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Main Result

Theorem (Fox Theorem)

inc ⊣ C[−] : CART → SMC

Within the field of categorical semantics of linear logic, there is a notion of
cartesian linearly distributive categories (CLDC).

Question: Can we prove a Fox-like theorem in context of linearly distributive
categories (LDC)?

inc ⊣ ?[−] : CLDC →?LDC

Theorem (Linearly Distributive Fox Theorem)

inc ⊣ B[−] : CLDC → SMLDC

⇒ SMLDC: 2-category of symmetric medial LDCs
⇒ B[X]: category of bicommutative medial bimonoids
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Categorical semantics of linear logic

Girard introduced a sub-structural logic in 1987 [10]:

Linear Logic

Multiplicative Additive Exponential
Conjunction ⊗, 1 &,⊤ !
Disjunction `,⊥ ⊕, 0 ?

Implication Negation
Linear ⊸ (−)⊥

Categorical semantics were investigated by Seely [15] and it was shown that
multiplicative linear logic (MLL) with negation corresponds to Barr’s ∗-autonomous
categories [2]:

• a SMC (X,⊗, 1) with
• a full and faithful functor (−)⊥ : Xop → X such that

X(A ⊗ B,C⊥) ∼= X(A, (B ⊗ C)⊥)

⇒ Multiplicative conjunction and linear negation are taken as the primitive
categorical notions.
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Linearly distributive categories

In 1992, Cockett and Seely introduced alternative semantics for MLL which take
multiplicative conjunction (tensor) and disjunction (par) as primitive:

Definition (Cockett, Seely [6])
A linearly distributive category, or LDC, (X,⊗,⊤,⊕,⊥) consists of:

• a category (X, ; , 1A),
• a tensor monoidal structure (X,⊗,⊤),
• a par monoidal structure (X,⊕,⊥), and
• left and right linear distributivity natural transformations

δR
A,B,C : (A ⊕ B)⊗ C → A ⊕ (B ⊗ C)

δL
A,B,C : A ⊗ (B ⊕ C) → (A ⊗ B)⊕ C

satisfying coherence conditions.

Remark. Notational conflict
Tensor Par With Plus

Cockett+Seely ⊗.⊤ ⊕,⊥ ×, 1 +, 0
Girard ⊗, 1 `,⊥ &,⊤ ⊕, 0
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Symmetric LDCs

Definition (Cockett, Seely [6])
A LDC X is symmetric, or a SLDC, if

• (X,⊗,⊤) is symmetric with ⊗-braiding

σ⊗A,B : A ⊗ B → B ⊗ A

• (X,⊕,⊥) is symmetric with ⊕-braiding

σ⊕A,B : A ⊕ B → B ⊕ A

such that

(A ⊕ B)⊗ C
δR

A,B,C //

σ⊗A⊕B,C

��

A ⊕ (B ⊗ C)

C ⊗ (A ⊕ B)

1C⊗σ⊕A,B
��

(B ⊗ C)⊕ A

σ⊕B⊗C,A

OO

C ⊗ (B ⊕ A)
δL

C,B,A

// (C ⊗ B)⊕ A

σ⊗C,B⊕1A

OO
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Mix LDCs

Γ ⊢ ∆ Θ ⊢ Ψ (MIX)
Γ,Θ ⊢ ∆,Ψ

Definition (Cockett, Seely [5])
A LDC X is mix if there is a map m : ⊥ → ⊤ such that

A ⊗ B
1A⊗uL

⊕
−1
B //

uR
⊕

−1
A

⊗1B

��

A ⊗ (⊥⊕ B)
1A⊗(m⊕1B)// A ⊗ (⊤⊕ B)

δL
A,⊤,B
��

(A ⊕⊥)⊗ B

(1A⊕m)⊗1B
��

(A ⊗⊤)⊕ B

uR
⊗

−1
A

⊕1B
��

(A ⊕⊤)⊗ B
δR

A,⊤,B

// A ⊕ (⊤⊗ B)
1A⊕uL

⊗
−1
B

// A ⊕ B

in which case there is a natural transformation

mixA,B : A ⊗ B → A ⊕ B

A LDC is isomix if it is mix and m : ⊥ → ⊤ is an isomorphism.
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Cartesian LDCs

Definition (Cockett, Seely [6])
A cartesian linearly distributive category, or CLDC, (X,×, 1,+, 0) is a SLDC
whose

• tensor structure is cartesian - the categorical product × with the terminal
object 1, and

• par structure is cocartesian - the categorical coproduct + with the initial object
0.

C
f

||zz
zz
zz
zz
z

g

""D
DD

DD
DD

DD

⟨f ,g⟩
���
�
� A

tA
���
�
� A

ι0A,B //

h
""D

DD
DD

DD
DD

A + B

[h,k ]

���
�
� B

ι1A,Boo

k
||zz
zz
zz
zz
z

0

bA

���
�
�

A A × B
π0

A,B

oo
π1

A,B

// B 1 C A
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CLDC: Examples

Example
1 Bounded distributive lattice (L,∧,⊤,∨,⊥)

δR
A,B,C : (A ∨ B) ∧ C = (A ∧ C) ∨ (B ∧ C) ≤ A ∨ (B ∧ C)

δL
A,B,C : A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) ≤ (A ∧ B) ∨ C

• A (small) CLDC is a distributive category iff it is a bounded distributive lattice [6].
• A (small) CLDC has negation iff it is a Boolean algebra (Joyal’s paradox).

