Compact, Hausdorff and locally compact locales internal in toposes

V. Aravantinos, P. Karazeris & J. Wrigley

CT 2025, Brno, July 2025

• Frames $L \in \operatorname{Frm}[\mathcal{C}^{op},\operatorname{Set}]$ are characterized as presheaves of frames $L \colon \mathcal{C}^{op} \to \operatorname{Frm}$ such that

- Frames $L \in \operatorname{Frm}[\mathcal{C}^{op},\operatorname{Set}]$ are characterized as presheaves of frames $L \colon \mathcal{C}^{op} \to \operatorname{Frm}$ such that
- for all $f: b \to a \in \mathcal{C}$, there is a left adjoint $\Sigma_f \dashv Lf: La \to Lb$ with $\Sigma_f(u \land Lfv) = \Sigma_f u \land v$ and

- Frames $L \in \operatorname{Frm}[\mathcal{C}^{op}, \operatorname{Set}]$ are characterized as presheaves of frames $L \colon \mathcal{C}^{op} \to \operatorname{Frm}$ such that
- for all $f: b \to a \in \mathcal{C}$, there is a left adjoint $\Sigma_f \dashv Lf: La \to Lb$ with $\Sigma_f(u \land Lfv) = \Sigma_f u \land v$ and
- \bullet (when ${\cal C}$ has finite limits) for every pullback

- Frames $L \in \operatorname{Frm}[\mathcal{C}^{op}, \operatorname{Set}]$ are characterized as presheaves of frames $L \colon \mathcal{C}^{op} \to \operatorname{Frm}$ such that
- for all $f: b \to a \in \mathcal{C}$, there is a left adjoint $\Sigma_f \dashv Lf: La \to Lb$ with $\Sigma_f(u \land Lfv) = \Sigma_f u \land v$ and
- ullet (when ${\mathcal C}$ has finite limits) for every pullback

$$\begin{array}{c}
 d \xrightarrow{h} c \\
 \downarrow \qquad \qquad f \\
 b \xrightarrow{g} a
 \end{array}$$

•

$$\begin{array}{ccc}
Ld & \xrightarrow{\Sigma_h} & Lc \\
Lk & & \downarrow Lf \\
Lb & \xrightarrow{\Sigma_g} & La
\end{array}$$

• The forgetful $U \colon \operatorname{Frm}[\mathcal{C}^{op}, \operatorname{Set}] \to [\mathcal{C}^{op}, \operatorname{Frm}]$ has a left adjoint $\mathfrak{z} \dashv U$ given on objects by

• The forgetful $U \colon \operatorname{Frm}[\mathcal{C}^{op}, \operatorname{Set}] \to [\mathcal{C}^{op}, \operatorname{Frm}]$ has a left adjoint $\mathfrak{z} \dashv U$ given on objects by

•

$$\mathfrak{z}L(a) = \{(u_f) \in \prod_{f \colon b \to a} L(b) \mid \forall g \colon c \to b \ (L(g)(u_f) \le u_{fg})\}$$

• The forgetful $U \colon \operatorname{Frm}[\mathcal{C}^{op}, \operatorname{Set}] \to [\mathcal{C}^{op}, \operatorname{Frm}]$ has a left adjoint $\mathfrak{z} \dashv U$ given on objects by

•

$$\mathfrak{z}L(a) = \{(u_f) \in \prod_{f \colon b \to a} L(b) \mid \forall g \colon c \to b \ (L(g)(u_f) \le u_{fg})\}$$

• On arrows $r: b \to a$ in \mathcal{C} , $\mathfrak{Z}L(r): \mathfrak{Z}L(a) \to \mathfrak{Z}L(b)$ sends the tuple $(u_f)_{\vartheta_1 f = a}$ to $(v_h)_{\vartheta_1 h = b}$, where $v_h = u_{rh}$.

• The forgetful $U \colon \operatorname{Frm}[\mathcal{C}^{op}, \operatorname{Set}] \to [\mathcal{C}^{op}, \operatorname{Frm}]$ has a left adjoint $\mathfrak{z} \dashv U$ given on objects by

•

$$\mathfrak{z}L(a) = \{(u_f) \in \prod_{f \colon b \to a} L(b) \mid \forall g \colon c \to b \ (L(g)(u_f) \le u_{fg})\}$$

- On arrows $r : b \to a$ in \mathcal{C} , $\mathfrak{z}L(r) : \mathfrak{z}L(a) \to \mathfrak{z}L(b)$ sends the tuple $(u_f)_{\vartheta_1 f = a}$ to $(v_h)_{\vartheta_1 h = b}$, where $v_h = u_{rh}$.
- The left adjoint Σ_r^{3L} to Lr is given by

$$\Sigma_r^{\mathfrak{z}L}(u_f) = (\bigvee_{rf=g} u_f)_g.$$

 The construction appears in (S. Henry and C. Townsend, Compact Hausdorff locales in a presheaf topos) as the way to universally turn a lax transformation into a strict one, for functors with values in Pos-enriched categories.

