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Dedication to Phil Scott (1947 – 2023)

Phil was one of the giants in our
(Canadian) category theory community.
Phil made fundamental contributions to in
category theory, (linear) logic, and
theoretical computer science, having worked
on topics such as categorical logic, traced
monoidal categories, MV algebras, etc.

Of course Phil is probably best known for
his collaborations with J. Lambek on
categorical logic and categorical proof
theory, and, in particular, their
all-important landmark book “Introduction
To Higher-Order Categorical Logic”

Phil was also such a kind and friendly man,
an excellent mentor, and very supportive

Phil was one of my favourite teachers from
undergrad, who later became my friend,
colleague, and mentor. I credit Phil with
the direction of my career: as he was the
one who first introduced me to category
theory and put me on this career path.



What is the Theory of Differential Categories About?

The theory of differential categories uses category theory to provide the foundations of
differentiation and has been able to formalize numerous aspects of differential calculus.

Originally, Blute, Cockett, and Seely

R.Blute R.Cockett R.A.G .Seely

introduced differential categories in:

R. Blute, R. Cockett, R.A.G. Seely, Differential Categories, (2006)

to provide the categorical semantics of Ehrhard and Regnier’s Differential Linear Logic,
differential λ-calculus, and differential proof nets.

Differential categories are successful because they capture both the classical limit definition
of differentiation and the more algebraic synthetic definition of differentiation. This has led
to the categorical formalization of various aspects of differentiation, which is why differential
categories have been become quite popular in both mathematics and computer science.
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Differential Categories (2006):
Algebraic Foundations of Differentiation

R.Blute R.Cockett R.A.G .Seely

Blute, R., Cockett, R., Seely, R.A.G. Differential Categories (2006)



The Differential Category World: The Four Tomes

Differential Categories (2006): Algebraic Foundations of Differentiation

Cartesian Differential Categories (2009):
Foundations of Differential Calculus over Euclidean Spaces Rn

R.Blute R.Cockett R.A.G .Seely

Blute, R., Cockett, R., Seely, R.A.G. Cartesian Differential Categories (2009)
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Differential Categories (2006): Algebraic Foundations of Differentiation

Cartesian Differential Categories (2009):
Foundations of Differential Calculus over Euclidean Spaces Rn

Differential Restriction Categories (2011):
Foundations of Differential Calculus over open subsets U ⊆ Rn

R.Cockett G .Cruttwell J.Gallagher

Cockett, R., Cruttwell, G., and Gallagher, J. Differential Restriction Categories. (2011)



The Differential Category World: The Four Tomes

Differential Categories (2006): Algebraic Foundations of Differentiation

Cartesian Differential Categories (2009):
Foundations of Differential Calculus over Euclidean Spaces Rn

Differential Restriction Categories (2011):
Foundations of Differential Calculus over open subsets U ⊆ Rn

Tangent Categories (1984 & 2014):
Foundations of Differential Calculus over Smooth Manifolds

J.Rosický R.Cockett G .Cruttwell

J. Rosický Abstract tangent functors (1984) 3

R. Cockett, G. Cruttwell Differential structure, tangent structure, and SDG (2014)

3At PSSL 106 (May 2022), which was a celebration for J. Rosický, Jǐŕı Adámek said that Rosický’s most important/influential
work was now tan. cats., because he has heard a talk about tan./diff. cats. at every ct conference recently!



The Differential Category World: It’s all connected!
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The Differential Category World: A Taster
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Snapshot of awesome people who worked on differential categories

And lots more! : like F. Schwartz, L. Regnier, N. Gambino, E. Rielh, A. Walch, etc. I just ran out
of space (or I could not find a photo of them!)

Hopefully new people will work on differential categories so I can keep adding more photos!



A frequent question I get is...

Q: Where do differential graded algebras fit into this story?

What about dg-categories?



Enter Chiara Sava (PhD Student, Charles University)

Chiara reach out to me saying she wanted to work on differential categories and she had all
these ideas. One of them that we ended up working on was to answer where differential
graded algebras and dg-categories fit into the world of differential categories.

Chiara visited us at Macquarie from Feb-April 2025, and that photo is from her farewell
supper (and yes that is Steve Lack’s head behind me)
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The Plan

TODAY’S STORY: Differential Graded Algebras in Differential Categories.

The plan is:

Introduction to Differential Categories

Derivations in Differential Categories

Differential Graded Algebras in Differential Categories

Justify our definition using lifting of monads. (Technical part!)

Main references for today is:

Blute, R., Cockett, R., Seely, R.A.G. Differential Categories (2006)

Blute, R., Cockett, R., Seely, R.A.G., Lemay, J.-S. P. Differential categories revisited. (2019)

Blute, R., Lucyshyn-Wright, R.B.B. and O’Neill, K. Derivations in codifferential categories. (2016)

O’Neill, K. Smoothness in codifferential categories (PhD Thesis) (2017)



Terminology: Differential Categories vs. Codifferential Categories

Differential categories were originally introduced from the point of view of Linear Logic. So they
are about:

Comonads, comonoids, coalgebras, etc.

However, if we want to talk about differentiation in algebra, we actually need the dual notion of
codifferential categories:

Monads, monoids, algebras, etc.

So differential graded algebras fit more naturally in a codifferential category.

But I don’t like the term codifferential category... it scares people away!

So I’m going to something blasphemous... and I’ve been proposing:

To call differential categories instead coalgebraic differential categories.

To call codifferential categories instead algebraic differential categories, or just differential
categories. So I am going to do this today.