2 Semi-additive category (X,×, ∅,+, ∅) where ψA,B : A + B ∼= A × B

(A + B)× C

δR
A,B,C

��

ψA,B×1C// (A × B)× C

α×A,B,C

��

A × (B + C)

δL
A,B,C

��

1A×ψB,C// A × (B × C)

α×
−1
A,B,C

��
A + (B × C) A × (B × C)

ψ−1
A,B×C

oo (A × B) + C (A × B)× C
ψ−1

A×B,C

oo

• A CLDC has invertible δL and δR iff it is a semi-additive category [K-B, Lemay].
• A CLDC is isomix iff it is a semi-additive category [K-B, Lemay].

3 Product of CLDCs
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Motivation

→ After their introduction and the realization that they are orthogonal to
distributive categories, the study of CLDCs was abandoned.

→ The interaction between cartesian structures and linear distributivity remains
worth investigating, in particular it has appeared in work within categorical
classical logic [9, 17, 14].

(1)

Characterization of CLDCs
⇒ Linearly Distributive Fox

Theorem
(on the arXiv)

(2)

Direct investigation of properties
and examples of CLDCs
⇒ Cartesian Linearly

Distributive Categories:
Revisited - jww JS Lemay
(to appear soon)
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Fox’s theorem

Consider a SMC (X ,⊘, I). Note the canonical flip:

τ⊘A,B,C,D : (A ⊘ B)⊘ (C ⊘ D)
∼−→ (A ⊘ C)⊘ (B ⊘ D)

Proposition (Fox [8])
Given cocommutative comonoids ⟨A,∆A, eA⟩ and ⟨B,∆B, eB⟩, then ⟨A ⊘ B,∆A⊘B, eA⊘B⟩
as defined below is a cocommutative comonoid.

∆A⊘B = A ⊘ B
∆A⊘∆B−−−−−→ (A ⊘ A)⊘ (B ⊘ B)

τ⊘A,A,B,B−−−−−→ (A ⊘ B)⊘ (A ⊘ B)

eA⊘B = A ⊘ B
eA⊘eB−−−−→ I ⊘ I ∼−→ I

Let C[X ] denote the category of cocommutative comonoids and comonoid morphisms
in X , then

• C[X ] is a SMC with the above monoidal product, and further
• it is a cartesian category.
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Fox’s theorem

Theorem (Fox [8])
The functor C[−] : SMC → CART is right adjoint to the inclusion.

Corollary
A SMC X is cartesian if and only if it is isomorphic to its category of cocommutative
comonoids C[X ].

Corollary (Heunen, Vicary [11])
A SMC X is cartesian if and only if there are natural transformations

eA : A → I ∆A : A → A ⊘ A

such that ⟨A,∆A, eA⟩ is cocommutative comonoid and

eA⊘B = (eA ⊘ eB); ρ
−1
I eI = 1I

∆A⊘B = (∆A ⊘∆B); τ
⊘
A,A,B,B ∆I = ρI .
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Back to CLDCs

By Fox’s theorem and its dual applied to CLDCs, we can show that there are
natural transformations

∆A : A → A ⊗ A eA : A → ⊤ ∇A : A ⊕ A → A uA : ⊥ → A

If we consider any SLDC X and try forming the category of such quintuples
⟨A,∆A, eA,∇A, uA⟩, we quickly realize we cannot define a tensor or par product:

eA⊕B : A ⊕ B
eA⊕eB−−−−→ ⊤⊕⊤ ?−→ ⊤

∆A⊕B : A ⊕ B
∆A⊕∆B−−−−−→ (A ⊗ A)⊕ (B ⊗ B)

?−→ (A ⊕ B)⊗ (A ⊕ B)

uA⊗B : ⊥ ?−→ ⊥⊗⊥ uA⊗uB−−−−→ A ⊗ B

∇A⊗B : (A ⊗ B)⊕ (A ⊗ B)
?−→ (A ⊕ A)⊗ (B ⊕ B)

∇A⊗∇B−−−−−→ A ⊗ B
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Back to CLDCs

Moreover, consider a CLDC once more, then ∆A⊕B :

A ⊕ B

1A⊕B

++

∆A⊕∆B
//

(com)

(A ⊗ A)⊕ (B ⊗ B)
∆(A⊗A)⊕(B⊗B)

//

(1A⊗eA)⊕(eB⊗1B)

��

(nat)

((A ⊗ A)⊕ (B ⊗ B))⊗ ((A ⊗ A)⊕ (B ⊗ B))