- The construction appears in (S. Henry and C. Townsend, Compact Hausdorff locales in a presheaf topos) as the way to universally turn a lax transformation into a strict one, for functors with values in Pos-enriched categories.
- They show that the construction can be used to characterize the poset of internal ideals on an internal ∧-semilattice
 S: C^{op} → ∧ − SLat and sub-posets of it determined by geometric conditions.

- The construction appears in (S. Henry and C. Townsend, Compact Hausdorff locales in a presheaf topos) as the way to universally turn a lax transformation into a strict one, for functors with values in Pos-enriched categories.
- They show that the construction can be used to characterize the poset of internal ideals on an internal \land -semilattice $S: \mathcal{C}^{op} \to \land \operatorname{SLat}$ and sub-posets of it determined by geometric conditions.

$$\mathrm{idl}_{\widehat{\mathcal{C}}}(S)(a)=\mathfrak{z}(\mathrm{idl}\circ S)(a)$$

- The construction appears in (S. Henry and C. Townsend, Compact Hausdorff locales in a presheaf topos) as the way to universally turn a lax transformation into a strict one, for functors with values in Pos-enriched categories.
- They show that the construction can be used to characterize the poset of internal ideals on an internal \land -semilattice $S: \mathcal{C}^{op} \to \land \operatorname{SLat}$ and sub-posets of it determined by geometric conditions.

$$\operatorname{idl}_{\widehat{\mathcal{C}}}(S)(a) = \mathfrak{z}(\operatorname{idl} \circ S)(a)$$

$$\operatorname{idl}_{\widehat{\mathcal{C}}}(S)(a) = \{(I_f) \in \prod_{f : \ b \to a} \operatorname{idl}(S(b)) \mid \forall g \colon c \to b \ (L(g)[I_f] \subseteq I_{fg})\}$$

$$\downarrow\!(-)\dashv\bigvee(-)\dashv\downarrow(-)\colon L\to\mathrm{idl}L$$

$$\downarrow(-)\dashv\bigvee(-)\dashv\downarrow(-)\colon L\to\mathrm{idl}L$$

• For a locally compact $L \in \operatorname{Frm}[\mathcal{C}^{op}, \operatorname{Set}]$ denote

$$\Lambda \dashv D \dashv \zeta \colon L \to \mathrm{idl}_{\widehat{\mathcal{C}}}(L)$$

this string of adjoints.

$$\downarrow (-) \dashv \bigvee (-) \dashv \downarrow (-) \colon L \to \mathrm{idl} L$$

• For a locally compact $L \in \operatorname{Frm}[\mathcal{C}^{op}, \operatorname{Set}]$ denote

$$\Lambda \dashv D \dashv \zeta \colon L \to \mathrm{idl}_{\widehat{\mathcal{C}}}(L)$$

this string of adjoints.

• In terms of sections we have $\zeta_a(u) = (\downarrow Lf(u))_f$, from which we get, for $I \in \operatorname{idl}(La)$, $\bigvee I = D_a(LfI)_f$ and hence an extra left adjoint $\lambda_a \colon La \to \operatorname{idl}(La)$ can be calculated as

$$\downarrow(-)\dashv\bigvee(-)\dashv\downarrow(-)\colon L\to\mathrm{idl}L$$

• For a locally compact $L \in \operatorname{Frm}[\mathcal{C}^{op}, \operatorname{Set}]$ denote

$$\Lambda \dashv D \dashv \zeta \colon L \to \mathrm{idl}_{\widehat{\mathcal{C}}}(L)$$

this string of adjoints.

