Codiscrete cofibrations vs. iterated discrete fibrations for (∞, ℓ) -profunctors and ℓ -congruences

David KERN

Kungliga Tekniska Högskolan

International Category Theory Conference CT2025
■ 14th July ■ 2025

$$\mathfrak{K} \text{ an } (\infty,2)\text{-category. Adjunction} \quad \mathfrak{Cat}(\mathfrak{K}) \subset \mathfrak{K}^{\Delta^{op}} \xrightarrow[\ker]{\text{codesc}} \mathfrak{K}^2$$

▶ codesc $X_{\bullet} = (X_0 \to \mathcal{W} \star X)$, where $\mathcal{W} \star X$ colimit weighted by $\mathcal{W} : \Delta \hookrightarrow \mathfrak{Cat}$

$$\mathfrak{K}$$
 an $(\infty,2)$ -category. Adjunction $\mathfrak{Cat}(\mathfrak{K})\subset\mathfrak{K}^{\Delta^{op}}$ $\stackrel{\text{codesc}}{\longleftarrow}$ \mathfrak{K}^2

- ▶ codesc $X_{\bullet} = (X_0 \to \mathcal{W} \star X)$, where $\mathcal{W} \star X$ colimit weighted by $\mathcal{W} : \Delta \hookrightarrow \mathfrak{Cat}$
- $\ker(A \xrightarrow{f} B) = \left(\begin{array}{cc} \cdots & f \downarrow f \downarrow f \xrightarrow{\longrightarrow} f \downarrow f \xrightarrow{\longrightarrow} A \end{array} \right),$ where $f \downarrow \cdots \downarrow f$ limit of $\lceil f \rceil$: $2 \to \mathfrak{K}$ weighted by $(n \to \mathfrak{m})$, with $\mathfrak{m} \simeq 2 \coprod_{\mathbb{I}} \cdots \coprod_{\mathbb{I}} 2$

$$\mathfrak{K} \text{ an } (\infty,2)\text{-category. Adjunction} \quad \mathfrak{Cat}(\mathfrak{K}) \subset \mathfrak{K}^{\Delta^{op}} \xrightarrow[\ker]{\text{codesc}} \mathfrak{K}^2$$

- ▶ codesc $X_{\bullet} = (X_0 \to \mathcal{W} \star X)$, where $\mathcal{W} \star X$ colimit weighted by $\mathcal{W} : \Delta \hookrightarrow \mathfrak{Cat}$
- $\ker(A \xrightarrow{f} B) = \Big(\cdots \qquad f \downarrow f \downarrow f \xrightarrow{\longrightarrow} f \downarrow f \xrightarrow{\longrightarrow} A \Big),$ where $f \downarrow \cdots \downarrow f$ limit of $\lceil f \rceil : 2 \to \mathfrak{K}$ weighted by $(n \to m)$, with $m \simeq 2 \coprod_{\mathbb{I}} \cdots \coprod_{\mathbb{I}} 2$

 $\mathfrak{K} \text{ effective} \colon \mathsf{restricts} \text{ to an equivalence } 2\text{-}\mathfrak{Cong}(\mathfrak{K}) = \mathfrak{Cateab}(\mathfrak{K}) \simeq \mathfrak{eso}(\mathfrak{K})$

Categorified congruences

A 2-congruence, aka catead, is an internal category X_{\bullet} whose underlying graph $X_0 \leftarrow X_1 \to X_0$ is a discrete (i.e. $(\infty, 0)$ -categorical) two-sided fibration

1/4

$$\mathfrak{K} \text{ an } (\infty,2)\text{-category. Adjunction} \quad \mathfrak{Cat}(\mathfrak{K}) \subset \mathfrak{K}^{\Delta^{op}} \xrightarrow[\ker]{\text{codesc}} \mathfrak{K}^2$$