((1A ⊗ eA) ⊕ (eB ⊗ 1B)) ⊗
((1A ⊗ eA) ⊕ (eB ⊗ 1B))

��
(A ⊗⊤)⊕ (⊤⊗ B)

uR
⊗

−1
A

⊕uL
⊕

−1
B

��

((A ⊗⊤)⊕ (⊤⊗ B))⊗ ((A ⊗⊤)⊕ (⊤⊗ B))

(uR
⊗

−1
A

⊕uL
⊕

−1
B

)⊗(uR
⊗

−1
A

⊕uL
⊕

−1
B

)

��
A ⊕ B

∆A⊕B

// (A ⊕ B)⊗ (A ⊕ B)

∆A⊕B = A ⊕ B
∆A⊕∆B−−−−−→ (A ⊗ A)⊕ (B ⊗ B)

µA,A,B,B−−−−−→ (A ⊕ B)⊗ (A ⊕ B)

for some natural transformation

µA,B,C,D : (A ⊗ B)⊕ (C ⊗ D) → (A ⊕ C)⊗ (B ⊕ D)

We need to start with a SLDC X with such arrows.
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Medial rule

In logic, (A ⊗ B)⊕ (C ⊗ D) → (A ⊕ C)⊗ (B ⊕ D) is known as the medial rule.

It has appeared alongside switch (linear distributivity) in different systems of logic,
especially within deep inference (introduced by Guglielmi):

→ Medial rule has been considered in a local system for classical logic [3], for
intuitionistic logic [18] and for linear logic [16].

The medial rule has also been studied in the categorical semantics for classical
logic when defining the appropriate notion of a “Boolean category” in the work of
Lamarche [14] and Straßburger [17].

⇒ In every case, the medial rule is considered for the same reason it appears
currently.
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logic when defining the appropriate notion of a “Boolean category” in the work of
Lamarche [14] and Straßburger [17].

⇒ In every case, the medial rule is considered for the same reason it appears
currently.

Rose Kudzman-Blais LD-Fox Theorem July 19, 2025 14 / 33



Duoidal categories

Medial rule: instance of interchange law of duoidal categories.

→ The earliest form of the interchange law is found in Joyal and Street’s work on
braided monoidal categories [12].

Definition (Aguiar, Mahajan [1])
A duoidal category (X , ⋄, I, ⋆, J) is category X with two monoidal structures
(X , ⋄, I) and (X , ⋆, J) equipped with morphisms

∆I : I → I ⋆ I µJ : J ⋄ J → J ι : I → J

and an interchange natural transformation

ζA,B,C,D : (A ⋆ B) ⋄ (C ⋆ D) → (A ⋄ C) ⋆ (B ⋄ D)

satisfying some coherence conditions.
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Medial LDCs

Definition
A medial LDC, or MLDC, (X,⊗,⊤,⊕,⊥) consists of:

• a tensor monoidal structure (X,⊗,⊤),
• a par monoidal structure (X,⊕,⊥),
• ⊥-contraction, ⊤-cocontraction and nullary mix morphisms,

∆⊥ : ⊥ → ⊥⊗⊥ ∇⊤ : ⊤⊕⊤ → ⊤ m : ⊥ → ⊤

• a medial natural transformation,

µA,B,C,D : (A ⊗ B)⊕ (C ⊗ D) → (A ⊕ C)⊗ (B ⊕ D)

• left and right linear distributivity natural transformations

δR
A,B,C : (A ⊕ B)⊗ C → A ⊕ (B ⊗ C) δL

A,B,C : A ⊗ (B ⊕ C) → (A ⊗ B)⊕ C

such that
• (X,⊗,⊤,⊕,⊥) is a mix LDC,
• (X,⊕,⊥,⊗,⊤) is a duoidal category, and
• the medial maps interact coherently with the linear distributivities.
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Examples of MLDCs

Example
1 Braided monoidal categories (X ,⊘, I,⊘, I)

∇I = λ−1
I : I ⊘ I → I ∆I = ρI : I → I ⊘ I m = 1I : I → I

µA,B,C,D = τ⊘A,B,C,D : (A ⊘ B)⊘ (C ⊘ D) → (A ⊘ C)⊘ (B ⊘ D)

δR
A,B,C = αA,B,C : (A ⊘ B)⊘ C → A ⊘ (B ⊘ C)

2 Cartesian linearly distributive category (X,×, 1,+, 0)

∇1 = t1+1 : 1 + 1 → 1 ∆0 = b0×0 : 0 → 0 × 0 m = t0 = b1 : 0 → 1

µA,B,C,D = [ι0A,C × ι0B,D, ι
1
A,C × ι1B,D] = ⟨π0

A,B + π0
C,D, π

1
A,B + π1

C,D⟩ :
(A × B) + (C × D) → (A + C)× (B + D)

δR
A,B,C : A × (B + C) → (A × B) + C

3 Category of P-coherences and P-coherence maps P-Coh, in the sense of
Lamarche [13], for some posetal symmetric MLDC P (e.g. a bounded
distributive lattice)
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Properties of MLDCs

Definition
A symmetric MLDC, or SMLDC, (X,⊗,⊤,⊕,⊥) is a MLDC with braidings σ⊗ and σ⊕
such that (X,⊗,⊤,⊕,⊥) is a SLDC, and (X,⊕,⊥,⊗,⊤) is a symmetric duoidal
category.