•

• In terms of sections we have $\zeta_a(u) = (\downarrow Lf(u))_f$, from which we get, for $I \in \operatorname{idl}(La)$, $\bigvee I = D_a(LfI)_f$ and hence an extra left adjoint $\lambda_a \colon La \to \operatorname{idl}(La)$ can be calculated as

$$\lambda_a(u) = \langle \bigcup_f \Sigma_f(\Lambda_a u)_f \rangle.$$

$$\downarrow (-) \dashv \bigvee (-) \dashv \downarrow (-) \colon L \to \mathrm{idl} L$$

• For a locally compact $L \in \operatorname{Frm}[\mathcal{C}^{op}, \operatorname{Set}]$ denote

$$\Lambda \dashv D \dashv \zeta \colon L \to \mathrm{idl}_{\widehat{\mathcal{C}}}(L)$$

this string of adjoints.

• In terms of sections we have $\zeta_a(u) = (\downarrow Lf(u))_f$, from which we get, for $I \in \operatorname{idl}(La)$, $\bigvee I = D_a(LfI)_f$ and hence an extra left adjoint $\lambda_a \colon La \to \operatorname{idl}(La)$ can be calculated as

$$\lambda_a(u) = \langle \bigcup_f \Sigma_f(\Lambda_a u)_f \rangle.$$

 Proposition: The sections of an internally locally compact frame are locally compact. • **Proposition:** If $L \in \text{Frm}[\mathcal{C}^{op}, \textbf{Set}]$ is locally compact, then for all the transitions $Lg: La \to Lb$, if $w \ll u \in La$, then $Lg(w) \ll Lg(u)$ in Lb.

- **Proposition:** If $L \in \text{Frm}[\mathcal{C}^{op}, \textbf{Set}]$ is locally compact, then for all the transitions $Lg: La \to Lb$, if $w \ll u \in La$, then $Lg(w) \ll Lg(u)$ in Lb.
- **Proof:** Using lax compatibility of the family $(\Lambda_a u)_f$ and the naturality of Λ and the Beck Chevalley condition for L, for the pullback along any f $\stackrel{h}{\smile} b$ we get

$$\begin{array}{rcl}
& \stackrel{\leftarrow}{\cdot} & \stackrel{\rightarrow}{\to} \stackrel{\rightarrow}{a}, \\
Lg[\langle \Sigma_f(\Lambda_a u)_f \rangle] & = & \Sigma_h Lk[(\Lambda_a u)_f] \\
& \subseteq & \Sigma_h[(\Lambda_a u)_{fk}] \\
& = & \Sigma_h[(\Lambda_a u)_{gh}] \\
& = & \Sigma_h[(\Lambda_b Lg u)_{gh}] \\
& \subseteq & \langle \bigcup_h \Sigma_h[(\Lambda_b Lg u)_{gh}] \rangle \\
& = & \lambda_h (Lg u)^{*-\frac{1}{2}} \stackrel{\rightarrow}{\to} \stackrel{\rightarrow}{\bullet} \stackrel{\rightarrow$$

 Locally compact frames are isomorphic to their lattices of rounded ideals (ideals I such that for all u ∈ I there exists w ∈ I, u ≪ w):

$$\label{eq:lambda} \protect\ensuremath{\downarrow}(-) \dashv \bigvee (-) \colon \mathrm{Ridl} L \cong L.$$

 Locally compact frames are isomorphic to their lattices of rounded ideals (ideals I such that for all u ∈ I there exists w ∈ I, u ≪ w):

$$\downarrow (-) \dashv \bigvee (-) \colon \mathrm{Ridl} L \cong L.$$

The isomorphism

$$\prod_{\vartheta_1 f = a} \operatorname{Ridl}(L(\vartheta_0 f)) \cong \prod_{\vartheta_1 f = a} L(\vartheta_0 f).$$

• Locally compact frames are isomorphic to their lattices of rounded ideals (ideals I such that for all $u \in I$ there exists $w \in I$, $u \ll w$):

$$\downarrow (-) \dashv \bigvee (-) \colon \mathrm{Ridl} L \cong L.$$

The isomorphism

$$\prod_{\vartheta_1 f = \mathsf{a}} \operatorname{Ridl}(L(\vartheta_0 f)) \cong \prod_{\vartheta_1 f = \mathsf{a}} L(\vartheta_0 f).$$

restricts by the previous Proposition to one

$$\mathfrak{z}L(a)\cong\mathfrak{z}(\mathrm{Ridl}\circ L)(a)\cong\mathrm{Ridl}_{\widehat{\mathcal{C}}}(L)(a)\cong L(a)$$

