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Main Result

Theorem (Fox Theorem)
inc 4 C[-] : CART — SMC J

Within the field of categorical semantics of linear logic, there is a notion of
cartesian linearly distributive categories (CLDC).

Question: Can we prove a Fox-like theorem in context of linearly distributive

categories (LDC)?
inc 47[-] : CLDC —7LDC

Theorem (Linearly Distributive Fox Theorem) J

inc 4 B[-] : CLDC — SMLDC

= SMLDC: 2-category of symmetric medial LDCs
= B[X]: category of bicommutative medial bimonoids
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Categorical semantics of linear logic

Girard introduced a sub-structural logic in 1987 [10]:

Linear Logic

Multiplicative | Additive | Exponential
Conjunction ®,1 &, T !
Disjunction %®, L ®,0 ?
Implication Negation
Linear —o (—)*+
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Categorical semantics of linear logic

Girard introduced a sub-structural logic in 1987 [10]:

Linear Logic

Multiplicative | Additive | Exponential
Conjunction ®,1 &, T !
Disjunction %, 1 ®,0 ?
Implication Negation
Linear —o (—)*+

Categorical semantics were investigated by Seely [15] and it was shown that
multiplicative linear logic (MLL) with negation corresponds to Barr's x-autonomous

categories [2]:
® aSMC (X, ®,1) with

e a full and faithful functor (=)* : X — X such that

X(A® B,CH) 2 X(A, (B® C)h)

= Multiplicative conjunction and linear negation are taken as the primitive

categorical notions.
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Linearly distributive categories

In 1992, Cockett and Seely introduced alternative semantics for MLL which take
multiplicative conjunction (tensor) and disjunction (par) as primitive:
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Linearly distributive categories

In 1992, Cockett and Seely introduced alternative semantics for MLL which take
multiplicative conjunction (tensor) and disjunction (par) as primitive:

Definition (Cockett, Seely [6])

A linearly distributive category, or LDC, (X, ®, T, ®, L) consists of:
® acategory (X,;,14),
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Linearly distributive categories

In 1992, Cockett and Seely introduced alternative semantics for MLL which take

multiplicative conjunction (tensor) and disjunction (par) as primitive:

Definition (Cockett, Seely [6])

A linearly distributive category, or LDC, (X, ®, T, ®, L) consists of:

e acategory (X,;,14),

® atensor monoidal structure (X, ®, T),
® a par monoidal structure (X, ®, L), and
¢ |eft and right linear distributivity natural transformations

Shpc: (ABB)©C— As (B C)
Shpc: AR (B&C)— (A®B) @ C

satisfying coherence conditions.

Remark. Notational conflict

Cockett+Seely
Girard

Tensor | Par
®.T @, L
®,1 », L

With

&, T

Plus
+,0
®,0
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Symmetric LDCs

Definition (Cockett, Seely [6])

A LDC X is symmetric, or a SLDC, if
* (X,®, T)is symmetric with ®-braiding

oo ARB—-B®A
* (X,®, 1) is symmetric with é&-braiding
ooap: ADB—-BOA
such that
(A@B)@ChA@(B@a )
Cx(Aa B) BeC)aA
1C®0€9A,B\L TU@C,B@A

CeBoA) ——(CoB) oA

5¢.B.A
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Mix LDCs

r-A  OFWV
rorAv

(MIX)
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Mix LDCs

r-A  OFWV
rorAv

(MIX)

Definition (Cockett, Seely [5])
ALDC X is mix if thereisamap m: L — T such that

1a®Ug g 14®(me1g)
_—

A® (T @ B)
u@f@@l J/(S/L"T'B
(ApL)®B (A T)®B
(ueam)@hal \Lug;eﬂs
(AST)9B——> A8 (TeB) ———>A® B
AT 1aub

in which case there is a natural transformation

miXA,BZA®B—>A€BB
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Mix LDCs

r-A  OFWV
rorAv

(MIX)

Definition (Cockett, Seely [5])
ALDC X is mix if thereisamap m: L — T such that

1a®Ug g 14®(me1g)
_—

A® (T @ B)
u@f@@l J/(S/L"T'B
(ApL)®B (A T)®B
(1A€Bm)®13l \Lug;eﬂs
(AST)9B——> A8 (TeB) ———>A® B
AT 1aub

in which case there is a natural transformation
mixA,B ARB—-A®B

A LDCisisomix if itis mixand m: L — T is an isomorphism.
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Cartesian LDCs

Definition (Cockett, Seely [6])

A cartesian linearly distributive category, or CLDC, (X, x,1,+,0) is a SLDC
whose

® tensor structure is cartesian - the categorical product x with the terminal
object 1, and

® par structure is cocartesian - the categorical coproduct + with the initial object

0.
LO L1
c A A A< B 0
| | | |
f g [h,k]
<f,g>"/ \ % \ "/ / DAJ/
— Ax B B 1 c A
TA,B TA,B
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CLDC: Examples

Example
@ Bounded distributive lattice (£, A, T,V, 1)
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Example
@ Bounded distributive lattice (£, A, T,V, 1)
Sngc: (AVBYAC=(AANC)V(BAC)<AV(BAC)
Sapc:AN(BVC)=(AAB)V(AAC)<(AAB)VC

® A(small) CLDC is a distributive category iff it is a bounded distributive lattice [6].
® A (small) CLDC has negation iff it is a Boolean algebra (Joyal's paradox).