⇒ An alternative definition for SMLDC can be given without assuming the
existence of m : ⊥ → ⊤.

Proposition
Given a SMLDC (X,⊗,⊤,⊕,⊥), the following are equivalent:

1 the LDC is compact and the duoidal structure is strong,
• it is isomix,
• the mix maps mixA,B : A ⊗ B → A ⊕ B are isomorphisms,
• the linear distributivities are associators (modulo the mix maps),
• the ⊥-contraction/⊤-cocontraction are unitors (modulo nullary mix map), and
• the medial maps are the canonical flip (modulo mix maps).

2 the linear distributivities are isomorphisms, and
3 the LDC is isomix.
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Medial bimonoids

Definition
Let X be a SMLDC. A bicommutative medial bimonoid in X is a quintuple
⟨A,∆A, uA,∇A, eA⟩ consisting of an object A and

∆A : A → A ⊗ A eA : A → ⊤ ∇A : A ⊕ A → A uA : ⊥ → A

in X

such that ⟨A,∆A, eA⟩ is a cocommutative ⊗-comonoid and ⟨A,∇A, uA⟩ is a
commutative ⊕-monoid, satisfying

A ⊕ A
∇A //

∆A⊕∆A ��

A
∆A // A ⊗ A ⊥ m //

uA ��

⊤

(A ⊗ A)⊕ (A ⊗ A)
µA,A,A,A

// (A ⊕ A)⊗ (A ⊕ A)

∇A⊗∇A

OO

A
eA

<<xxxxxx

A ⊕ A
∇A //

eA⊕eA ��

A
eA��

⊥
uA //

∆⊥ ��

A
∆A��

⊤⊕⊤
∇⊤

// ⊤ ⊥⊗⊥
uA⊗uA

// A ⊗ A

Alternatively, it is a bicommutative duoidal bimonoid in the duoidal structure of X.

Rose Kudzman-Blais LD-Fox Theorem July 19, 2025 19 / 33



Medial bimonoids

Definition
Let X be a SMLDC. A bicommutative medial bimonoid in X is a quintuple
⟨A,∆A, uA,∇A, eA⟩ consisting of an object A and

∆A : A → A ⊗ A eA : A → ⊤ ∇A : A ⊕ A → A uA : ⊥ → A

in X such that ⟨A,∆A, eA⟩ is a cocommutative ⊗-comonoid and ⟨A,∇A, uA⟩ is a
commutative ⊕-monoid, satisfying

A ⊕ A
∇A //

∆A⊕∆A ��

A
∆A // A ⊗ A ⊥ m //

uA ��

⊤

(A ⊗ A)⊕ (A ⊗ A)
µA,A,A,A

// (A ⊕ A)⊗ (A ⊕ A)

∇A⊗∇A

OO

A
eA

<<xxxxxx

A ⊕ A
∇A //

eA⊕eA ��

A
eA��

⊥
uA //

∆⊥ ��

A
∆A��

⊤⊕⊤
∇⊤

// ⊤ ⊥⊗⊥
uA⊗uA

// A ⊗ A

Alternatively, it is a bicommutative duoidal bimonoid in the duoidal structure of X.

Rose Kudzman-Blais LD-Fox Theorem July 19, 2025 19 / 33



Medial bimonoids

Definition
Let X be a SMLDC. A bicommutative medial bimonoid in X is a quintuple
⟨A,∆A, uA,∇A, eA⟩ consisting of an object A and

∆A : A → A ⊗ A eA : A → ⊤ ∇A : A ⊕ A → A uA : ⊥ → A

in X such that ⟨A,∆A, eA⟩ is a cocommutative ⊗-comonoid and ⟨A,∇A, uA⟩ is a
commutative ⊕-monoid, satisfying

A ⊕ A
∇A //

∆A⊕∆A ��

A
∆A // A ⊗ A ⊥ m //

uA ��

⊤

(A ⊗ A)⊕ (A ⊗ A)
µA,A,A,A

// (A ⊕ A)⊗ (A ⊕ A)

∇A⊗∇A

OO

A
eA

<<xxxxxx

A ⊕ A
∇A //

eA⊕eA ��

A
eA��

⊥
uA //

∆⊥ ��

A
∆A��

⊤⊕⊤
∇⊤

// ⊤ ⊥⊗⊥
uA⊗uA

// A ⊗ A

Alternatively, it is a bicommutative duoidal bimonoid in the duoidal structure of X.