 Locally compact frames are isomorphic to their lattices of rounded ideals (ideals I such that for all u ∈ I there exists w ∈ I, u ≪ w):

$$\downarrow (-) \dashv \bigvee (-) \colon \mathrm{Ridl} L \cong L.$$

The isomorphism

$$\prod_{\vartheta_1 f = \mathsf{a}} \operatorname{Ridl}(L(\vartheta_0 f)) \cong \prod_{\vartheta_1 f = \mathsf{a}} L(\vartheta_0 f).$$

restricts by the previous Proposition to one

$$\mathfrak{z}L(a)\cong\mathfrak{z}(\mathrm{Ridl}\circ L)(a)\cong\mathrm{Ridl}_{\widehat{\mathcal{C}}}(L)(a)\cong L(a)$$

• Theorem: $L \in \text{Frm}[\mathcal{C}^{op}, \text{Set}]$ is locally compact iff (i) all sections are locally compact, (ii) all transitions $Lg: La \to Lb$ preserve \ll and (iii) $L \cong \mathfrak{z}L$. (Using C. Townsend, *Cahiers* LXVI-2, 19–32 (2025).)

• Concerning compactness:

- Concerning compactness:
- **Proposition:** If $L \in \text{Frm}[\mathcal{C}^{op}, \text{Set}]$ is compact, then all its sections La are compact.

- Concerning compactness:
- **Proposition:** If $L \in \text{Frm}[\mathcal{C}^{op}, \text{Set}]$ is compact, then all its sections La are compact.
- Concerning the Hausdorff property (closedness of $\nabla \colon L \otimes L \to L$), preservation of coproducts by $\mathfrak z$ and properties of closed maps give

- Concerning compactness:
- **Proposition:** If $L \in \mathbf{Frm}[\mathcal{C}^{op}, \mathbf{Set}]$ is compact, then all its sections La are compact.
- Concerning the Hausdorff property (closedness of $\nabla \colon L \otimes L \to L$), preservation of coproducts by $\mathfrak z$ and properties of closed maps give
- **Proposition:** Let $L \in \mathbf{Frm}[\mathcal{C}^{op}, \mathbf{Set}]$ be such that $\mathfrak{z}L$ is Hausdorff. Then, for all $a \in \mathcal{C}$, La is Hausdorff.

- Concerning compactness:
- **Proposition:** If $L \in \text{Frm}[\mathcal{C}^{op}, \text{Set}]$ is compact, then all its sections La are compact.
- Concerning the Hausdorff property (closedness of $\nabla \colon L \otimes L \to L$), preservation of coproducts by $\mathfrak z$ and properties of closed maps give
- **Proposition:** Let $L \in \text{Frm}[\mathcal{C}^{op}, \text{Set}]$ be such that $\mathfrak{z}L$ is Hausdorff. Then, for all $a \in \mathcal{C}$, La is Hausdorff.
- Since compact Hausdorff locales are locally compact hence isomorphic to 3L

- Concerning compactness:
- **Proposition:** If $L \in \text{Frm}[\mathcal{C}^{op}, \text{Set}]$ is compact, then all its sections La are compact.
- Concerning the Hausdorff property (closedness of $\nabla \colon L \otimes L \to L$), preservation of coproducts by $\mathfrak z$ and properties of closed maps give
- **Proposition:** Let $L \in \text{Frm}[\mathcal{C}^{op}, \text{Set}]$ be such that $\mathfrak{z}L$ is Hausdorff. Then, for all $a \in \mathcal{C}$, La is Hausdorff.
- Since compact Hausdorff locales are locally compact hence isomorphic to 3L
- **Proposition:** If $L \in \text{Frm}[\mathcal{C}^{op}, \text{Set}]$ is compact Hausdorff then all its sections La are compact Hausdorff.

- Concerning compactness:
- **Proposition:** If $L \in \text{Frm}[\mathcal{C}^{op}, \text{Set}]$ is compact, then all its sections La are compact.
- Concerning the Hausdorff property (closedness of $\nabla \colon L \otimes L \to L$), preservation of coproducts by $\mathfrak z$ and properties of closed maps give
- **Proposition:** Let $L \in \text{Frm}[\mathcal{C}^{op}, \text{Set}]$ be such that $\mathfrak{z}L$ is Hausdorff. Then, for all $a \in \mathcal{C}$, La is Hausdorff.
- Since compact Hausdorff locales are locally compact hence isomorphic to 3L
- **Proposition:** If $L \in \mathbf{Frm}[\mathcal{C}^{op}, \mathbf{Set}]$ is compact Hausdorff then all its sections La are compact Hausdorff.
 - THANK YOU!