Hopefully you’ll agree with this convention after we see the definition... I have Rick Blute’s
approval on this! (Don’t ask Robin...)
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Differential Categories - Definition

An (algebraic) differential category (née codifferential category) is:

A additive symmetric monoidal category,

With a differential modality which is:

An algebra modality

Equipped with a deriving transformation.



Differential Categories - Definition

An (algebraic) differential category (née codifferential category) is:

A additive symmetric monoidal category,

With a differential modality which is:

An algebra modality

Equipped with a deriving transformation.



Additive Symmetric Monoidal Categories - Definition

An additive symmetric monoidal category is a symmetric monoidal category4:

X ⊗ I σ : A⊗ B
∼=−→ B ⊗ A

which is enriched over commutative monoids.

So every homset X(A,B) is a k-module, we can add maps together f + g , have zero maps 0,
scalar multiply maps r · f , and composition preserves the k-linear structure:

f ◦ (g + h) ◦ k = f ◦ g ◦ k + f ◦ h ◦ k f ◦ 0 = 0 = 0 ◦ f

The monoidal product ⊗ also preserves the k-linear structure:

f ⊗ (g + h) = f ⊗ g + f ⊗ h (f + g)⊗ h = f ⊗ h + g ⊗ h f ⊗ 0 = 0 0⊗ f = 0

We need addition to talk about the Leibniz rule and zero to talk about the constant rule (we
don’t necessarily need scalar multiplication, but it is useful to have). Note that this definition
does not assume (bi)products or negatives (these come later).

Example

Let K be a field and and let VECK to be the category of all K-vector spaces and K-linear maps
between them. VECK is additive symmetric monoidal category with the usual monoidal and
additive structure.

4We are going to work in the strict setting for simplicity.



Differential Categories - Definition

An (algebraic) differential category (née codifferential category) is:

A additive symmetric monoidal category,
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Algebra Modality - Definition

An algebra modality on a symmetric monoidal category is a monad

SSA
µ // SA A

η // SA

equipped with two natural transformations:

SA⊗ SA
m // SA I

u // SA

such that for every object A, (SA,m, u) is a commutative monoid:

SA
u⊗1 //

1⊗u

��

SA⊗ SA

m

��

SA⊗ SA⊗ SA
m⊗1 //

1⊗m

��

SA⊗ SA

m

��

SA⊗ SA

m
$$

σ // SA⊗ SA

m

��
SA⊗ SA

m
// SA SA⊗ SA

m
// SA SA

and µ is a monoid morphism:

SSA⊗ SSA

m

��

µ⊗µ // SA⊗ SA

m

��

K

u
$$

u // SSA

µ

��
SSA

µ
// SA SA



Algebra Modality - Rough Idea

S(A) ≡ set of differentiable/smooth functions A→ I (whatever that means).

µ ≡ function composition

η ≡ identity function/linear function

m ≡ function multiplication

u ≡ multiplication unit/constant function.

This idea can be made precise using (Classical) Differential Linear Logic.



Algebra Modality - Example Polynomials

Example

A commutative monoid in VECK is precisely a commutative K-algebra. Define the algebra
modality Sym on VECK as follows: for a K-vector space V let Sym(V ) be the free commutative
K-algebra over V , also known as the free symmetric algebra on V .

Sym(V ) := K⊕ V ⊕ (V ⊗sym V )⊕ . . . =
⊕
n∈N

V⊗
n
sym

where ⊗sym is the symmetrized tensor power of V .

If X = {x1, x2, . . .} is a basis of V , then Sym(V ) ∼= K[X ].

In particular for Kn, Sym(Kn) ∼= K[x1, . . . , xn].

Then the algebra modality structure can be described in terms of polynomials as (wher

η : V → K[X ] µ : Sym (K[X ])→ K[X ]

xi 7→ xi P (p1(~x1), . . . , pn(~xn)) 7→ P (p1(~x1), . . . , pn(~xn))

u : K→ K[X ] m : K[X ]⊗ K[X ]→ K[X ]

1 7→ 1 p(~x)⊗ q(~y) 7→ p(~x)q(~y)

which we extend by linearity. Therefore, µ and η correspond to polynomial composition, while m
and u correspond to polynomial multiplication.
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Deriving Transformation - Definiton

A deriving transformation for an algebra modality on an additive symmetric monoidal category is
a natural transformation:

SA
d // SA⊗ A

whose axioms are based on the basic identities from differential calculus.

IDEA: f (x) 7→ f ′(x)⊗ dx

[D.1]: Constant rule: c ′ = 0
[D.2]: Product rule: (f · g)′(x) = f ′(x)g(x) + f (x)g ′(x)
[D.3]: Linear rule: x ′ = 1
[D.4]: Chain rule: (f ◦ g)′(x) = f ′(g(x))g ′(x)

[D.5]: Interchange rule:
d2f (x , y)

dxdy
=

d2f (x , y)

dydx

Example

Let V be a K-vector space with basis X = {x1, x2, . . .}.