- ▶ codesc $X_{\bullet} = (X_0 \to \mathcal{W} \star X)$, where $\mathcal{W} \star X$ colimit weighted by $\mathcal{W} : \Delta \hookrightarrow \mathfrak{Cat}$
- $\ker(A \xrightarrow{f} B) = \Big(\cdots \qquad f \downarrow f \downarrow f \xrightarrow{\longrightarrow} f \downarrow f \xrightarrow{\longrightarrow} A \Big),$ where $f \downarrow \cdots \downarrow f$ limit of $\lceil f \rceil : 2 \to \mathfrak{K}$ weighted by $(n \to m)$, with $m \simeq 2 \coprod_{\mathbb{I}} \cdots \coprod_{\mathbb{I}} 2$

 $\mathfrak{K} \text{ effective} \colon \mathsf{restricts} \text{ to an equivalence } 2\text{-}\mathfrak{Cong}(\mathfrak{K}) = \mathfrak{Cateab}(\mathfrak{K}) \simeq \mathfrak{eso}(\mathfrak{K})$

Categorified congruences

A 2-congruence, aka catead, is an internal category X_{\bullet} whose underlying graph $X_0 \leftarrow X_1 \to X_0$ is a discrete (i.e. $(\infty, 0)$ -categorical) two-sided fibration

Remark: eso/ff factorisation system generated by $\mathbb{O}\coloneqq \left\{n=\operatorname{obj}\mathbb{m}\to\mathbb{m}\right\}\subset \mathbb{C}\mathfrak{a}\mathsf{t}^2$ $\mathbb{O}\simeq \Delta$

$$\mathfrak{K} \text{ an } (\infty,2)\text{-category. Adjunction} \quad \mathfrak{Cat}(\mathfrak{K}) \subset \mathfrak{K}^{\Delta^{op}} \xrightarrow[\ker]{\text{codesc}} \mathfrak{K}^2$$

- ▶ codesc $X_{\bullet} = (X_0 \to \mathcal{W} \star X)$, where $\mathcal{W} \star X$ colimit weighted by $\mathcal{W} : \Delta \hookrightarrow \mathfrak{Cat}$
- $\ker(A \xrightarrow{f} B) = \Big(\cdots \qquad f \downarrow f \downarrow f \xrightarrow{} f \downarrow f \xrightarrow{} A \Big),$ where $f \downarrow \cdots \downarrow f$ limit of $\lceil f \rceil$: $2 \to \Re$ weighted by $(n \to \mathbb{n})$, with $\mathbb{n} \simeq 2 \coprod_{\mathbb{I}} \cdots \coprod_{\mathbb{I}} 2$

 $\mathfrak{K} \text{ effective} \colon \mathsf{restricts} \text{ to an equivalence } 2\text{-}\mathfrak{Cong}(\mathfrak{K}) = \mathfrak{Cateab}(\mathfrak{K}) \simeq \mathfrak{eso}(\mathfrak{K})$

Categorified congruences

A 2-congruence, aka catead, is an internal category X_{\bullet} whose underlying graph $X_0 \leftarrow X_1 \to X_0$ is a discrete (i.e. $(\infty, 0)$ -categorical) two-sided fibration

Remark: eso/ff factorisation system generated by $\mathfrak{O} := \{n = \mathsf{obj}\,\mathbb{m} \to \mathbb{m}\} \subset \mathfrak{Cat}^2$ $\mathfrak{O} \simeq \Delta$, and codesc \dashv ker colim/lim weighted by the profunctor $2 \times \Delta^{\mathsf{opop}} \to \mathfrak{Cat}$

In $\mathfrak K$ an (∞,ℓ) -category $(\ell\in\overline{\mathbb N})$, two natural generalisations of congruences: ℓ -congruences: Internal category X_{ullet} whose graph is an $(\ell-2)$ -cat'l two-sided fibration

Effectivity for ℓ -congruences (Loubaton, Mesiti for $\ell=3$)