® Semi-additive category (X, x,0,+,0) where yag: A+ B2 Ax B
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(A+B)x C 22 S (AxB)x C Ax (B+C) 2 Ax (Bx 0)

R « L —1
‘SA,B,C\L \L X A.B.C ‘SA,B,C\L laXA,B,C

A+(BxC)<— Ax (BxC) (AxB)+C~—(AxB)x C

wA,BxC 1/}14\7><E!,C

® A CLDC has invertible 5 and &7 iff it is a semi-additive category [K-B, Lemay].
® A CLDC is isomix iff it is a semi-additive category [K-B, Lemay].

©® Product of CLDCs )
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Motivation

— After their introduction and the realization that they are orthogonal to
distributive categories, the study of CLDCs was abandoned.
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Motivation

— After their introduction and the realization that they are orthogonal to
distributive categories, the study of CLDCs was abandoned.

— The interaction between cartesian structures and linear distributivity remains
worth investigating, in particular it has appeared in work within categorical
classical logic [9, 17, 14].

(1) (2)
Characterization of CLDCs Direct investigation of properties
= Linearly Distributive Fox and examples of CLDCs
Theorem = Cartesian Linearly
(on the arXiv) Distributive Categories:

Revisited - jww JS Lemay
(to appear soon)
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Fox's theorem

Consider a SMC (X, @, ). Note the canonical flip:

Tapco: (A2B)@(CoD) = (Ao C)o (B D)
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Fox's theorem

Consider a SMC (X, @, ). Note the canonical flip:

Tapco: (A2B)@(CoD) = (Ao C)o (B D)

Proposition (Fox [8])
Given cocommutative comonoids (A, Aa, ea) and (B, Ag, eg), then (A@ B, Aaps, €a0B)
as defined below is a cocommutative comonoid.

AA®AB A A,B,B

Appp=A0B——= (A0A)0(BoB) ———= (Ao B)o (Ao B)

eapp=A0 B —= SAC%B o 2y
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AA®AB A A,B,B

Appp=A0B——= (A0A)0(BoB) ———= (Ao B)o (Ao B)

eapp=A0 B —= SAC%B o 2y

Let C[X] denote the category of cocommutative comonoids and comonoid morphisms
in X, then
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Fox's theorem

Consider a SMC (X, @, ). Note the canonical flip:

Tapco: (A2B)@(CoD) = (Ao C)o (B D)

Proposition (Fox [8])
Given cocommutative comonoids (A, Aa, ea) and (B, Ag, eg), then (A@ B, Aaps, €a0B)
as defined below is a cocommutative comonoid.

AA®AB A A,B,B

Appp=A0B——= (A0A)0(BoB) ———= (Ao B)o (Ao B)

eapp=A0 B —= SAC%B o 2y

Let C[X] denote the category of cocommutative comonoids and comonoid morphisms
in X, then

e C[X] is a SMC with the above monoidal product, and further
e jtis a cartesian category.
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Fox's theorem

Theorem (Fox [8])
The functor C[—] : SMC — CART is right adjoint to the inclusion. J
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Fox's theorem

Theorem (Fox [8])
The functor C[—] : SMC — CART is right adjoint to the inclusion.

Corollary

A SMC X is cartesian if and only if it is isomorphic to its category of cocommutative
comonoids C[X].
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Fox's theorem

Theorem (Fox [8])
The functor C[—] : SMC — CART is right adjoint to the inclusion.

Corollary

A SMC X is cartesian if and only if it is isomorphic to its category of cocommutative
comonoids C[X].

Corollary (Heunen, Vicary [11])
A SMC X is cartesian if and only if there are natural transformations

er:A— 1 Ap:A—=AQA
such that (A, Aa, ea) is cocommutative comonoid and

ears = (ea® es);py e =1
AA@B = (AA @ AB); TI’%AB,B A= Pl
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Back to CLDCs

By Fox's theorem and its dual applied to CLDCs, we can show that there are
natural transformations

Ap:A—-ARQA er:A—=T Va:ADA—= A Up: L — A
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If we consider any SLDC X and try forming the category of such quintuples
(A, A4, ea, Va, ua), we quickly realize we cannot define a tensor or par product:
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Back to CLDCs

By Fox's theorem and its dual applied to CLDCs, we can show that there are
natural transformations

Ap:A—-ARQA er:A—=T Va:ADA—= A Up: L — A

If we consider any SLDC X and try forming the category of such quintuples
(A, A4, ea, Va, ua), we quickly realize we cannot define a tensor or par product:
encp: ADB 2B, T T LT

Apos: A® B 22228 (A A)o (B® B) 5 (A® B) @ (A B)

Ungp: L5 Lo L 42, Ax B

Vass: (A®B)& (A® B) & (A® A)® (Ba B) 225, Ag B
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Back to CLDCs