The deriving transformation can be described in terms of polynomials as follows:

d : K[X ]→ K[X ]⊗ V

p(x1, . . . , xn) 7→
n∑

i=1

∂p

∂xi
(x1, . . . , xn)⊗ xi
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D.1 - Constant Rule

I
u //

0
((

SA

d

��
SA⊗ A

Example

For a constant polynomial p(x1, . . . , xn) = r :

n∑
i=1

∂p

∂xi
(x1, . . . , xn)⊗ xi = 0



D.2 - Product Rule

SA⊗ SA

m

��

(1⊗d)+(1⊗σ)◦(d⊗1) // SA⊗ SA⊗ A

m⊗1

��
SA

d
// SA⊗ A

Example

For polynomials p(x1, . . . , xn) and q(x1, . . . , xn):

n∑
i=1

∂pq

∂xi
(x1, . . . , xn)⊗ xi

=
n∑

i=1

p(x1, . . . , xn)
∂q

∂xi
(x1, . . . , xn)⊗ xi +

n∑
i=1

∂p

∂xi
(x1, . . . , xn)q(x1, . . . , xn)⊗ xi



D.3 - Linear Rule

A
η //

u⊗1
((

SA

d

��
SA⊗ A

Example

For a monomial of degree 1, p(x1, . . . , xn) = xj :

n∑
i=1

∂xj

∂xi
(x1, . . . , xn)⊗ xi = 1⊗ xj



D.4 - Chain Rule

SSA

d

��

µ // SA

d

��
SSA⊗ SA

µ⊗d
// SA⊗ SA⊗ A

m⊗1
// SA⊗ A

Example

For polynomials p(x1, . . . , xn) and q(x):

n∑
i=1

∂q(p(x1, . . . , xn))

∂xi
(x1, . . . , xn)⊗ xi =

n∑
i=1

∂q

∂x
(p(x1, . . . , xn))

∂q

∂xi
(x1, . . . , xn)⊗ xi



D.5 - Interchange Rule

SA

d

��

d // SA⊗ A
d⊗1 // SA⊗ A⊗ A

1⊗σ

��
SA⊗ A

d⊗1
// SA⊗ A⊗ A

Example

For a polynomial p(x1, . . . , xn):

n∑
i=1

n∑
j=1

∂p
∂xi

∂xj
(x1, . . . , xn)⊗ xj ⊗ xi =

n∑
i=1

n∑
j=1

∂p
∂xi

∂xj
(x1, . . . , xn)⊗ xi ⊗ xj
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I
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0
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��

A
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m
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SA
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d

��

µ // SA

d

��

SA

d

��

d // SA⊗ A
d⊗1// SA⊗ A⊗ A

1⊗σ

��
SSA⊗ SA

µ⊗d
// SA⊗ SA⊗ A

m⊗1
// SA⊗ A SA⊗ A

d⊗1
// SA⊗ A⊗ A



Example: Polynomials

Example

VECK is a differential category, with differential modality Sym and deriving transformation given
by polynomial differentiation:

d : K[X ]→ K[X ]⊗ V

p(x1, . . . , xn) 7→
n∑

i=1

∂p

∂xi
(x1, . . . , xn)⊗ xi

This example generalizes to modules over any commutative semiring.

In fact, the free commutative monoid monad (if it exists) on an additive symmetric monoidal
category is always a differential modality:

Lemay, J.-S. P. Coderelictions for Free Exponential Modalities. (2021)

Blute, R., Lucyshyn-Wright, R.B.B. and O’NeilL, K. Derivations in codifferential categories. (2016)

This gives us lots of examples, such as the category of sets and relations, where the
differential modality is given by finite bags, or the opposite category of modules, where the
differential modality is given by the cofree cocommutative coalgebra.
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Example: Smooth Functions

Example

Recall that a C∞-ring is commutative R-algebra A such that for each for smooth map f : Rn → R
there is a function Φf : An → A and such that the Φf satisfy certain coherences between them.

Ex. For a smooth manifold M, C∞(M) = {f : M → R| f smooth} is a C∞-ring.

For every R-vector space V , there is a free C∞-ring over V , S∞(V ). This induces a differential
modality on VECR. In particular, S∞(Rn) = C∞(Rn), and the deriving transformation is given by
the usual differentiating of smooth functions:

d : C∞(Rn)→ C∞(Rn)⊗ Rn

f 7−→
n∑

i=1

∂f

∂xi
⊗ xi

Cruttwell, G.S.H., Lemay, J.-S. P. and Lucyshyn-Wright, R.B.B. Integral and differential structure on the free C∞-ring

modality. (2019)



Other Examples

Example

Other examples can be found in:

Blute, R., Cockett, R., Seely, R.A.G., Lemay, J.-S. P. Differential categories revisited. (2019)

which in particular includes:

The free Rota-Baxter monad is a differential modality

The exterior algebra monad on finite dimensional Z2-vector spaces

Fun fact: the free differential algebra monad is NOT a differential modality!

Example

Every categorical model of Differential Linear Logic gives a (coalgebraic) differential category.

Fiore, M. Differential structure in models of multiplicative biadditive intuitionistic linear logic (2007)

Important examples include:

Fininiteness Spaces, Köthe spaces, etc.

Ehrhard, T. An introduction to differential linear logic: proof-nets, models and antiderivatives. (2018)

Convenient vector spaces
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Ehrhard, T. An introduction to differential linear logic: proof-nets, models and antiderivatives. (2018)

Convenient vector spaces

Blute, R., Ehrhard, T. and Tasson, C. A convenient differential category (2012)



Other Examples

Example

Other examples can be found in:

Blute, R., Cockett, R., Seely, R.A.G., Lemay, J.-S. P. Differential categories revisited. (2019)

which in particular includes:

The free Rota-Baxter monad is a differential modality

The exterior algebra monad on finite dimensional Z2-vector spaces

Fun fact: the free differential algebra monad is NOT a differential modality!

Example

Every categorical model of Differential Linear Logic gives a (coalgebraic) differential category.

Fiore, M. Differential structure in models of multiplicative biadditive intuitionistic linear logic (2007)

Important examples include:

Fininiteness Spaces, Köthe spaces, etc.
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A Quick Word about Tangent Categories and CDC

Since a differential modality is a monad, we can ask what can we say about its Kleisli category
and its Eilenberg-Moore category?

