued models (of coherent theories):

<i>T</i>	\mathcal{E}	\mathcal{T} -models in \mathcal{E}
Abelian groups	Sh(X)	sheaf of Abelian groups
local rings	Sh(X)	locally ringed spaces
rings/ fields	Set^{\circlearrowright}	difference rings/ fields
arbitrary	$\mathit{Sh}(B, au_{\mathit{can}})$	models in V^B

Plan

Develop topos-valued positive model theory.

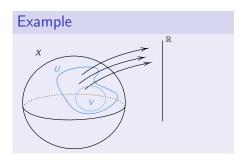
Tool

External approach to internal models. (Calculus of coherent functors.)

Internal models in Sh(X).

A sheaf of structures

A sheaf of structures



$$U \mapsto Cont(U, \mathbb{R})$$

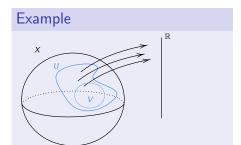
$$V \subseteq U \mapsto Cont(U, \mathbb{R}) \xrightarrow{restr} Cont(V, \mathbb{R})$$

$$\longrightarrow Open(X)^{op} \rightarrow \mathbf{Set}$$

moreover:

Given $U = \bigcup V_i$ and $f_i : V_i \to \mathbb{R}$ compatible, they glue together to a unique $f : U \to \mathbb{R}$.

A sheaf of structures



$$U \mapsto Cont(U, \mathbb{R})$$

$$V \subseteq U \mapsto Cont(U, \mathbb{R}) \xrightarrow{restr} Cont(V, \mathbb{R})$$

$$\leadsto Open(X)^{op} \to \mathbf{Set}$$

moreover:

Given $U = \bigcup V_i$ and $f_i : V_i \to \mathbb{R}$ compatible, they glue together to a unique $f : U \to \mathbb{R}$.

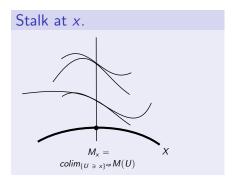
Definition

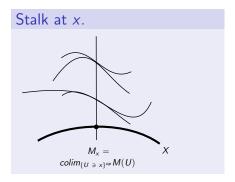
L signature. A sheaf of *L*-structures on *X* is a functor

$$M: Open(X)^{op} \rightarrow \mathbf{L} - \mathbf{str}$$

s.t. the same gluing condition holds.

Example: $Cont(-,\mathbb{R})$ is a sheaf of L_{Ring} -structures, with pointwise $0,1,-,+,\cdot$

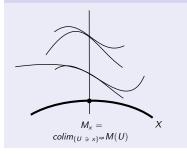




Definition

 $T\subseteq L^g_{\omega\omega}$. A sheaf of *L*-structures $M: Open(X)^{op} \to \mathbf{L} - \mathbf{str}$ is a model of T if for each $x\in X$ we have $M_x\models T$.

Stalk at x.



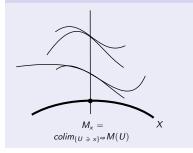
Definition

 $T \subseteq L^{\mathbf{g}}_{\omega\omega}$. A sheaf of *L*-structures $M: Open(X)^{op} \to \mathbf{L} - \mathbf{str}$ is a model of T if for each $x \in X$ we have $M_x \models T$.

Example

T is the theory of comm. local rings: comm. ring & $0=1\Rightarrow \bot$ & $T\Rightarrow \exists y:x\cdot y=1\lor\exists y:(1-x)\cdot y=1$ T-model in Sh(X): locally ringed space. E.g. $Cont(-,\mathbb{R})$.

Stalk at x.



Definition

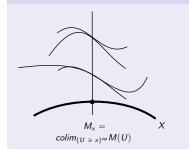
 $T \subseteq L^{\mathbf{g}}_{\omega\omega}$. A sheaf of *L*-structures $M: Open(X)^{op} \to \mathbf{L} - \mathbf{str}$ is a model of T if for each $x \in X$ we have $M_x \models T$.

Example

T is the theory of comm. local rings: comm. ring & $0=1\Rightarrow\bot$ & $\top\Rightarrow\exists y:x\cdot y=1\lor\exists y:(1-x)\cdot y=1$ T-model in Sh(X): locally ringed space. E.g. $Cont(-,\mathbb{R})$.

Is there a model theory of sheaves? (E.g. study positively closed locally ringed spaces, etc.)