Moreover, consider a CLDC once more, then Aags:

A@Bﬂ(A@A)@(B@B)M((A®A)@(B®B))®((A®A)®(B®B))
\

\ (com) (Iave)(esals)  (na) Qa0 S ln s s
(A T)® (T ®B) (AeT)®e(TeB) (A T)® (T ® B))
1aee uf; wuk g Wl ovh g el wut s
Ao B (AeB)® (A® B)
VYN
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Back to CLDCs

Moreover, consider a CLDC once more, then Aags:

ApA8p AeAeE28)
AGB——— (Ao A)e(BeB) ———((AeA) e (B B)) e (Av A)e (B B))
\
\
(com) L (1a®en)B(es®lp)  (nat) L Qa0 S ln s s
(A®T)®(T®B) (A T)a(TeB)e(AxT)e (T ®B))
1aee l uf; wuk g Wl o, el et
Ae B (A®B)® (A B)
JAVEY:}

HA,A,B,B
SR

Apss = Ad B 2228, (Ap Ay e (B B) (A®B)® (A® B)
for some natural transformation

uagcp: (ARB)®(C®D)— (A®d C)® (B® D)
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Back to CLDCs

Moreover, consider a CLDC once more, then Aags:

ApA8p AeAeE28)
AGB——— (Ao A)e(BeB) ———((AeA) e (B B)) e (Av A)e (B B))
\
\
(com) L (1a®en)B(es®lp)  (nat) L Qa0 S ln s s
(A®T)®(T®B) (A T)a(TeB)e(AxT)e (T ®B))
1aee l uf; wuk g Wl o, el et
Ae B (A®B)® (A B)
JAVEY:}

HA,A,B,B
SR

Apss = Ad B 2228, (Ap Ay e (B B) (A®B)® (A® B)
for some natural transformation

uagcp: (ARB)®(C®D)— (A®d C)® (B® D)

We need to start with a SLDC X with such arrows.
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Medial rule

In logic, (A2 B)® (C® D) —» (A® C) ® (B® D) is known as the medial rule.
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Medial rule

Inlogic, (A® B)  (C® D) — (A® C) ® (B@® D) is known as the medial rule.

It has appeared alongside switch (linear distributivity) in different systems of logic,
especially within deep inference (introduced by Guglielmi):

— Medial rule has been considered in a local system for classical logic [3], for
intuitionistic logic [18] and for linear logic [16].
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intuitionistic logic [18] and for linear logic [16].

The medial rule has also been studied in the categorical semantics for classical

logic when defining the appropriate notion of a “Boolean category” in the work of
Lamarche [14] and StrafSburger [17].
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Medial rule

Inlogic, (A® B)  (C® D) — (A® C) ® (B@® D) is known as the medial rule.

It has appeared alongside switch (linear distributivity) in different systems of logic,
especially within deep inference (introduced by Guglielmi):

— Medial rule has been considered in a local system for classical logic [3], for
intuitionistic logic [18] and for linear logic [16].

The medial rule has also been studied in the categorical semantics for classical
logic when defining the appropriate notion of a “Boolean category” in the work of
Lamarche [14] and StrafSburger [17].

= In every case, the medial rule is considered for the same reason it appears
currently.
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Duoidal categories

Medial rule: instance of interchange law of duoidal categories.

— The earliest form of the interchange law is found in Joyal and Street's work on
braided monoidal categories [12].
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Duoidal categories

Medial rule: instance of interchange law of duoidal categories.

— The earliest form of the interchange law is found in Joyal and Street's work on
braided monoidal categories [12].

Definition (Aguiar, Mahajan [1])

A duoidal category (X', ¢, /, %, J) is category X with two monoidal structures
(X,0,1)and (X, *, J) equipped with morphisms

AV S Y pyidod —dJ vil—Jd
and an interchange natural transformation
Cagco: (AxB)o(CxD)— (Ao C)x(Bo D)

satisfying some coherence conditions.
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Medial LDCs

Definition
A medial LDC, or MLDC, (X,®, T,®, L) consists of:
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Medial LDCs

Definition
A medial LDC, or MLDC, (X,®, T,®, L) consists of:
® 3 tensor monoidal structure (X, ®, T),
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Medial LDCs

Definition

A medial LDC, or MLDC, (X,®, T, ®, L) consists of:
® 3 tensor monoidal structure (X, ®, T),
® a par monoidal structure (X, &, 1),
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Medial LDCs

Definition
A medial LDC, or MLDC, (X, ®, T, ®, L) consists of:
® atensor monoidal structure (X, ®, T),
® a par monoidal structure (X, &, 1),
e | -contraction, T-cocontraction and nullary mix morphisms,

A1l =11 V+:TdT —>T m: 1L —T
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® atensor monoidal structure (X, ®, T),
® a par monoidal structure (X, &, 1),
e | -contraction, T-cocontraction and nullary mix morphisms,

A1l =11 V+:TdT —>T m: 1L —T
® a medial natural transformation,

pagcn: (ARB)®(C®D)— (A® C)® (Ba D)
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Medial LDCs