Well if you recall my map of differential categories I said that:

The (opposite) Eilenberg-Moore category of a differential modality is a tangent category:

R. Cockett, R., Lemay, J-S. P., Lucyshyn-Wright, R. Tangent Categories from the Coalgebras of Differential

Categories. (2020)

which means that in a way, we can think of algebras of a differential modality as “abstract
smooth manifolds” or “abstract affine schemes”.

We’ll actually talk about more algebras in a few slides...

The opposite category of the Kleisli category of a differential modality is a Cartesian
differential category:

Blute, R., Cockett, R., Seely, R.A.G. Cartesian Differential Categories (2009)

which means that in a way, we can think of the Kleisli category as a model of differential
calculus over “abstract Euclidean spaces”, and so we think of Kleisli maps as smooth maps
(this is the fundamental idea in Differential Linear Logic).
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Things we can do in differential categories

Derivations and Kähler differentials

Blute, R., Lucyshyn-Wright, R.B.B. and O’NeilL, K. Derivations in codifferential categories. (2016)

Hochschild complex, de Rham complex, and (co)homology

O’Neill, K. Smoothness in codifferential categories (PhD Thesis) (2017)

Differential algebras

Lemay, J.-S.P. Differential algebras in codifferential categories. (2019)

Antiderivatives, integration, and Taylor Series

Ehrhard, T. An introduction to differential linear logic: proof-nets, models and antiderivatives. (2018)

Cockett, R., Lemay, J.-S.P. Integral Categories and Calculus Categories. (2018)

Lemay, J.-S.P. Convenient Antiderivates for Differential Linear Categories. (2020)

Lemay, J.-S.P. An Ultrametric for Cartesian Differential Categories for Taylor Series Convergence. (2024)

Exponential Functions and Laplace Transforms:

Lemay, J.-S.P. Exponential Functions for Cartesian Differential Categories. (2018)

Kerjean, M., Lemay, J.-S.P. Laplace Distributors and Laplace Transformations for Differential Categories. (2024)

Reverse differentiation:

Cruttwell, G., Gallagher, P., Lemay, J-S. P., Pronk, D. Monoidal Reverse Differential Categories. (2023)
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Derivations

Before we can talk about differential graded algebras in a differential category, it will be helpful to
first understand derivations in a differential category 5

Let A be a commutative K-algebra and M be an A-module.

Then a derivation is a K-linear map D : A→ M which satisfies the Leibniz rule:

D(ab) = aD(b) + bD(a)

and from this it follows that D(1) = 0.

So if we wish to generalize derivations in a differential category we need to address three things:

Algebra

Module

Derivation

5Indeed recall that in a DGA, the differential A0 → A1 is a derivation – we’ll revisit this later.
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Algebras of an Algebra Modality

Of course in a symmetric monoidal category, we can just take commutative monoids to play the
role of our algebra...

but with an algebra modality we can do better!

For an algebra modality S, every S-algebra (A, ν : SA→ A) admits a canonical commutative
monoid structure where mν : A⊗ A→ A and uν : I → A are defined as follows:

mν : A⊗ A
η⊗η // SA⊗ SA

m // SA ν // A

uν : I
u // SA ν // A

When applying this construction to a free S-algebra (SA, µ) we get back mµ = m and uµ = u.

Example

The Sym-algebras are precisely commutative K-algebras, and the above monoid structure
captures precisely the K-algebra structure.

Example

Recall that every C∞-ring is an R-algebra where the multiplication is given by Φm : A× A→ A,
where m : R× R→ R is the usual multiplication, which is a smooth function.

Then S∞-algebras are precisely C∞-rings, and the above monoid structure captures precisely the
R-algebra structure of a C∞-ring.



Algebras of an Algebra Modality

Of course in a symmetric monoidal category, we can just take commutative monoids to play the
role of our algebra... but with an algebra modality we can do better!

For an algebra modality S, every S-algebra (A, ν : SA→ A) admits a canonical commutative
monoid structure where mν : A⊗ A→ A and uν : I → A are defined as follows:

mν : A⊗ A
η⊗η // SA⊗ SA

m // SA ν // A

uν : I
u // SA ν // A

When applying this construction to a free S-algebra (SA, µ) we get back mµ = m and uµ = u.

Example

The Sym-algebras are precisely commutative K-algebras, and the above monoid structure
captures precisely the K-algebra structure.

Example

Recall that every C∞-ring is an R-algebra where the multiplication is given by Φm : A× A→ A,
where m : R× R→ R is the usual multiplication, which is a smooth function.

Then S∞-algebras are precisely C∞-rings, and the above monoid structure captures precisely the
R-algebra structure of a C∞-ring.



Algebras of an Algebra Modality

Of course in a symmetric monoidal category, we can just take commutative monoids to play the
role of our algebra... but with an algebra modality we can do better!

For an algebra modality S, every S-algebra (A, ν : SA→ A) admits a canonical commutative
monoid structure where mν : A⊗ A→ A and uν : I → A are defined as follows:

mν : A⊗ A
η⊗η // SA⊗ SA

m // SA ν // A

uν : I
u // SA ν // A

When applying this construction to a free S-algebra (SA, µ) we get back mµ = m and uµ = u.

Example

The Sym-algebras are precisely commutative K-algebras, and the above monoid structure
captures precisely the K-algebra structure.

Example

Recall that every C∞-ring is an R-algebra where the multiplication is given by Φm : A× A→ A,
where m : R× R→ R is the usual multiplication, which is a smooth function.

