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From presheaves of frames to frames in presheaves

Internal frames in presheaves on a small category

o Frames L € Frm[C°P, Set| are characterized as presheaves of
frames L: C°? — Frm such that
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@ Onarrows r: b— ain C, 3L(r): 3L(a) — 3L(b) sends the
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£ ur) = (\/ urg-

rf=g
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From presheaves of frames to frames in presheaves

@ The construction appears in (S. Henry and C. Townsend,
Compact Hausdorff locales in a presheaf topos) as the way to
universally turn a lax transformation into a strict one, for
functors with values in Pos-enriched categories.
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Locally compact frames in presheaves

e Proposition: If L € Frm|[C°P, Set] is locally compact, then for
all the transitions Lg: La — Lb, if w < u € La, then
Lg(w) < Lg(u) in Lb.

@ Proof: Using lax compatibility of the family (A u)s and the
naturality of A and the Beck - Chevalley condition for L, for

the pullback along any f b we get
k g
]
Lg[(Xr(Aau)r)] = Tplk[(Asu)f]
Tal(Aav)ad
Th[(Aau)gh]
Th[(AbLgu)gn]
(U Zal(AsLgu)gnl)
h

)\b(Lgu) 6/8
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Locally compact frames in presheaves

@ Locally compact frames are isomorphic to their lattices of
rounded ideals (ideals / such that for all u € I there exists
wel ugw):

L(=) 4 V(-): RidiL = L.
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Locally compact frames in presheaves

Locally compact frames are isomorphic to their lattices of
rounded ideals (ideals / such that for all u € I there exists
wel ugw):
L(=) 4 V(-): RidiL = L.
The isomorphism
[] Rid(L(@of) = J] L(Wof).
191f:a 191f=3

restricts by the previous Proposition to one
3L(a) = 3(Ridl o L)(a) = Ridls(L)(a) = L(a)

Theorem: L € Frm[C°P, Set] is locally compact iff (i) all
sections are locally compact, (ii) all transitions Lg: La — Lb
preserve < and (iii) L = 3L. (Using C. Townsend, Cahiers
LXVI-2, 19-32 (2025).)
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e Proposition: If L € Frm[C°P, Set] is compact Hausdorff then
all its sections La are compact Hausdorff.

e THANK YOU!
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