Definition
A medial LDC, or MLDC, (X, ®, T, ®, L) consists of:
® atensor monoidal structure (X, ®, T),
® a par monoidal structure (X, &, 1),
e | -contraction, T-cocontraction and nullary mix morphisms,

A1l =11 V+:TaT—>T m: 1L —T
® a medial natural transformation,

pagcn: (ARB)®(C®D)— (A® C)® (Ba D)

left and right linear distributivity natural transformations

Shpc: (A®B)®C—A®(BoC) hpc:A®(B&C)— (A®B)®C
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Medial LDCs

Definition
A medial LDC, or MLDC, (X, ®, T, ®, L) consists of:
® atensor monoidal structure (X, ®, T),
® a par monoidal structure (X, &, 1),
e | -contraction, T-cocontraction and nullary mix morphisms,

A1l =11 V+:TaT—>T m: 1L —T
® a medial natural transformation,

pagcn: (ARB)®(C®D)— (A® C)® (Ba D)

left and right linear distributivity natural transformations
Snpc (ADB)®C—AG(BRC) dipc:A®(B®C)— (AB)®C

such that
e (X,®,T,®,L)isamixLDC,
* (X,®,1,®,T)is aduoidal category, and
¢ the medial maps interact coherently with the linear distributivities.
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Examples of MLDCs

Example
@ Braided monoidal categories (X, @, 1, @, )
Vi=XN":lol=1 A=p:l=lol m=1:1-1
pasco=Tagecp: (A©B)©(CoD)— (A2 C)o (B D)
Shpc=aasc: (A0B)©C— Ao (BoC)
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Examples of MLDCs

Example
@ Braided monoidal categories (X, @, 1, @, 1)
Vi=XN":lol=1 A=p:l=lol m=1:1-1
tas.co=Tipcp: (A2B)@(CoD)— (Ao C)o (B0 D)
Shsc=ansc: (A0B)©C— A0 (BoC)

@® Cartesian linearly distributive category (X, x,1,+,0)

Vi=tu:1+1 =21 Ao=bpxo:0—>0x0 m=t=5b:0—-1

HAB,C.D = [LOA,c X L%,ijq,c X L1B,D] = <7F2,B + Woc,Dyﬂlx,s + 7r2:,D> :
(AxB)+(CxD)— (A+C) x (B+ D)

Shsc:Ax(B+C)— (AxB)+C
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Examples of MLDCs

Example
@ Braided monoidal categories (X, @, 1, @, 1)
Vi=A'lol=1  Aj=p:l=lol m=1:1-1
tas.co=Tipcp: (A2B)@(CoD)— (Ao C)o (B0 D)
Shsc=ansc: (A0B)©C— A0 (BoC)

@® Cartesian linearly distributive category (X, x,1,+,0)

Vi=tu:1+1 =21 Ao=bpxo:0—>0x0 m=t=5b:0—-1

HAB,C.D = [LOA,c X L%,ijq,c X L1B,D] = <7F2,B + Woc,Dyﬂl\,s + WZ:,D) :
(AxB)+(CxD)— (A+C) x (B+ D)

Shsc:Ax(B+C)— (AxB)+C
© Category of P-coherences and P-coherence maps P-Coh, in the sense of

Lamarche [13], for some posetal symmetric MLDC P (e.g. a bounded
distributive lattice)
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Properties of MLDCs

Definition

A symmetric MLDC, or SMLDC, (X, ®, T, ®, L) is a MLDC with braidings og and og
such that (X, ®, T, 4, L) isa SLDC, and (X, ®, L, ®, T) is a symmetric duoidal
category.

= An alternative definition for SMLDC can be given without assuming the
existenceof m: L — T.
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Properties of MLDCs

Definition

A symmetric MLDC, or SMLDC, (X, ®, T, ®, L) is a MLDC with braidings og and og
such that (X, ®, T, 4, L) isa SLDC, and (X, ®, L, ®, T) is a symmetric duoidal
category.

= An alternative definition for SMLDC can be given without assuming the
existenceof m: L — T.

Proposition
Given a SMLDC (X, ®, T, ®, L), the following are equivalent:
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Properties of MLDCs

Definition

A symmetric MLDC, or SMLDC, (X, ®, T, ®, L) is a MLDC with braidings og and og
such that (X, ®, T, 4, L) isa SLDC, and (X, ®, L, ®, T) is a symmetric duoidal
category.

= An alternative definition for SMLDC can be given without assuming the
existenceof m: L — T.

Proposition

Given a SMLDC (X, ®, T, ®, L), the following are equivalent:

@ the LDC is compact and the duoidal structure is strong,
® jtis isomix,
® the mix maps mix4 g : A® B — A® B are isomorphisms,
® the linear distributivities are associators (modulo the mix maps),
® the L-contraction/T-cocontraction are unitors (modulo nullary mix map), and
® the medial maps are the canonical flip (modulo mix maps).
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Properties of MLDCs

Definition

A symmetric MLDC, or SMLDC, (X, ®, T, ®, L) is a MLDC with braidings og and og
such that (X, ®, T, 4, L) isa SLDC, and (X, ®, L, ®, T) is a symmetric duoidal
category.