Then S∞-algebras are precisely C∞-rings, and the above monoid structure captures precisely the
R-algebra structure of a C∞-ring.



Algebras of an Algebra Modality

Of course in a symmetric monoidal category, we can just take commutative monoids to play the
role of our algebra... but with an algebra modality we can do better!

For an algebra modality S, every S-algebra (A, ν : SA→ A) admits a canonical commutative
monoid structure where mν : A⊗ A→ A and uν : I → A are defined as follows:

mν : A⊗ A
η⊗η // SA⊗ SA

m // SA ν // A

uν : I
u // SA ν // A

When applying this construction to a free S-algebra (SA, µ) we get back mµ = m and uµ = u.

Example

The Sym-algebras are precisely commutative K-algebras, and the above monoid structure
captures precisely the K-algebra structure.

Example

Recall that every C∞-ring is an R-algebra where the multiplication is given by Φm : A× A→ A,
where m : R× R→ R is the usual multiplication, which is a smooth function.

Then S∞-algebras are precisely C∞-rings, and the above monoid structure captures precisely the
R-algebra structure of a C∞-ring.



Modules?

Recall that for a commutative monoid (A,m, u), a (A,m, u)-module is an object M with an action
α : A⊗M → A:

M
u⊗1 // SA⊗M

α

��

SA⊗ SA⊗M
m⊗1 //

1⊗α

��

SA⊗M

α

��
M SA⊗M

α
// M

Then for an S-algebra (A, ν), by an (A, ν)-module we mean a (A,mν , uν)-module.

Example

This recaptures modules of commutative K-algebras.

Example

By modules for a C∞-ring, they just mean a module over its underlying R-algebra.



Derivation for Differential Modalities

For a differential modality S, derivations are not just axiomatized by the Leibniz, but in fact by
the chain rule which makes use of the deriving transformation!

Definition

Let (A, ν) be an S-algebra and (M, α) be a (A, ν)-module. Then an S-derivation is a map
D : A→ M such that the following diagram commutes:

SA

d

��

ν // A

D

��
SA⊗ A

ν⊗D
// A⊗M

α
// M

R.Blute R.Lucyshyn −Wright K .O′Neill

Blute, R., Lucyshyn-Wright, R.B.B. and O’Neill, K. Derivations in codifferential categories. (2016)

The rough idea is that if f ∈ SA is a smooth function A→ I at which we can evaluate at a ∈ A:

D(f (a)) = f ′(a)D(a)
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S-Derivation are Derivations

Every S-derivation D : A→ M satisfies the Leibniz Rule and the constant rule as well:

I
uν //

0

''

A

D

��
M

A⊗ A

mν

��

(1⊗D)+σ◦(D⊗1) // A⊗M

α

��
A

D
// M



Examples

Example

Sym-derivations correspond to usual derivations.

But wait I said Sym-derivations were
axiomatized by the chain rule while a derivation is just axiomatized by the Leibniz rule... well a
derivation D : A→ M satisfies a chain rule for polynomials! So given a polynomial
p(x1, . . . , xn) ∈ K[x1, . . . , xn], we have that:

D (p(a1, . . . , an)) =
n∑

i=0

∂p

dxi
(a1, . . . , an)D(ai )

Example

S∞-derivations correspond to C∞-derivations:

E. Dubuc, A. Kock, On 1-form classifiers (1984)

which is an R-linear map D : A→ M which satisfies the following chain rule for all smooth maps
f : Rn → R (recall Φf : An → A):

D (Φf (a1, . . . , an)) =
n∑

i=0

Φ ∂f
dxi

(a1, . . . , an)D(ai )
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axiomatized by the chain rule while a derivation is just axiomatized by the Leibniz rule... well a
derivation D : A→ M satisfies a chain rule for polynomials! So given a polynomial
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Quick Word about Universal S-Derivations

The deriving transformation d : SA→ SA⊗ A is an S-derivation between the free S-algebra
(SA, µ) and its module (SA⊗ A,m⊗ 1), where the S-Derivation axiom is precisely the deriving
transformation chain rule axiom.

In fact d : SA→ SA⊗ A is the universal S-derivation for (SA, µ), in the sense that all
S-derivations for (SA, µ) factor through d : SA→ SA⊗ A.

In fact, with enough coequalizers, we can build the generalizations of Kähler differentials Ω•
(A,nu)

for all S-algebras (A, ν), that is, we can build universal S-derivations for S-algebras.

Blute, R., Lucyshyn-Wright, R.B.B. and O’NeilL, K. Derivations in codifferential categories. (2016)

From here we can study the de Rham complex, Hochschild complex, and (co)homology:

O’Neill, K. Smoothness in codifferential categories (PhD Thesis) (2017)
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Differential Graded Algebras

For us, our differential graded algebras will be commutative and unital, and N-graded.