Replace co/limits by lax (i.e. Gray-enriched) ones, e.g. lax commas

In $\mathfrak K$ an (∞,ℓ) -category $(\ell\in\overline{\mathbb N})$, two natural generalisations of congruences: ℓ -congruences: Internal category X_{ullet} whose graph is an $(\ell-2)$ -cat'l two-sided fibration $(\ell-1)$ -cateads: Internal $(\ell-1)$ -category $X_{ullet}\colon \Theta_{\ell-1}^{\text{ op}}\to \mathfrak K$ whose underlying $(\ell-1)$ -graph $X|_{\mathbb G_{\ell-1}^{\text{ op}}}$ is an **iterated** discrete two-sided fibration

Effectivity for ℓ -congruences (Loubaton, Mesiti for $\ell=3$)

Replace co/limits by lax (i.e. Gray-enriched) ones, e.g. lax commas

as a bipartite $(\ell-1)$ -graph

In $\mathfrak K$ an (∞,ℓ) -category $(\ell\in\overline{\mathbb N})$, two natural generalisations of congruences: ℓ -congruences: Internal category X_{ullet} whose graph is an $(\ell-2)$ -cat'l two-sided fibration $(\ell-1)$ -cateads: Internal $(\ell-1)$ -category $X_{ullet}: \Theta_{\ell-1}^{\mathrm{op}} \to \mathfrak K$ whose underlying $(\ell-1)$ -graph $X|_{\mathbb G_{\ell-1}^{\mathrm{op}}}$ is an **iterated** discrete two-sided fibration

Effectivity for ℓ -congruences (Loubaton, Mesiti for $\ell=3$)

Replace co/limits by lax (i.e. Gray-enriched) ones, e.g. lax commas

Effectivity for $(\ell-1)$ -cateads (following Betti-Schumacher-Street, Bourke-Garner)

Eso/ff in $(\infty, \ell-1)$ -Cat generated by {obj $T \to T, T \in \Theta_{\ell-1}$ }: get $\mathfrak{K}^{\Theta_{\ell-1}^{op}} \rightleftarrows \mathfrak{K}^2$

In $\mathfrak K$ an (∞,ℓ) -category $(\ell\in\overline{\mathbb N})$, two natural generalisations of congruences: ℓ -congruences: Internal category X_{ullet} whose graph is an $(\ell-2)$ -cat'l two-sided fibration $(\ell-1)$ -cateads: Internal $(\ell-1)$ -category $X_{ullet}\colon \Theta_{\ell-1}^{\mathrm{op}}\to \mathfrak K$ whose underlying $(\ell-1)$ -graph $X|_{\mathbb G_{\ell-1}^{\mathrm{op}}}$ is an **iterated** discrete two-sided fibration

Effectivity for ℓ -congruences (Loubaton, Mesiti for $\ell = 3$)

Replace co/limits by lax (i.e. Gray-enriched) ones, e.g. lax commas

Effectivity for $(\ell-1)$ -cateads (following Betti–Schumacher–Street, Bourke–Garner)

Eso/ff in $(\infty, \ell-1)$ -Cat generated by {obj $T \to T, T \in \Theta_{\ell-1}$ }: get $\mathfrak{K}^{\Theta_{\ell-1}^{\text{op}}} \rightleftarrows \mathfrak{K}^2$

ightsquigar Replace commas by k-commas, $k \leqslant \ell - 1$

In $\mathfrak K$ an (∞,ℓ) -category $(\ell\in\overline{\mathbb N})$, two natural generalisations of congruences: ℓ -congruences: Internal category X_{ullet} whose graph is an $(\ell-2)$ -cat'l two-sided fibration $(\ell-1)$ -cateads: Internal $(\ell-1)$ -category $X_{ullet}\colon \Theta_{\ell-1}^{\mathrm{op}}\to \mathfrak K$ whose underlying $(\ell-1)$ -graph $X|_{\mathbb G_{\ell-1}^{\mathrm{op}}}$ is an **iterated** discrete two-sided fibration

Effectivity for ℓ -congruences (Loubaton, Mesiti for $\ell=3$)