= An alternative definition for SMLDC can be given without assuming the
existenceof m: L — T.

Proposition

Given a SMLDC (X, ®, T, ®, L), the following are equivalent:

@ the LDC is compact and the duoidal structure is strong,
® jtis isomix,
® the mix maps mix4 g : A® B — A® B are isomorphisms,
® the linear distributivities are associators (modulo the mix maps),
® the L-contraction/T-cocontraction are unitors (modulo nullary mix map), and
® the medial maps are the canonical flip (modulo mix maps).

@® the linear distributivities are isomorphisms, and
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Properties of MLDCs

Definition

A symmetric MLDC, or SMLDC, (X, ®, T, ®, L) is a MLDC with braidings og and og
such that (X, ®, T, 4, L) isa SLDC, and (X, ®, L, ®, T) is a symmetric duoidal
category.

= An alternative definition for SMLDC can be given without assuming the
existenceof m: L — T.

Proposition

Given a SMLDC (X, ®, T, ®, L), the following are equivalent:
@ the LDC is compact and the duoidal structure is strong,
® jtis isomix,
® the mix maps mix4 g : A® B — A® B are isomorphisms,
® the linear distributivities are associators (modulo the mix maps),
® the L-contraction/T-cocontraction are unitors (modulo nullary mix map), and
® the medial maps are the canonical flip (modulo mix maps).

@® the linear distributivities are isomorphisms, and
© the LDC is isomix.
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Medial bimonoids

Definition

Let X be a SMLDC. A bicommutative medial bimonoid in X is a quintuple
(A, A, ua, Va, ea) consisting of an object A and

Apg:A—ARA er:A—=T Va:APA—A up: LA
in X
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Medial bimonoids

Definition

Let X be a SMLDC. A bicommutative medial bimonoid in X is a quintuple
(A, A, ua, Va, ea) consisting of an object A and

Apg:A—ARA er:A—=T Va:APA—A up: LA

in X such that (A, Aa, ea) is a cocommutative ®-comonoid and (A, Va, ua) is a
commutative ¢-monoid, satisfying

AGA— A A L AgA JRELNE
AA@AAi/ T\VA®VA UA\L /
A
Va ua
APA———A 11— S A
- R o
TET —=T 19l —AQA
\%y ua®up
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Medial bimonoids

Definition

Let X be a SMLDC. A bicommutative medial bimonoid in X is a quintuple
(A, A, ua, Va, ea) consisting of an object A and

Apg:A—ARA er:A—=T Va:APA—A up: LA

in X such that (A, Aa, ea) is a cocommutative ®-comonoid and (A, Va, ua) is a
commutative ¢-monoid, satisfying

AGA— A A L AgA JRELNE
AA@AAi/ T\VA®VA “A\L /
A
Va ua
APA———A 11— S A
vl o
TT —T 1l —ARA
\%y ua®up

Alternatively, it is a bicommutative duoidal bimonoid in the duoidal structure of X.
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Medial bimonoids

Proposition

Given two bicommutative medial bimonoids (A, Aa, €a,Va, Ua) and (B, Ag, eg, Vg, Ug)
in X, then <A ® B, Aags, €anB, VA2B, UA®B> dEﬁHEd by
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Medial bimonoids

Proposition

Given two bicommutative medial bimonoids (A, Aa, €a, Va, ua) and (B, Ag, e, Vg, Ug)
inX, then <A ® B, Aags, €an8, V A9B, UA®B> defined by

®
TAA,B,B

Apgs = A® B 24228, (AR A)® (B® B) 2222, (A® B) @ (A® B)

HA,B,A,B
s

Vase = (A€ B) & (A0 B) (A®A)® (BoB) % Aw B

Cas=A2BLEE TOT X T Ugs=L 25 1ol Y28 A0B

Rose Kudzman-Blais LD-Fox Theorem July 19, 2025 20/33




Medial bimonoids

Proposition
Given two bicommutative medial bimonoids (A, Aa, €a, Va, ua) and (B, Ag, e, Vg, Ug)
inX, then <A ® B, Aags, €an8, V A9B, UA®B> defined by

®
TAA,B,B

Apgs = A® B 24228, (AR A)® (B® B) 2222, (A® B) @ (A® B)

HA,B,AB
—

Vase = (A€ B) & (A0 B) (A®A)® (BoB) % Aw B

eA@B:A®BE%T®Tl’T UA®B:J_E'—>J_®J_UL®13—>A®B

and (A® B, Aags, tags, Vaps, Saps) defined by
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Medial bimonoids

Proposition
Given two bicommutative medial bimonoids (A, Aa, €a, Va, ua) and (B, Ag, e, Vg, Ug)
inX, then (A® B, AagB, €a%8, VA28, UsB) defined by

®
[AVILAY:] TAA,B,B

Dags =A® B 228 (Ao A)® (B® B) 2222 (A2 B)® (A® B)