Over a field K, recall that a differential graded algebra is a:

(commutative and unital) graded K-algebra A• =
∞⊕
n=0

An, so we have that:

AmAn ⊆ Am+n deg(ab) = deg(a) + deg(b) deg(1) = 0 ab = (−1)deg(a)deg(b)ba

With differentials ∂ : An → An+1 such that:

∂ ◦ ∂ = 0 ∂(ab) = ∂(a)b + (−1)deg(a)a∂(b)

Example

For any K-algebra A, its de Rham complex Ω(A)• = ExtA(Ω(A)) is a differential graded algebra
where:

Ωn(A) = Ω(A) ∧ . . . ∧ Ω(A) ∂ (a0d(a1) ∧ . . . ∧ d(an)) = d(a0) ∧ d(a1) ∧ . . . ∧ d(an)

Similarly, for any smooth manifold M, its de Rham complex Ω(M)• of differential forms is a
differential graded algebra.
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Differential Graded Algebras

We can generalize differential graded algebras in an additive symmetric monoidal category with
negatives. So differential graded algebra A• consists of:

A family of objects An for every n ∈ N;

With maps u0 : I → A0 and mm,n : Am ⊗ An → Am+n such that:

An
u0⊗1 //

1⊗u0

��

A0 ⊗ An

m0,n

��

Am ⊗ An ⊗ Ap
mm,n⊗1//

1⊗mn,p

��

Am ⊗ An+p

mm,n+p

��

Am ⊗ An

mm,n
##

σ // An ⊗ Am

(−1)mnmn,m

��
An ⊗ A0

mn,0

// An Am+n ⊗ Ap
mm+n,p

// Am+n+p Am+n

With maps ∂ : An → An+1 such that:

∂ ◦ ∂ = 0

∂ ◦mm,n = mm+1,n ◦ (∂ ⊗ 1) + ((−1)mmm,n+1) ◦ (1⊗ ∂)

So how can we improve upon this using our differential modality S?
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Differential Graded S-Algebras

Notice that in our differential graded algebra:

A0 is a commutative monoid;

A1 is a A0-module

∂ : A0 → A1 is a derivation

So for our differential graded S-algebras, we essentially simply ask that:

A0 is an S-algebra;

A1 is a A0-module

∂ : A0 → A1 is an S-derivation

So you can just ask for this extra structure, and we can also be slightly more compact...
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Differential Graded S-Algebras

In a differential category with negatives, a differential graded S-algebra A• consists of:

A family of objects An for every n ∈ N;

With a map ν : SA0 → A0 such that (A0, ν) is an S-algebra

With maps mm,n : Am ⊗ An → Am+n, for m ≥ 1 or n ≥ 1, such that with uν and m0,0 = mν

the diagrams from the previous slide commutes.

With maps ∂ : An → An+1 such that:

∂ ◦ ∂ = 0

∂ ◦m0,n ◦ (ν ⊗ 1) = m0,n+1 ◦ (ν ⊗ ∂) + m0,n+1 ◦ (ν ⊗m1,n) ◦ (1⊗ ∂ ⊗ 1) ◦ (d⊗ 1)

This last equation is a higher-level chain rule, notice that the deriving transformation d appears,
and when taking n = 0 and inserting a unit, we get precisely that ∂ : A0 → A1 is an S-derivation.

However it turns out these higher-level chain rules are not needed!
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Differential Graded S-Algebras – Another Definition

Lemma

To give a differential graded S-algebra is equivalent to giving a differential graded algebra A•

such that:

There is a map ν : SA0 → A0 such that (A0, ν) is an S-algebra;

ν : (SA0,m, u)→ (A0,m0,0, u0) is a monoid morphism;

∂ : A0 → A1 is an S-derivation

Proof.

Asking that ν is a monoid morphism forces that u0 = uν and m0,0 = mν . While the higher-level
chain rule = chain rule at level 1 + higher-level Leibniz rules.



Examples

Example

Differential graded Sym-algebras correspond precisely to (commutative and unital) differential
graded K-algebras.

Example

Differential graded S∞-algebras correspond precisely to differential graded C∞-rings in the sense
of the nlab article: “smooth differential forms form the free C∞-DGA on smooth functions”
(LINK) written by Dmitri Pavlov:

A differential graded C∞-ring is precisely a differential graded R-algebra such that A0 is a
C∞-ring and ∂ : A0 → A1 is a C∞-derivation. The earliest mention of differential graded
C∞-rings in this sense appears briefly in a remark in:

Domenico Fiorenza, Urs Schreiber, Jim Stasheff, Čech cocycles for differential characteristic classes: an ∞-Lie theoretic

construction (2012)

https://ncatlab.org/nlab/show/smooth+differential+forms+form+the+free+C%5E%E2%88%9E-DGA+on+smooth+functions


Examples

Example

Differential graded Sym-algebras correspond precisely to (commutative and unital) differential
graded K-algebras.

Example

Differential graded S∞-algebras correspond precisely to differential graded C∞-rings in the sense
of the nlab article: “smooth differential forms form the free C∞-DGA on smooth functions”
(LINK) written by Dmitri Pavlov:

A differential graded C∞-ring is precisely a differential graded R-algebra such that A0 is a
C∞-ring and ∂ : A0 → A1 is a C∞-derivation. The earliest mention of differential graded
C∞-rings in this sense appears briefly in a remark in:
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Justifying our definition...

So when we first came up with the definition of an differential graded S-algebra, we were a bit
worried it was a bit ad hoc...

However when we found this C∞-ring example, this seemed to justify our definition somewhat.

But I wasn’t satisfied: how could we really justify that we had the right definition?

For this we turn to the well-known fact that:

Differential Graded Algebras ≡ Commutative Monoids in Chain Complexes

Of course we have our differential modality S, to justify our definition we want:

Differential Graded S-Algebras ≡ S-Algebras in Chain Complexes
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Main Theorem

Theorem

In a (algebraic) differential category with negatives and enough colimits:

There is a differential modality S on the category of chain complexes (which is in fact a
lifting of the differential modality S of the base category).

Differential graded S-algebras correspond precisely to S-algebras (which in particular are also
commutative comonoids in chain complexes)

The rest of the talk becomes more technical... but this is the slide to take away from today!