Rose Kudzman-Blais LD-Fox Theorem July 19, 2025 19 / 33



Medial bimonoids

Proposition
Given two bicommutative medial bimonoids ⟨A,∆A, eA,∇A, uA⟩ and ⟨B,∆B, eB,∇B, uB⟩
in X, then ⟨A ⊗ B,∆A⊗B, eA⊗B,∇A⊗B, uA⊗B⟩ defined by

∆A⊗B = A ⊗ B
∆A⊗∆B−−−−−→ (A ⊗ A)⊗ (B ⊗ B)

τ⊗A,A,B,B−−−−−→ (A ⊗ B)⊗ (A ⊗ B)

∇A⊗B = (A ⊗ B)⊕ (A ⊗ B)
µA,B,A,B−−−−−→ (A ⊕ A)⊗ (B ⊕ B)

∇A⊗∇B−−−−−→ A ⊗ B

eA⊗B = A ⊗ B
eA⊗eB−−−−→ ⊤⊗⊤ ∼−→ ⊤ uA⊗B = ⊥ ∆⊥−−→ ⊥⊗⊥ uA⊗uB−−−−→ A ⊗ B

and ⟨A ⊕ B,∆A⊕B, tA⊕B,∇A⊕B, sA⊕B⟩ defined by

∆A⊕B = A ⊕ B
∆A⊕∆B−−−−−→ (A ⊗ A)⊕ (B ⊗ B)

µA,A,B,B−−−−−→ (A ⊕ B)⊗ (A ⊕ B)

∇A⊕B = (A ⊕ B)⊕ (A ⊕ B)
τ⊕A,B,A,B−−−−−→ (A ⊕ A)⊕ (B ⊕ B)

∇A⊕∇B−−−−−→ A ⊕ B

eA⊕B = A ⊕ B
eA⊕eB−−−−→ ⊤⊕⊤ ∇⊤−−→ ⊤ uA⊕B = ⊥ ∼−→ ⊥⊕⊥ uA⊕uB−−−−→ A ⊕ B

are bicommutative medial bimonoids.

Rose Kudzman-Blais LD-Fox Theorem July 19, 2025 20 / 33



Medial bimonoids

Proposition
Given two bicommutative medial bimonoids ⟨A,∆A, eA,∇A, uA⟩ and ⟨B,∆B, eB,∇B, uB⟩
in X, then ⟨A ⊗ B,∆A⊗B, eA⊗B,∇A⊗B, uA⊗B⟩ defined by

∆A⊗B = A ⊗ B
∆A⊗∆B−−−−−→ (A ⊗ A)⊗ (B ⊗ B)

τ⊗A,A,B,B−−−−−→ (A ⊗ B)⊗ (A ⊗ B)

∇A⊗B = (A ⊗ B)⊕ (A ⊗ B)
µA,B,A,B−−−−−→ (A ⊕ A)⊗ (B ⊕ B)

∇A⊗∇B−−−−−→ A ⊗ B

eA⊗B = A ⊗ B
eA⊗eB−−−−→ ⊤⊗⊤ ∼−→ ⊤ uA⊗B = ⊥ ∆⊥−−→ ⊥⊗⊥ uA⊗uB−−−−→ A ⊗ B

and ⟨A ⊕ B,∆A⊕B, tA⊕B,∇A⊕B, sA⊕B⟩ defined by

∆A⊕B = A ⊕ B
∆A⊕∆B−−−−−→ (A ⊗ A)⊕ (B ⊗ B)

µA,A,B,B−−−−−→ (A ⊕ B)⊗ (A ⊕ B)

∇A⊕B = (A ⊕ B)⊕ (A ⊕ B)
τ⊕A,B,A,B−−−−−→ (A ⊕ A)⊕ (B ⊕ B)

∇A⊕∇B−−−−−→ A ⊕ B

eA⊕B = A ⊕ B
eA⊕eB−−−−→ ⊤⊕⊤ ∇⊤−−→ ⊤ uA⊕B = ⊥ ∼−→ ⊥⊕⊥ uA⊕uB−−−−→ A ⊕ B

are bicommutative medial bimonoids.

Rose Kudzman-Blais LD-Fox Theorem July 19, 2025 20 / 33



Medial bimonoids

Proposition
Given two bicommutative medial bimonoids ⟨A,∆A, eA,∇A, uA⟩ and ⟨B,∆B, eB,∇B, uB⟩
in X, then ⟨A ⊗ B,∆A⊗B, eA⊗B,∇A⊗B, uA⊗B⟩ defined by

∆A⊗B = A ⊗ B
∆A⊗∆B−−−−−→ (A ⊗ A)⊗ (B ⊗ B)

τ⊗A,A,B,B−−−−−→ (A ⊗ B)⊗ (A ⊗ B)

∇A⊗B = (A ⊗ B)⊕ (A ⊗ B)
µA,B,A,B−−−−−→ (A ⊕ A)⊗ (B ⊕ B)

∇A⊗∇B−−−−−→ A ⊗ B

eA⊗B = A ⊗ B
eA⊗eB−−−−→ ⊤⊗⊤ ∼−→ ⊤ uA⊗B = ⊥ ∆⊥−−→ ⊥⊗⊥ uA⊗uB−−−−→ A ⊗ B

and ⟨A ⊕ B,∆A⊕B, tA⊕B,∇A⊕B, sA⊕B⟩ defined by

∆A⊕B = A ⊕ B
∆A⊕∆B−−−−−→ (A ⊗ A)⊕ (B ⊗ B)