HA,B,AB
—

Vase = (A€ B) & (A0 B) (A®A)® (BoB) % Aw B

eA@B:A®Bl®iB+T®Tl’T UA®B:J_E'—>J_®J_UL®13—>A®B

and (A® B, Aags, tags, Vaps, Saps) defined by

HA,A,B,B

Dass=A® B 2% (A A) @ (B B) “22% (Ae B)w (A® B)

L
VA®B:(A@B)@(A@B)ﬂ)(AeBA)@(B@B) AZEAY-N P

eas=ASB 2B ToT LT ugs=1" 1ol 225 AgB

are bicommutative medial bimonoids.
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LDC of medial bimonoids

Definition
Let X be a SMLDC. A medial bimonoid morphism is a morphism f: A— Bin X
such that

° f: (A Aa ea) — (B, Ag, ep) is a ®-comonoid morphism, and

® f: (A Va,ua) — (B, Vg, ug) is a ®-monoid morphism.

Define B[X] to be the category of bicommutative medial bimonoids and bimonoid
morphisms in X.
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LDC of medial bimonoids

Definition
Let X be a SMLDC. A medial bimonoid morphism is a morphism f: A— Bin X
such that

° f: (A Aa ea) — (B, Ag, ep) is a ®-comonoid morphism, and

® f: (A Va,ua) — (B, Vg, ug) is a ®-monoid morphism.

Define B[X] to be the category of bicommutative medial bimonoids and bimonoid
morphisms in X.

Lemma
B[X] is a SLDC.
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LDC of medial bimonoids

Definition
Let X be a SMLDC. A medial bimonoid morphism is a morphism f: A— Bin X
such that

° f: (A Aa ea) — (B, Ag, ep) is a ®-comonoid morphism, and

® f: (A Va,ua) — (B, Vg, ug) is a ®-monoid morphism.

Define B[X] to be the category of bicommutative medial bimonoids and bimonoid
morphisms in X.

Lemma
B[X] is a SLDC.

Proposition
B[X] is a CLDC.
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Linear functors

Definition (Cockett, Seely [7])
A (bilax) linear functor F = (Fg, Fg) : X — Y consists of:
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Linear functors

Definition (Cockett, Seely [7])
A (bilax) linear functor F = (Fg, Fg) : X — Y consists of:
® alax monoidal functor (Fg, mt,mg): (X,®,T) = (Y,®, T),
mr: T — Fg(T) Mgap: Fe(A)® Fg(B) = Fy(A® B)
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Linear functors

Definition (Cockett, Seely [7])
A (bilax) linear functor F = (Fg, Fg) : X — Y consists of:
® alax monoidal functor (Fg, mt,mg): (X,®,T) = (Y,®, T),
mr: T — Fg(T) Mgap: Fe(A)® Fg(B) = Fy(A® B)
® acolax monoidal functor (Fg,n.,ne) : (X,&, L) = (Y,d, 1),
n: Fep(Ll)— 1 Noap: Fa(A® B) = Fgo(A) © Fg(B)
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Linear functors

Definition (Cockett, Seely [7])
A (bilax) linear functor F = (Fg, Fg) : X — Y consists of:
¢ alax monoidal functor (Fg, mt,mg): (X,®,T) = (Y,®, T),
mr: T — Fg(T) Mgap: Fe(A)® Fg(B) = Fy(A® B)

® acolax monoidal functor (Fg,n.,ne) : (X,&, L) = (Y,d, 1),
nLZF@(L)—)L n@A’BZF@(A@B)—)F@(A)EBF@(B)

e four natural transformations, known as linear strengths,
ngVB: Fe(A® B) — Fa(A) ® Fg(B)

Véag: Fa(A® B) = Fo(A) @ Fo(B)
Vi a5t Fo(A) ® Fa(B) = Fa(A® B)
Véag: Fo(A)® Fo(B) — Fo(A® B)

subject to various coherence conditions.
v
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Linear functors

Definition (Cockett, Seely [7])
A (bilax) linear functor F = (Fg, Fg) : X — Y consists of:
¢ alax monoidal functor (Fg, mt,mg): (X,®,T) = (Y,®, T),
mr: T — Fg(T) Mgap: Fe(A)® Fg(B) = Fy(A® B)

® acolax monoidal functor (Fg,n.,ne) : (X,&, L) = (Y,d, 1),
nLZF@(L)—)L n@AﬁBZF@(A@B)—)F@(A)EBF@(B)

e four natural transformations, known as linear strengths,
ngVB: Fe(A® B) — Fa(A) ® Fg(B)

Viag: Fo(A® B) — Fg(A) @ Fa(B)
Vi a5t Fo(A) ® Fa(B) = Fa(A® B)
Véas: Fo(A)® Fo(B) = Fe(A® B)

subject to various coherence conditions.