Replace co/limits by lax (i.e. Gray-enriched) ones, e.g. lax commas

Effectivity for $(\ell-1)$ -cateads (following Betti-Schumacher-Street, Bourke-Garner)

Eso/ff in $(\infty,\ell-1)$ -Cat generated by {obj $T\to T,T\in\Theta_{\ell-1}$ }: get $\mathfrak{K}^{\Theta_{\ell-1}^{\mathrm{op}}}\rightleftarrows\mathfrak{K}^2$

 \leadsto Replace commas by k-commas, $k \leqslant \ell - 1$: wtd lim

$$f \stackrel{k}{\Downarrow} g = \left\{ \begin{array}{c} X_{0,-} & X_{0,+} \\ & X_1 \end{array} \middle| \begin{array}{c} X_{0,+} \\ & \end{array} \middle| \begin{array}{c} X_{0,-} \\ & X_{0,-} \\ & \end{array} \middle| \begin{array}{c} X_{0,-} \\ & X_{0,-} \\ & \end{array} \middle| \begin{array}{c} X_{0,-} \\ & X_{0,-} \\ &$$

Span(K)

 $\mathfrak{Span}_{\ell-1}(\mathfrak{K})$

[Moser-Rasekh-Rovelli] $(\ell-2)$ -cat'l 2-sided fibrations $/A \times B$ are $(\infty, \ell-1)$ -profunctors $A \to B$ Street: For $\mathfrak V$ enriching monoidal category, $\mathfrak V$ -profunctors are always encoded by codiscrete two-sided cofibrations in $\mathfrak V$ -Cat

$$\mathfrak{Span}(\mathfrak{K}) \hspace{1cm} \mathfrak{Span}_{\ell-1}(\mathfrak{K})$$

Cospan(R)

3/4

[Moser-Rasekh-Rovelli] $(\ell-2)$ -cat'l 2-sided fibrations $/A \times B$ are $(\infty, \ell-1)$ -profunctors $A \to B$ Street: For V enriching monoidal category, V-profunctors are always encoded by codiscrete two-sided cofibrations in V-Cat

Adjunctions

[Moser-Rasekh-Rovelli] $(\ell-2)$ -cat'l 2-sided fibrations $/A \times B$ are $(\infty, \ell-1)$ -profunctors $A \to B$ Street: For V enriching monoidal category, V-profunctors are always encoded by codiscrete two-sided cofibrations in V-Cat

Adjunctions

Conjecture

For nice $\mathfrak K$, the LHS adjunction is idempotent, so restricts to $(\ell-2)$ -Fib $(\mathfrak K)\simeq\mathfrak{CodisCofib}(\mathfrak K)$

Theorem (WIP, inspired by Bourke's exactness of cateads)

For $\mathfrak{K}=(\infty,\ell-1)$ -Cat, the RHS is idemp., so restricts to $\mathrm{DiscFib}_{\ell-1}(\mathfrak{K})\simeq\mathrm{CodisCofib}(\mathfrak{K})$

Application to Mesiti's good classifiers

Fibration classifier (..., Weber, ...)

Iterated fibration $\Omega_{\star, \bullet} \to \Omega \times \mathbb{1}$ such that $\left(-\underset{\Omega}{\times} \Omega_{\star, \bullet}\right) \colon \mathfrak{K}(-, \Omega) \xrightarrow{\mathrm{f.f.}} \mathfrak{DiscFib}_{\ell}(-)$

Application to Mesiti's good classifiers

Fibration classifier (..., Weber, ...)

Iterated fibration $\Omega_{\star, \bullet} \to \Omega \times \mathbb{1}$ such that $\left(-\underset{\Omega}{\times} \Omega_{\star, \bullet}\right) \colon \mathfrak{K}(-, \Omega) \xrightarrow{\mathrm{f.f.}} \mathfrak{DiscFib}_{\ell}(-)$

Good classifiers (Mesiti)

Application to Mesiti's good classifiers

Fibration classifier (..., Weber, ...)