µA,A,B,B−−−−−→ (A ⊕ B)⊗ (A ⊕ B)

∇A⊕B = (A ⊕ B)⊕ (A ⊕ B)
τ⊕A,B,A,B−−−−−→ (A ⊕ A)⊕ (B ⊕ B)

∇A⊕∇B−−−−−→ A ⊕ B

eA⊕B = A ⊕ B
eA⊕eB−−−−→ ⊤⊕⊤ ∇⊤−−→ ⊤ uA⊕B = ⊥ ∼−→ ⊥⊕⊥ uA⊕uB−−−−→ A ⊕ B

are bicommutative medial bimonoids.

Rose Kudzman-Blais LD-Fox Theorem July 19, 2025 20 / 33



Medial bimonoids

Proposition
Given two bicommutative medial bimonoids ⟨A,∆A, eA,∇A, uA⟩ and ⟨B,∆B, eB,∇B, uB⟩
in X, then ⟨A ⊗ B,∆A⊗B, eA⊗B,∇A⊗B, uA⊗B⟩ defined by

∆A⊗B = A ⊗ B
∆A⊗∆B−−−−−→ (A ⊗ A)⊗ (B ⊗ B)

τ⊗A,A,B,B−−−−−→ (A ⊗ B)⊗ (A ⊗ B)

∇A⊗B = (A ⊗ B)⊕ (A ⊗ B)
µA,B,A,B−−−−−→ (A ⊕ A)⊗ (B ⊕ B)

∇A⊗∇B−−−−−→ A ⊗ B

eA⊗B = A ⊗ B
eA⊗eB−−−−→ ⊤⊗⊤ ∼−→ ⊤ uA⊗B = ⊥ ∆⊥−−→ ⊥⊗⊥ uA⊗uB−−−−→ A ⊗ B

and ⟨A ⊕ B,∆A⊕B, tA⊕B,∇A⊕B, sA⊕B⟩ defined by

∆A⊕B = A ⊕ B
∆A⊕∆B−−−−−→ (A ⊗ A)⊕ (B ⊗ B)

µA,A,B,B−−−−−→ (A ⊕ B)⊗ (A ⊕ B)

∇A⊕B = (A ⊕ B)⊕ (A ⊕ B)
τ⊕A,B,A,B−−−−−→ (A ⊕ A)⊕ (B ⊕ B)

∇A⊕∇B−−−−−→ A ⊕ B

eA⊕B = A ⊕ B
eA⊕eB−−−−→ ⊤⊕⊤ ∇⊤−−→ ⊤ uA⊕B = ⊥ ∼−→ ⊥⊕⊥ uA⊕uB−−−−→ A ⊕ B

are bicommutative medial bimonoids.

Rose Kudzman-Blais LD-Fox Theorem July 19, 2025 20 / 33



LDC of medial bimonoids

Definition
Let X be a SMLDC. A medial bimonoid morphism is a morphism f : A → B in X
such that

• f : ⟨A,∆A, eA⟩ → ⟨B,∆B, eB⟩ is a ⊗-comonoid morphism, and
• f : ⟨A,∇A, uA⟩ → ⟨B,∇B, uB⟩ is a ⊕-monoid morphism.

Define B[X] to be the category of bicommutative medial bimonoids and bimonoid
morphisms in X.

Lemma
B[X] is a SLDC.

Proposition
B[X] is a CLDC.
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Linear functors

Definition (Cockett, Seely [7])
A (bilax) linear functor F = (F⊗,F⊕) : X → Y consists of:

• a lax monoidal functor (F⊗,m⊤,m⊗) : (X,⊗,⊤) → (Y,⊗,⊤),
m⊤ : ⊤ → F⊗(⊤) m⊗A,B : F⊗(A)⊗ F⊗(B) → F⊗(A ⊗ B)

• a colax monoidal functor (F⊕, n⊥, n⊕) : (X,⊕,⊥) → (Y,⊕,⊥),
n⊥ : F⊕(⊥) → ⊥ n⊕A,B : F⊕(A ⊕ B) → F⊕(A)⊕ F⊕(B)

• four natural transformations, known as linear strengths,
vR
⊗A,B : F⊗(A ⊕ B) → F⊕(A)⊕ F⊗(B)

vL
⊗A,B : F⊗(A ⊕ B) → F⊗(A)⊕ F⊕(B)

vR
⊕A,B : F⊗(A)⊗ F⊕(B) → F⊕(A ⊗ B)

vL
⊕A,B : F⊕(A)⊗ F⊗(B) → F⊕(A ⊗ B)

subject to various coherence conditions.