Stalk at x.



Definition

 $T \subseteq L^g_{\omega\omega}$. A sheaf of *L*-structures $M: Open(X)^{op} \to \mathbf{L} - \mathbf{str}$ is a model of T if for each $x \in X$ we have $M_x \models T$.

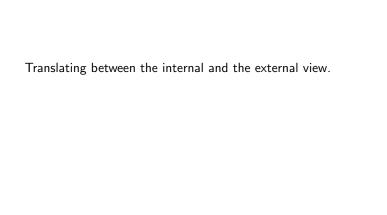
Example

T is the theory of comm. local rings: comm. ring & $0=1\Rightarrow\bot$ & $\top\Rightarrow\exists y:x\cdot y=1\lor\exists y:(1-x)\cdot y=1$ T-model in Sh(X): locally ringed space. E.g. $Cont(-,\mathbb{R})$.

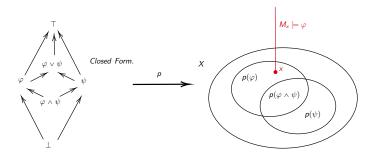
Is there a model theory of sheaves? (E.g. study positively closed locally ringed spaces, etc.)

External approach to internal models:

T-models in Sh(X) = coherent functors $C_T \to Sh(X)$



Can we prescribe which statements should be true in which fibers?

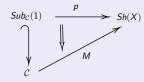


Can we prescribe which statements should be true in which fibers?



Definition: Sh(X) can realize types, if

for any small coherent cat. C and coherent functor $p: Sub_{C}(1) \to Sh(X)$, there is a coherent lift:

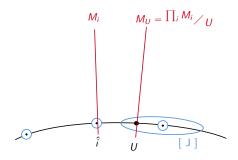


Theorem

If X is an extremally disconnected Stone-space (i.e. X = Spec(B) for a complete Boolean algebra) then Sh(X) can realize types.

Proof idea: we can assume $B = 2^{I}$.

At principal ultrafilters we find arbitrary solutions, at non-principal ones we take the ultraproduct.

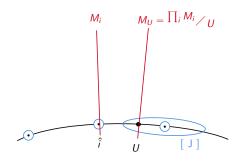


Theorem

If X is an extremally disconnected Stone-space (i.e. X = Spec(B) for a complete Boolean algebra) then Sh(X) can realize types.

Proof idea: we can assume $B = 2^{I}$.

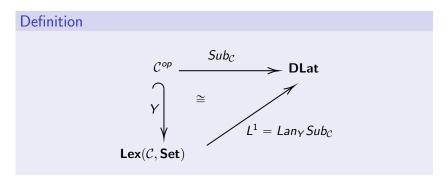
At principal ultrafilters we find arbitrary solutions, at non-principal ones we take the ultraproduct.



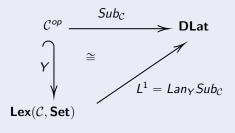
Question

Can every Grothendieck topos realize types?

Positively closed models.

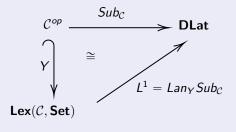


Definition



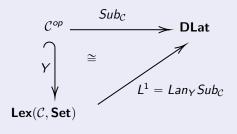
 $ightharpoonup L^1(M)$ is the LT-algebra of closed (pos. ex.) formulas with parameters from M.

Definition



- ▶ $L^1(M)$ is the LT-algebra of closed (pos. ex.) formulas with parameters from M.
- $ightharpoonup L^1$ preserves filtered colimits, regular monos, etc.

Definition



- ▶ $L^1(M)$ is the LT-algebra of closed (pos. ex.) formulas with parameters from M.
- ▶ L¹ preserves filtered colimits, regular monos, etc.
- ▶ Goal: model-theoretic properties of $M: \mathcal{C} \to Sh(B, \tau_{coh})$ vs algebraic properties of $L^1(\Gamma M)$.

"positively closed" is local

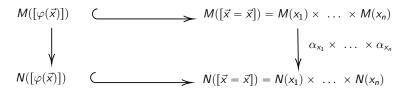
Definition

 $F,G:\mathcal{C}\to\mathcal{D}$ lex. A natural transformation $\alpha:F\Rightarrow G$ is elementary if the naturality squares at monos are pullbacks.