Chain Complexes

Recall that for a category X with zero maps, we can build its category of (N-indexed) chain
complexes, Ch(X) where:

Objects A• are chain complexes, that is, a family of object An with maps ∂ : An → An+1

such that ∂ ◦ ∂ = 0.

. . .
∂ // An ∂ // An+1 ∂ // An+2 ∂ // . . .

Maps f • : A• → B• is a family of maps f n : An → Bn which commutes with the
differentials, f n ◦ ∂ = δ ◦ f n.

Now suppose that X is an additive symmetric monoidal category with negatives and finite
biproducts. Then Ch(X) is a symmetric monoidal category where:

(A• ⊗ B•)n : =
⊕

p+q=n

Ap ⊗ Bq

and the differential is induced by this formula (abusing notation):

∂ ⊗ 1 + (−1)deg(A•)(1⊗ δ)

This makes Ch(X) also n additive symmetric monoidal category with negatives (and finite
biproducts).
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Differential Graded Algebras are Commutative Monoids

Proposition

For an additive symmetric monoidal category X with negatives and finite biproducts, a
commutative differential graded algebra in X (as given in previous slides) is precisely a
commutative monoid in Ch(X).

I gave the unpacked definition first since I didn’t need biproducts to give the definition of a
differential graded algebra, and since differential categories do not necessarily need biproducts
(though having biproducts is desirable).



Objective: Lifting

There is a “forgetful functor” U0 : Ch(X)→ X which forgets about your chain complex by picking
out the zero component, U0(A•).

The goal now is if X is a differential category (with negatives and finite biproducts), we want to
construct a lifting of its differential modality S to Ch(X), that is, we want to construct a
differential modality S on Ch(X) such that:

Ch(X)

U0

��

S // Ch(X)

U0

��
X

S
// X
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Our First Attempt

To help give the construction of this lifting, let’s look at our favourite example S = Sym.

Now Sym is the free commutative monoid monad on VECK, so its lifting should be the free
commutative monoid monad on Ch(VECK). In other words, the lifting we are looking for is the
free differential graded algebra construction on a chain complex.

So given a chain complex V • =
∞⊕
n=0

V n (represented as an N-graded K-vector space), the free

(commutative and unital) differential graded algebra over V • is often presented as follows:

Sym(V •) = Sym

(⊕
even

V n

)
⊗ Ext

(⊕
odd

V n

)

where Sym is the symmetric algebra and Ext is the exterior algebra.

So our first attempt was to describe our lifting as:

S(V •) = S

(⊕
even

V n

)
⊗ Ext

(⊕
odd

V n

)

assuming we can build the exterior algebra somehow. The problem is: (1) we might not have
countable coproducts and (2) we couldn’t figure out what the grading of this would be since S
may not be nicely graded like Sym... But it turns out that the construction is very close to what
we are searching for! We’ll still need the following for our lifting construction:

Symmetrized Powers

Exterior Powers
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Symmetrized Powers and Exterior Powers

Recall that the n-th symmetrized power of A:

A⊗
n
s

is the coequalizer of all permutations ω : A⊗
n → A⊗

n
.

While the n-th exterior power of A:
n∧
A

is the coequalizer of all permutations scalar multiplied by their sign sgn(ω)ω : A⊗
n → A⊗

n
.

And we assume that ⊗ preserves these coequalizers.

However for our construction what we really want is to take the symmetrized/exterior powers of
different objects:

X ⊗s Y X ∧ Y

this is actually used in the grading of the free differential graded algebra.
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Symmetrized Powers and Exterior Powers6

So for a finite family of objects A1, A2, .., An:

Their symmetrized power A1 ⊗s . . .⊗s An is defined as the coequalizer of all permutations

on (
n⊕

i=1
Ai )
⊗n

pre-composed by the injection:

A1 ⊗ . . .⊗ An → (
n⊕

i=1

Ai )⊗ . . .⊗ (
n⊕

i=1

Ai )
ω−→ (

n⊕
i=1

Ai )⊗ . . .⊗ (
n⊕

i=1

Ai )

Their exterior power A1 ∧ . . . ∧ An is defined as the coequalizer of all permutations on

(
n⊕

i=1
Ai )
⊗n

scalar multiplied by their sign pre-composed by the injection:

A1 ⊗ . . .⊗ An → (
n⊕

i=1

Ai )⊗ . . .⊗ (
n⊕

i=1

Ai )
sgn(ω)ω−−−−−→ (

n⊕
i=1

Ai )⊗ . . .⊗ (
n⊕

i=1

Ai )

We ask that ⊗ preserves these coequalizers and also notice that:

X ⊗s Y = Y ⊗s X X ∧ Y = Y ∧ X

6If anyone knows a reference for this, please let me know!



Lifting Construction

Theorem

Let X be a differential category, with differential modality S, and also with negatives, finite
biproducts, symmetrized powers, and exterior powers. Then Ch(X) is a differential category with
differential modality S defined as follows:

S (A•)n =
⊕

pi even, qj odd, pi , qj ≥ 1∑
pi +

∑
qj = n

S(A0)⊗ (Ap1 ⊗s . . .⊗s A
pm )⊗ (Aq1 ∧ . . . ∧ Aqk )

The differential involves both the differential of A• and the deriving transformation d (we will see
an example in a few slides).

