
Categories for industrial planning

David Kruml, Jan Paseka

Masaryk University

CT 2025, Brno



An example of process



Space of events and resource paths



Petri nets

• •

•

stacks

process

tokens

•

•

fire



“Tensored” Petri nets

Strongly inspired by the Oxford school (Abramsky, Coecke, et al.)
for quantum protocols.

tree

saw

tree
⊗

saw
sawing

log
⊗

saw

log

composed resources/states

translators



Categorical formalization

I category theory — language, the way of thinking,

I Proc — dagger compact “corpus” category of all
resources/states (objects) and processes (morphisms)

I I — bounded finite poset,

I receipt R : I → Proc,

I schedule (Gantt diagram) S : I → R (time)

I plan = receipt + schedule



“Good” plan

I We focus on resource inventories (MRP, MRP II, ERP):
stacks must not underflow neither overflow.

I Defects (errors, collisions) are penalized ⇒ multi criteria
decision, objective function, we can optimize the plan.

I In practice, we prefer “soft constrains” than “hard constrains”
— risky strategies could be more profitable (money save most
of defects).



Benefits of categorical modeling

I All resources (material, machines, people, energy,
externalities, . . . ) are “emancipated” and modeled the same
way. (However, the economists should calculate all the
weights for defects.)

I Two types of aggregation:
I “categorical” — ◦,⊗ (breakdown structures),
I “instances → class” — functors (sharing of processes and

subreceipts).

I The “logic” of Proc seems to be classical (cf. with linear
logic of quantum protocols) and probably will be expressed by
means of relations (⇒ allegories).

I Indices and orderings on summands, evaluation and
comparison of plans ⇒ 2-categories?



The wolf, goat, and cabbage problem

I Elementary resources: wolf, goat, cabbage, boat (with the
farmer).

I Each item is in one of two states:
I w , g , c , b — start bank,
I W ,G ,C ,B — final bank.

I Composed states:
I wgcb,wGcB,WgCb, . . . ,WGCB — acceptable,
I wgCB,WgcB,WGcb, . . . — forbidden.

I Elementary process (operation): wgcb → wGcB,

I Dagger: (wgcb → wGcB)† = wGcB → wgcb.

I Two optimal solutions:

wgcb wGcB wGcb

wGCB

WGcB

wgCb

Wgcb

WgCB WgCb WGCB



Personalized views ⇒ partitions on states/morphisms

I Farmer’s view: 4 actions: “take a goat”= {wgcb →
wGcB,Wgcb →WGcB,wGcB → wgcb, . . . },
“take a wolf”, “take cabbage”, “manipulation cruise”.

I Wolf’s view: W /w , “alone with a goat”.
I Optimization view:

I forbidden states: penalty −100,
I acceptable non-terminal states: penalty −1,
I terminal state WGCB: penalty 0.

I Views could be expressed as functors.

I Now the problem is ready to be encoded to constraint
programming language and solved with a computer
(e. g. MiniZinc solver).



Other questions

I In manufacturing, many resources are “indistinguishable” and
processes are repetitive ⇒ high level of aggregation, powers of
morphisms, etc. Multilevel planning ⇒ “higher order
regularity” of the flow code.

I Randomness = lack of knowledge, result of aggregation.

I The real planning problems are hard. We optimize by
simulated annealing.

I In practice, departments of the company can “compete” (e. g.
farmer vs. wolf) ⇒ different weights, different evaluation of
the flow, game theory.

I AI sometimes succeeds in encoding the task but it is still bad
in optimization.



Thank you for your attention!