Remark. There is a notion of Frobenius linear functor which amounts to a lax
⊗-monoidal/colax ⊕-monoidal functor which interacts coherently with the linear
distributivities [4].
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Cartesian linear functors

Definition (Cockett, Seely [7])
If X and Y are SLDCs, then a linear functor F = (F⊗,F⊕) is symmetric if F⊗ and F⊕
are symmetric, and

F⊗(A ⊕ B)
vL
⊗ //

F⊗(σ⊕)

��

F⊗(A)⊕ F⊕(B) F⊕(A)⊗ F⊗(B)
vL
⊕ //

σ⊗

��

F⊕(A ⊗ B)

F⊗(B ⊕ A)
vR
⊗

// F⊕(B)⊕ F⊗(A)

σ⊕

OO

F⊗(B)⊗ F⊕(A)
vR
⊕

// F⊕(B ⊗ A)

F⊕(σ⊗)

OO

Definition
A strong linear functor is a linear functor F = (F⊗,F⊕) : X → Y where F⊗ and F⊕
are monoidal functors. A strong symmetric linear functor between CLDCs is known
as a cartesian linear functor.
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Duoidal functors

Definition (Aguiar, Mahajan [1])
A bilax duoidal functor (F , pI , p⋄, qJ , q⋆) : X → Y is a functor F : X → Y such that

• (F , pI , p⋄) : (X , ⋄, I) → (Y, ⋄, I) is a lax monoidal functor,

pI : I → F (I) p⋄A,B : F (A) ⋄ F (B) → F (A ⋄ B)

• (F , qJ , q⋆) : (X , ⋆, J) → (Y, ⋆, J) is a colax monoidal functor,

qJ : F (J) → J q⋆A,B : F (A ⋆ B) → F (A) ⋆ F (B)

satisfying coherence conditions.

Proposition (Aguiar, Mahajan [1])
A bilax duoidal functor preserves bimonoids and morphisms between bimonoids.

Rose Kudzman-Blais LD-Fox Theorem July 19, 2025 24 / 33



Duoidal functors

Definition (Aguiar, Mahajan [1])
A bilax duoidal functor (F , pI , p⋄, qJ , q⋆) : X → Y is a functor F : X → Y such that

• (F , pI , p⋄) : (X , ⋄, I) → (Y, ⋄, I) is a lax monoidal functor,

pI : I → F (I) p⋄A,B : F (A) ⋄ F (B) → F (A ⋄ B)

• (F , qJ , q⋆) : (X , ⋆, J) → (Y, ⋆, J) is a colax monoidal functor,

qJ : F (J) → J q⋆A,B : F (A ⋆ B) → F (A) ⋆ F (B)

satisfying coherence conditions.

Proposition (Aguiar, Mahajan [1])
A bilax duoidal functor preserves bimonoids and morphisms between bimonoids.

Rose Kudzman-Blais LD-Fox Theorem July 19, 2025 24 / 33



Duoidal functors

Definition (Aguiar, Mahajan [1])
A bilax duoidal functor (F , pI , p⋄, qJ , q⋆) : X → Y is a functor F : X → Y such that

• (F , pI , p⋄) : (X , ⋄, I) → (Y, ⋄, I) is a lax monoidal functor,

pI : I → F (I) p⋄A,B : F (A) ⋄ F (B) → F (A ⋄ B)

• (F , qJ , q⋆) : (X , ⋆, J) → (Y, ⋆, J) is a colax monoidal functor,

qJ : F (J) → J q⋆A,B : F (A ⋆ B) → F (A) ⋆ F (B)

satisfying coherence conditions.

Proposition (Aguiar, Mahajan [1])
A bilax duoidal functor preserves bimonoids and morphisms between bimonoids.

Rose Kudzman-Blais LD-Fox Theorem July 19, 2025 24 / 33



Duoidal functors

Definition (Aguiar, Mahajan [1])
A bilax duoidal functor (F , pI , p⋄, qJ , q⋆) : X → Y is a functor F : X → Y such that

• (F , pI , p⋄) : (X , ⋄, I) → (Y, ⋄, I) is a lax monoidal functor,

pI : I → F (I) p⋄A,B : F (A) ⋄ F (B) → F (A ⋄ B)

• (F , qJ , q⋆) : (X , ⋆, J) → (Y, ⋆, J) is a colax monoidal functor,

qJ : F (J) → J q⋆A,B : F (A ⋆ B) → F (A) ⋆ F (B)

satisfying coherence conditions.

Proposition (Aguiar, Mahajan [1])
A bilax duoidal functor preserves bimonoids and morphisms between bimonoids.

Rose Kudzman-Blais LD-Fox Theorem July 19, 2025 24 / 33



Medial linear functors

Definition
A symmetric medial linear functor F = (F⊗,F⊕) : X → Y consists of:

• a functor F⊗ : X → Y, equipped with
m⊤ : ⊤ ∼−→ F⊗(⊤) m⊗A,B : F⊗(A)⊗ F⊗(B)

∼−→ F⊗(A ⊗ B)

m⊥ : ⊥ → F⊗(⊥) m⊕A,B : F⊗(A)⊕ F⊗(B) → F⊗(A ⊕ B)

• a functor F⊕ : X → Y, equipped with
n⊥ : F⊕(⊥)

∼−→ ⊥ n⊕A,B : F⊕(A ⊕ B)
∼−→ F⊕(A)⊕ F⊕(B)
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Medial linear functors

Definition
• the linear strengths interact coherently with ∆⊥/∇⊤, with µA,B,C,D , and with

m⊕/n⊗ e.g.