The idea is that homogenous elements is a monomial:

f (x)x1x2 . . . xn

where f (x) ∈ S(A0) is a smooth function and xi ∈ Aj for j ≥ 1. And:

f (x)x1x2 . . . xixi+1 . . . xn = (−1)deg(xi )deg(xi+1)fx1x2 . . . xi+1xi . . . xn

And the differential is given by (where d(f ) = f ′dx):

∂ (f (x)x1x2 . . . xn) = f ′(x)∂(dx)x1x2 . . . xn +
∑

fx1x2 . . . ∂(xi ) . . . xn
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Lifting Construction

Theorem

Let X be a differential category, with differential modality S, and also with negatives, finite
biproducts, symmetrized powers, and exterior powers. Then Ch(X) is a differential category with
differential modality S defined as follows:

S (A•)n =
⊕

pi even, qj odd, pi , qj ≥ 1∑
pi +

∑
qj = n

S(A0)⊗ (Ap1 ⊗s . . .⊗s A
pm )⊗ (Aq1 ∧ . . . ∧ Aqk )

The differential involves both the differential of A• and the deriving transformation d (we will see
an example in a few slides). Moreover the following diagram commutes:

Ch(X)

U0

��

S // Ch(X)

U0

��
X

S
// X



Example: This gives us back the Free DGA

Example

For VECK, the lifting of Sym is precisely the free differential graded algebra as defined in the
previous slide:

Sym(V •) = Sym

(⊕
even

V n

)
⊗ Ext

(⊕
odd

V n

)



Main Theorem

Theorem

S-algebras correspond precisely to differential graded S-algebras in X.

So we have equivalence of categories between the Eilenberg-Moore category Alg(S) and the
category of differential graded S-algebras.

Corollary

(The opposite category of) Differential graded S-algebras form a tangent categorya.

aIn particular this means that commutative and unital differential graded algebras form a tangent category.



Proof Sketch

To get an understanding of the proof we need to understand, we need to understand the degree 0
and 1 of S (A•)• and the S (A•)0 → S (A•)1.

Degree 0 is simply S (A•)0 = S(A0).

Degree 1 is S (A•)1 = S(A0)⊗ A1

The differential is S (A•)0 → S (A•)1:

S(A0)
d // S(A0)⊗ A0 1⊗∂ // S(A0)⊗ A1
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Proof Sketch

Proof.

Let’s go from an S-algebra to a differential graded S-algebra.

An S-algebra would be ν• : S (A•)• → A•.

Now since S is an algebra modality, we know that S-algebras are commutative monoids, so in
particular differential graded algebras. So A• is a differential graded algebra, so we only really
need to explain why A0 is an S-algebra and ∂ : A0 → A1 is an S-derivation.

Now from our chain complex morphism we get ν0 : S (A•)0 → A0, or in other words, a map
ν0 : S(A0)→ A0. This indeed makes A0 into a S-algebra thanks to our lifting result.

We also have n1 : S (A•)1 → A1, or in other words, a map ν1 : S(A0)⊗ A1 → A1 which we can
show is precisely the composite:

S(A0)⊗ A1 ν0⊗1 // A0 ⊗ A1
m0,1 // A1
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Proof Sketch

Proof.

Then asking that ν• is a chain complex morphism means that the following diagram commutes:

S(A0)

ν0

��

d // S(A0)⊗ A0 1⊗∂ // S(A0)⊗ A1

ν1

��
A0

∂
// A1

which by the previous slide is precisely saying that ∂ : A0 → A1 is an S-derivation.

Going from a differential graded S-algebra to a S-algebra essentially does the reverse process.



Side Note: S-derivations are also S-algebras

If you cut chain complexes to just have the degrees 0 and 1, you just gets maps of your
category and therefore the arrow category Arr[X]

Theorem

Let X be a differential category, with differential modality S, and also finite biproductsa.

Then Arr(X) is a differential category with differential modality S defined as in the previous slide.

Moreover, S-algebras correspond precisely to S-derivations.

aWe don’t need negatives or symmetrized/exterior powers



de Rham Complex is a Free Differential Graded S-Algebra

In his thesis, K. O’Neill

O’Neill, K. Smoothness in codifferential categories (PhD Thesis) (2017)

constructed the notion of the de Rham complex Ω•
(A,nu)

for an S-algebra (A, ν) (if enough

coequalizer exist).

If it exists, then the de Rham complex Ω•
(A,nu)

is the free differential graded S-algebra over (A, ν).

Moreover, for free S-algebras (S(A), µ), its de Rham complex can always be constructed (under
the assumptions we have already given):

Ωn
(S(A),µ) = S(A)⊗

n∧
A

Thus we always get a functor KL(S)→ ALG(S).

With enough coequalizers, we get a functor ALG(S)→ ALG(S).
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Towards differential dg-categories

Ch(X) is both a differential category and a dg-category.

It would be interesting to study the more general notion of a differential dg-category.

This will lead us to Cartesian differential dg-categories and tangent dg-categories as well.

Which would then introduce homotopy theory into the world of differential categories.



Main Takeaways

Differential graded algebras in a differential category.

The category of chain complexes of a differential category is a differential category

Differential graded algebras are the algebras of the differential modality on chain complexes.

Working our way towards combining diff. category, dg-categories, and homotopy theory.



That’s all folks! Hope you enjoyed!

If you find differential/tangent categories interesting and have ideas, I hope you will start working
with them! I am always happy to chat about differential categories, so feel free to come to talk to
me or reach out by email. Also if want to come visit our CT group at Macquarie: also come talk
to me, we love having visitors.

Prague Vienna Brno

Thanks for listening! Merci!

Email: js.lemay@mq.edu.au

Website: https://sites.google.com/view/jspl-personal-webpage

js.lemay@mq.edu.au
https://sites.google.com/view/jspl-personal-webpage
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