Remark. There is a notion of Frobenius linear functor which amounts to a lax

®-monoidal/colax &-monoidal functor which interacts coherently with the linear

distributivities [4].
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Cartesian linear functors

Definition (Cockett, Seely [7])

If X and Y are SLDCs, then a linear functor F = (Fg, Fg) is symmetric if Fg and Fg
are symmetric, and

L

Fe(A® B) L Fs(A) @ Fg(B) Fo(A) ® Fg(B) i Fo(A® B)
F®(G®)l T"EB °®l TF@(U@;)
F®(B®A)T>F@(B)€BF®(A) F®(B)®F@(A)T>F@(B®A)
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Cartesian linear functors

Definition (Cockett, Seely [7])

If X and Y are SLDCs, then a linear functor F = (Fg, Fg) is symmetric if Fg and Fg
are symmetric, and

L

Vv VL
Fo(A® B) —>> Fg(A) @ Fa(B) Fe(A) ® Fg(B) ——> Fo(A® B)
F®(G®)l T"EB °®l TF@(U@;)
Fo(B® A) —— Fg(B) & Fg(A) Fe(B) ® Fa(A) —— Fe(B® A)
=3 Vo
Definition

A strong linear functor is a linear functor F = (Fg, Fg): X — Y where Fg and Fg
are monoidal functors.
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Cartesian linear functors

Definition (Cockett, Seely [7])

If X and Y are SLDCs, then a linear functor F = (Fg, Fg) is symmetric if Fg and Fg
are symmetric, and

L L

Fe(A® B) L Fs(A) @ Fg(B) Fo(A) ® Fg(B) i> Fo(A® B)
F®(G®)\L T"EB ‘7®i TF@(G@»)
F®(B€9A)T>F@(B)€BF®(A) F®(B)®F@(A)T>F@(B®A)

Definition

A strong linear functor is a linear functor F = (Fg, Fg): X — Y where Fg and Fg
are monoidal functors. A strong symmetric linear functor between CLDCs is known
as a cartesian linear functor.

v
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Duoidal functors

Definition (Aguiar, Mahajan [1])
A bilax duoidal functor (F,p;, po,qy,q:): X — Yis afunctor F: X — Y such that

Rose Kudzman-Blais LD-Fox Theorem July 19, 2025 24/33



Duoidal functors

Definition (Aguiar, Mahajan [1])
A bilax duoidal functor (F,p;, po,qy,q:): X — Yis afunctor F: X — Y such that
°* (F,p,ps): (X,0,1) = (V,0,]) is a lax monoidal functor,

piil— F(I)  popg: F(A)o F(B) = F(AoB)
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Duoidal functors

Definition (Aguiar, Mahajan [1])
A bilax duoidal functor (F,p;, po,qy,q:): X — Yis afunctor F: X — Y such that
°* (F,p,ps): (X,0,1) = (V,0,]) is a lax monoidal functor,

pi: 1 — F() Poag: F(A)o F(B) — F(A¢c B)
° (F,q,q.): (X,%,J) = (V,*,J) is a colax monoidal functor,
qQu: F(J) = J  Qupp: F(AxB) — F(A)x F(B)

satisfying coherence conditions.
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Duoidal functors

Definition (Aguiar, Mahajan [1])

A bilax duoidal functor (F,p;, po,qy,q:): X — Yis afunctor F: X — Y such that
°* (F,p,ps): (X,0,1) = (V,0,]) is a lax monoidal functor,

pi: 1 — F() Poag: F(A)o F(B) = F(A< B)
° (F,q,q.): (X,%,J) = (V,*,J) is a colax monoidal functor,
qQu: F(J) = J  Qupp: F(AxB) — F(A)x F(B)

satisfying coherence conditions.

Proposition (Aguiar, Mahajan [1])

A bilax duoidal functor preserves bimonoids and morphisms between bimonoids.
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Medial linear functors

Definition
A symmetric medial linear functor F = (Fg, Fg) : X — Y consists of:
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Medial linear functors

Definition
A symmetric medial linear functor F = (Fg, Fg) : X — Y consists of:
e afunctor Fg: X — Y, equipped with
mr: T = Fg(T) Mg ap: Fo(A) ® Fy(B) = Fy(A® B)
my: L — Fg(l) Mg, p: Feo(A) © Fe(B) — Fe(A® B)
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Medial linear functors

Definition
A symmetric medial linear functor F = (Fg, Fg) : X — Y consists of:
e afunctor Fg: X — Y, equipped with
mr: T = Fg(T) Mg ap: Fo(A) ® Fy(B) = Fy(A® B)
my: L — Fg(l) Mg, p: Feo(A) © Fe(B) — Fe(A® B)
e afunctor Fe: X — Y, equipped with
ni:Fe(l) = L Neap: Fo(A® B) = Fg(A) & Fg(B)
nr: Fe(T)—T Nepp: Fo(A® B) = Fa(A) ® Fe(B)
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Medial linear functors

Definition
A symmetric medial linear functor F = (Fg, Fg) : X — Y consists of:
e afunctor Fg: X — Y, equipped with
mr: T = Fg(T) Mg ap: Fo(A) ® Fy(B) = Fy(A® B)
my: L — Fg(l) Mg 5: Fo(A) ® Fy(B) = Fe(A® B)

e afunctor Fe: X — Y, equipped with
ni:Fe(l) = L Neap: Fo(A® B) = Fg(A) & Fg(B)
nr: Fe(T)—T Noap: Fo(A® B) = Fo(A) ® Fg(B)
e linear strength natural transformations
Viap: Fe(A® B) = Fo(A) @ Fa(B)
Viap: Fo(A)® Fo(B) = F3(A® B)
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Medial linear functors