"positively closed" is local

Definition

 $F,G:\mathcal{C}\to\mathcal{D}$ lex. A natural transformation $\alpha:F\Rightarrow G$ is elementary if the naturality squares at monos are pullbacks.

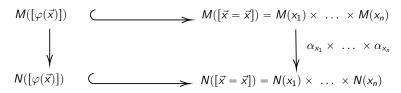


nat. tr.: homomorphism which preserves the formulas in the fragment elementary nat. tr.: preserves and reflects.

"positively closed" is local

Definition

 $F,G:\mathcal{C}\to\mathcal{D}$ lex. A natural transformation $\alpha:F\Rightarrow G$ is elementary if the naturality squares at monos are pullbacks.



nat. tr.: homomorphism which preserves the formulas in the fragment elementary nat. tr.: preserves and reflects.

Definition

 \mathcal{C} coh, \mathcal{E} Grothendieck topos, $M:\mathcal{C}\to\mathcal{E}$ coh. M is positively closed if every $M\Rightarrow N$ nat. tr. with N coherent must be elementary.

(global notion)

Definition

 $\mathcal C$ coh, $\mathcal E$ Grothendieck topos, $M:\mathcal C\to\mathcal E$ coh. M is strongly positively closed if for every $u\hookrightarrow x$ in $\mathcal C$:

$$Mx = Mu \cup \bigcup_{v \hookrightarrow x: \ u \cap v = \emptyset} Mv$$

(local notion)

Definition

 $\mathcal C$ coh, $\mathcal E$ Grothendieck topos, $M:\mathcal C\to\mathcal E$ coh. M is strongly positively closed if for every $u\hookrightarrow x$ in $\mathcal C$:

$$Mx = Mu \cup \bigcup_{v \hookrightarrow x: \ u \cap v = \emptyset} Mv$$

(local notion)

Theorem

If $\mathcal{E} = \mathbf{Set}$ then pos. cl. = strongly pos. cl.

Definition

 \mathcal{C} coh, \mathcal{E} Grothendieck topos, $M:\mathcal{C}\to\mathcal{E}$ coh. M is strongly positively closed if for every $u\hookrightarrow x$ in \mathcal{C} :

$$Mx = Mu \cup \bigcup_{v \hookrightarrow x: \ u \cap v = \emptyset} Mv$$

(local notion)

Theorem

If $\mathcal{E} = \mathbf{Set}$ then pos. cl. = strongly pos. cl.

Example

X non-discrete extremally disconnected Stone space (i.e. X = Spec(B) where B is a complete Boolean alg., $B \neq 2^I$ for I finite). Then $int : Closed(X) \rightarrow Clopen(X) \subseteq Sh(X)$ is coherent, positively

closed, not strongly pos. cl.

 $\mathcal C$ is coherent, B is a Boolean algebra, $M:\mathcal C\to Sh(B,\tau_{coh})$ is coherent. Write L for $L^1(\Gamma M)$.

Theorem

M is strongly pos. cl. iff L is a Boolean algebra iff $L \cong B$.

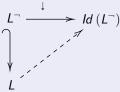
 $\mathcal C$ is coherent, B is a Boolean algebra, $M:\mathcal C\to Sh(B,\tau_{coh})$ is coherent. Write L for $L^1(\Gamma M)$.

Theorem

M is strongly pos. cl. iff L is a Boolean algebra iff $L \cong B$.

Theorem

If $Sh(B, \tau_{coh})$ can realize types (e.g. B is complete), then M is pos. cl. iff there is a unique lift



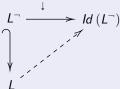
 $\mathcal C$ is coherent, B is a Boolean algebra, $M:\mathcal C\to Sh(B,\tau_{coh})$ is coherent. Write L for $L^1(\Gamma M)$.

Theorem

M is strongly pos. cl. iff L is a Boolean algebra iff $L \cong B$.

Theorem

If $Sh(B, \tau_{coh})$ can realize types (e.g. B is complete), then M is pos. cl. iff there is a unique lift



Theorem

If B is complete then M is pos. cl. iff for every $u \hookrightarrow x$ in $\mathcal C$ and $s \in Mx(\top)$, there is $b_0 \in B$ with $s|_{b_0} \in Mu(b_0)$ and $\neg b_0 = \bigcup \{b : \exists v : s|_b \in Mv(b) \text{ and } u \cap v = \varnothing \}.$