F⊕(⊥)
n⊥
//

F⊕(∆⊥)

��

⊥
∆⊥

// ⊥⊗⊥

m⊥⊗n−1
⊥

��

F⊗(⊤⊕⊤)

F⊕(∇⊤)

��

νR
⊗⊤,⊤

// F⊕(⊤)⊕ F⊗(⊤)

n⊤⊕m−1
⊤

��
F⊕(⊥⊗⊥) F⊗(⊥)⊗ F⊕(⊥)

νR
⊕⊥,⊥

oo F⊗(⊤) ⊤
m⊤

oo ⊤⊕⊤
∇⊤

oo

F⊗((A ⊗ B)⊕ (C ⊗ D))
F⊗(µ) //

νR
⊗
��

F⊗((A ⊕ C)⊗ (B ⊕ D))

m−1
⊗
��

F⊕(A ⊗ B)⊕ F⊗(C ⊗ D)

n⊗⊕m−1
⊗
��

F⊗(A ⊕ C)⊗ F⊗(B ⊕ D)

νR
⊗⊗νR

⊗
��

(F⊕(A)⊗ F⊕(B))⊕ (F⊗(C)⊗ F⊗(D)))
µ
// (F⊕(A)⊕ F⊗(C))⊗ (F⊕(B)⊕ F⊗(D))
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Medial linear functors

Lemma

Consider a symmetric medial linear functor F = (F⊗,F⊕) : X → Y between SMLDCs,
then it canonically extends to a cartesian linear functor
B[F ] = (B[F ]⊗,B[F ]⊕) : B[X] → B[Y], where

B[F ]⊗ maps ⟨A,∆A, eA,∇A, uA⟩ to F⊗(A) equipped with medial bimonoid structure
given by

∆F⊗(A) = F⊗(A)
F⊗(∆A)−−−−→ F⊗(A ⊗ A)

m⊗
−1
A,A−−−−→ F⊗(A)⊗ F⊗(A)

eF⊗(A) = F⊗(A)
F⊗(eA)−−−−→ F⊗(⊤)

m−1
⊤−−−→ ⊤

∇F⊗(A) = F⊗(A)⊕ F⊗(A)
m⊕A,A−−−−→ F⊗(A ⊕ A)

F⊗(∇A)−−−−−→ F⊗(A)

uF⊗(A) = ⊥ m⊥−−→ F⊗(⊥)
F⊗(uA)−−−−→ F⊗(A)

and B[F ]⊕ is defined similarly.
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Main Result

Lemma
• CLDCs, cartesian linear functors and linear transformations form a 2-category

CLDC.

• SMLDCs, symmetric medial linear functors and medial linear transformations form
a 2-category SMLDC.

• There is an inclusion 2-functor inc : CLDC → SMLDC.
• B[−] : SMLDC → CLDC determines a 2-functor.

Theorem (Linearly Distributive Fox Theorem)
inc ⊣ B[−] : CLDC → SMLDC.

Corollary
A SMLDC is cartesian if and only if it is isomorphic to its category of bicommutative
medial bimonoids and medial bimonoid morphisms.
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Medial linear transformation

Definition
Let F ,G : X → Y be symmetric medial linear functors. A medial linear
transformation α = (α⊗, α⊕) : F ⇒ G consists of:

• a natural transformation α⊗ : F⊗ ⇒ G⊗ such that
• α⊗ : (F⊗,mF

⊤,mF
⊗) ⇒ (G⊗,mG

⊤,mG
⊗) is a monoidal transformation,

• α⊗ : (F⊗,mF
⊥,mF

⊕) ⇒ (G⊗,mG
⊥,mG

⊕) is a monoidal transformation,

• a natural transformation α⊕ : G⊕ ⇒ F⊕ such that
• α⊕ : (G⊕, nG

⊥, nG
⊕) ⇒ (F⊕, nF

⊥, nF
⊕) is a comonoidal transformation,

• α⊕ : (G⊕, n⊤
G, n⊗G) ⇒ (F⊕, nF

⊤, n⊗F ) is a comonoidal transformation,
such that α = (α⊗, α⊕) is a linear transformation.

Remark. Conditions above are equivalent to

α⊗ : (F⊗,mF
⊥,m⊕

F ,m−1
⊤

F
,m−1

⊗
F
) ⇒ (G⊗,mG

⊥,m⊕
G,m−1

⊤
G
,m−1

⊗
G
)

α⊕ : (G⊕, n−1
⊥

G
, n−1

⊕
G
, n⊕

G, n⊤
G) ⇒ (F⊕, n−1

⊥
F
, n−1

⊕
F
, n⊕

F , n⊤
F )

being bilax duoidal transformations.
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