Definition
A symmetric medial linear functor F = (Fg, Fg) : X — Y consists of:
e afunctor Fg: X — Y, equipped with
mr: T = Fg(T) Mg ap: Fo(A) ® Fy(B) = Fy(A® B)
my: L — Fg(l) Mg 5: Fo(A) ® Fy(B) = Fe(A® B)

e afunctor Fe: X — Y, equipped with
ni: Fe(l) = L Neap: Fo(A® B) = Fg(A) & Fg(B)
nr: Fe(T)—=T Noap: Fo(A® B) = Fo(A) ® Fg(B)
e linear strength natural transformations
Viap: Fe(A® B) = Fo(A) @ Fa(B)
Viap: Fo(A)® Fo(B) = F3(A® B)
such that
® F = (Fg, Fg) is a symmetric strong linear functor,
* (Fg,my,mg, my',mz")is a bilax duoidal functor,

* (Fo,n7',ng',nr,ne)is a bilax duoidal functor, and
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Medial linear functors

Definition
¢ the linear strengths interact coherently with A /V+, with p4 g ¢.p, and with
mg/ng e.g.
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Medial linear functors

Definition
¢ the linear strengths interact coherently with A /V+, with p4 g ¢.p, and with
mg/ng e.g.
VFx'
ny A T, T
Fo(l)— 1 —— 1®1 Fo(TOT) —— Fa(T)® Fe(T)
Fo(Al) l l mi@n]" Fe(VT) i i nremT!
V%L,L T vT
Fe (1)
Fe((A® B) @ (C ® D)) Fe((Ad C)® (Be D))
. -
Fo(A® B) ® Fo(C ® D) Fe(A® C)® Fg(B® D)
n®®mé1l \Lu%@ug
(Fa(A) ® Fo(B)) ® (Fo(C) ® Fe(D))) —— (Fa(A) ® Fo(C)) ® (Fe(B) @ Fe(D))

v
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Medial linear functors

Lemma

Consider a symmetric medial linear functor F = (Fg, Fe) : X — Y between SMLDCs,
then it canonically extends to a cartesian linear functor
B[F] = (B[F]e, B[Fla) : B[X] — B[Y], where
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given by
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Medial linear functors

Lemma

Consider a symmetric medial linear functor F = (Fg, Fe) : X — Y between SMLDCs,

then it canonically extends to a cartesian linear functor
B[F] = (B[F]g,B[F]s) : B[X] — B[Y], where

B[Fle maps (A, Aa, ea, Va, ua) to Fg(A) equipped with medial bimonoid structure
given by

Feo(An) ®AA
=4

Ary () = Fa(A) Fo(A® A) — Fg(A) @ Fe(A)

—1

F
er, ) = Fo(A) 2% Fo(m) I T

WYY ®(Va)

VF®(A) F®(A) D F®(A) — Fg (Aea A) — " F, (A)
F
Uy = L 5 Fo(1) 22 £ (A)

and B[F]g is defined similarly.
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Main Result

Lemma

® CLDCs, cartesian linear functors and linear transformations form a 2-category
CLDC.
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Main Result

Lemma

® CLDCs, cartesian linear functors and linear transformations form a 2-category
CLDC.

® SMLDCs, symmetric medial linear functors and medial linear transformations form
a 2-category SMLDC.

® There is an inclusion 2-functor inc : CLDC — SMLDC.
® B[—]: SMLDC — CLDC determines a 2-functor.

Theorem (Linearly Distributive Fox Theorem)
inc 41 B[-] : CLDC — SMLDC.

Corollary

A SMLDC is cartesian if and only if it is isomorphic to its category of bicommutative
medial bimonoids and medial bimonoid morphisms.
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THANK YOU FOR LISTENING

R. Kudzman-Blais. Linearly Distributive Fox Theorem, (arXiv:2506.02180).

https://sites.google.com/view/rosekudzmanblais/home
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Medial linear transformation

Definition
Let F,G: X — Y be symmetric medial linear functors. A medial linear
transformation o = (ag, ag) : F = G consists of:

e anatural transformation ag : Fg = Gg such that

°* ag: (Fg,mb mF) = (G®,m mG) is a monoidal transformation,
® ag: (Fg,m’, m®) = (Gg, mJ_, m@) is a monoidal transformation,

® a natural transformation ag : Gg = Fg such that
® ag : (Gg,n% 7, ng) = (Fg, nl, n®) is a comonoidal transformation,
® ag : (Gg,nT% ng%) = (Fg,nf, ngF) is a comonoidal transformation,
such that o = (ag, ag) is a linear transformation.

Remark. Conditions above are equivalent to

F F —1F ___1F G —1G 4G
® - (F®ami7m$ , M >m® ):> (G®7ml7m€9 , Mt 7m® )

—-1G 4G G G —1F __1F F F
(GEB7 7n® 7n@ , Nt ) (FEB, 7nEB 7n€9 , Nt )
being bilax duoidal transformations.
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