Iterated fibration $\Omega_{\star, \bullet} \to \Omega \times \mathbb{1}$ such that $\left(-\underset{\Omega}{\times} \Omega_{\star, \bullet}\right) \colon \mathfrak{K}(-, \Omega) \xrightarrow{\mathrm{f.f.}} \mathfrak{DiscFib}_{\ell}(-)$

$$E_{\bullet} \xrightarrow{} \Omega_{\star, \bullet} \xrightarrow{1} \downarrow^{\top}$$

$$B \xrightarrow{\exists !} \Omega \xrightarrow{} \Omega$$

Good classifiers (Mesiti)

 $\top \colon \mathbb{1} \to \Omega$ such that $- \ \stackrel{ullet}{\Downarrow} \ \top \colon \mathfrak{K}(-,\Omega) \xrightarrow{\mathrm{f.f.}} \mathrm{DiscFib}_{\ell}(-)$

Upshot: Universal fibration $\Omega_{\star,\bullet} \simeq \operatorname{id}_{\Omega} \Downarrow \top$ is higher pointed objects in Ω

Backup

Computing higher two-sided kernels

Lemma

For
$$X_{0,-} \xrightarrow{f} X_1 \xleftarrow{g} X_{0,+}$$
, we have $f \stackrel{k}{\Downarrow} g \simeq X_{0,-} \underset{X_1}{\times} X_1^{\mathbb{D}_k} \underset{X_1}{\times} X_{0,+}$

Computing higher two-sided kernels

Lemma

For
$$X_{0,-} \xrightarrow{f} X_1 \xleftarrow{g} X_{0,+}$$
, we have $f \stackrel{k}{\Downarrow} g \simeq X_{0,-} \underset{X_1}{\times} X_1^{\mathbb{D}_k} \underset{X_1}{\times} X_{0,+}$

Proof.

Red diagram is weighted final in the full one, which is right Kan-extended from the green

Computing higher two-sided kernels

Lemma

For
$$X_{0,-} \xrightarrow{f} X_1 \xleftarrow{g} X_{0,+}$$
, we have $f \stackrel{k}{\Downarrow} g \simeq X_{0,-} \underset{X_1}{\times} X_1^{\mathbb{D}_k} \underset{X_1}{\times} X_{0,+}$

Proof.

Red diagram is weighted final in the full one, which is right Kan-extended from the green

Corollary

Two-sided kernels are indeed iterated discrete fibrations

Computing two-sided quotients of iterated discrete fibrations

Lemma

For X_{\bullet} an ℓ -iterated discrete fibration in $\mathfrak{K} = (\infty, \ell)$ -Cat, $\overset{\longleftrightarrow}{\operatorname{quot}}(X_{\bullet})_1$ is the "horizontal (∞, ℓ) -category" of the double (∞, ℓ) -category freely generated by X_{\bullet}

Computing two-sided quotients of iterated discrete fibrations

Lemma

For X_{\bullet} an ℓ -iterated discrete fibration in $\mathfrak{K}=(\infty,\ell)$ -Cat, $\overset{\longleftarrow}{\operatorname{quot}}(X_{\bullet})_1$ is the "horizontal (∞,ℓ) -category" of the double (∞,ℓ) -category freely generated by X_{\bullet}

Proof.

The right-adjoint to $\overrightarrow{quot}(-)_1$ identifies with

$$\mathfrak{K} \xrightarrow{\delta q} \ell\text{-Cat}(\mathfrak{K}) \to \ell\text{-Grph}(\mathfrak{K}) \to \ell\text{-BipartGrph}(\mathfrak{K}) \supset \mathsf{DiscFib}_{\ell}(\mathfrak{K})$$

where $\mathcal{S}q$ constructs the double $(\infty,\ell)\text{--categories}$ of strong commutative "squares"

In general $\mathscr{H}or$: ℓ -Cat $\big((\infty,\ell)$ -Cat $\big) \to (\infty,\ell)$ -Cat is not left-adjoint to $\mathcal{S}q$, but its restriction to ℓ -cateads is