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F pP: IdA(al, 32)

Definitional

|—312322A

Dependent type theory with propositional equality gives intensional
type theory (ITT).

i 3 Equality reflection rule

Computation Logic Topology
Provably equal Contractible
Fai: A Fa: A I I
Fp: |dA(31, 32) Seems reasonable Not true in general
[= ay =az: A U' i ’U‘
Definitionally equal Singleton
Adding equality reflection gives extensional type theory (ETT).
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sk 3 Substitution vs. transport

Definitional Propositional
t=t p:ld(t,t)
B(t) = B(t) B(t) 2 B(t)

» Changing terms between types indexed by definitionally
equal terms is proof-independent.

» Changing terms between types indexed by propositionally
equal terms depends on the proof of equality.
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Fp,p' i lda(ar, a2) Uniqueness of identity Homotopically discrete
F UIP(p, p’) : Id(p, p’) proofs space

Py " Theorem (Hofmann 1995)

ETT is conservative over | TT-+UIP.

Fp,p :lda(ar, a2) Fp:lda(ar, a)
F UIP(p, p') : 1d(p, p) Faa=a:A

Limitation. Syntactic result did not account for extensions.
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V

Two rings R and S are Morita equivalent iff Modg ~ Mods.

<Equiva|ence o

def (Equivalence between
type theories

£\ def . :
= Morita equivalence = .
categories of models

a Need to Determine

1. What is a model of a type theory?

2. What is a suitable notion of equivalence between
categories of models?
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A contextual category (C-system) structure on a category C

consists of
Grading Truncation Projection
obC = [[obsC = obp1C 5 ob,C FAST
neN

Notation. If ft A=T we write A =T_A.
Substitutions

AFEA AT A
7r\l/ \Lﬂ'

A———T
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= A Type
(x1,x2 : A) F Ida(x1, x2) Type

B o initon

A homotopy H: f ~ g between f,g: [ — A € C is a factori-
sation

Path object Provable equality

(f-&) LA XA

T~

AAldA

r

Homotopy equivalences w: I — A are those maps admitting
left and right homotopy inverses.
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The category CxICat)t1 of models of ITT admits a cofibrantly-generated
left semi-model structure.

» Relative cell complexes are syntactic extensions.

Proposition (Weak Head Normalisation Property of Types)

Suppose C is cellular. Then, there is a set of base types {(O; &
C, T; € Tye®;)}ies such that if X € Tyl then precisely one of the
following cases are true:

> Y -type. X = 2 (A, B) for some A.B € TyI.

> [l-type. X =TI(A, B) for some A.B € TycI.

P> ld-type. X = f*lda for some f: [ — A.A.A.

> Base type. X = f*T; some unique (©;, 7;) and f: [ — ©;.
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g W Definition (Morita Equivalence)

Two type theories Ty, Ty extending ITT are Morita equivalent if there

F
is a Quillen equivalence CxICaty, _L_ CxICatr,.
U

sk 3 Connection with Logical Power

Quillen equivalence says the adjunction unit C — UFC at cell com-
plexes is a weak equivalence.

> If C is a model of T; extended with base types, terms and
propositional equalities

» ...then there is an associated model FC of T,
» __such that if we compile back to UFC as a model of T,

» ...then the expressible and provable statements in those two
models are correspond propositionally within type theory.
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g B Definition (Morita Equivalence)

Two type theories Ty, Ty extending ITT are Morita equivalent if there
is a Quillen equivalence CxICaty, _L CxICatr,.

g " W Theorem (Isaev 2020)

Definitional and propositional equalities give rise to Morita equivalent
formulations of the singleton type.

» Propositional singleton: ITT+Contr

» Definitional singleton: ITT+Unit

sl 3 Removing Singleton Restriction

» Theory of propositional equalities: |TT

» Theory of definitional equalities: ETT
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CxICatytr P L 2 CxlCatgTT
+

All models of ETT also are also models of ITT + UIP,
so there is an inclusion |—|: CxICatgrt — CxICatjrriyip- By
cocompleteness, it has a left adjoint (—).

It suffices to check C — |(C)| is a weak equivalence when C €
CxICatyrrruip is a cell-complex of the generating left class. The
cells are “syntactic”: obtained by freely adding types and terms
but no definitional equalities. This makes it tractable to explicitly
construct (C) € CxICatgr.
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—

3 A quotient construction

» To support equality reflection: must identify homotopic
maps.

» Cannot take Ho C.
» Ho C formally inverts homotopy equivalences.

» This collapses too much.

L 22 ES The map Bool — Bool swapping true

and false is a propositional isomorphism but is not the
identity even under equality reflection.

» Upshot. (C) is obtained from C by carefully choosing a
wide subcategory WerT of homotopy equivalences to
collapse.
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From C € CX|Cat|TT+U|p to (C) € CxlCaterr

B Consruciion

(C) € CxICatgrr is the category with

> Objects obC/=, where

I =T < Exists some [ =~ " € Werr
» Maps mor C/=, where

ria S r-Ha

= & |35 o p EWerTst. = Y =

A a M — A
f

By construction, (C) is extensional. The quotient map [—]: C — [(C)| has
the weak lifting property for Morita equivalence.

L, N SENT ENGITTENNRELL)E If S is the syntactic model, (S) = Q as from

Hofmann.

RS
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rta . rfHa
= & HA_A,GWETTst —LN =
r A s
v D
Define composition in (C) and show well-definedness
~ “ i Replicate Hofmann's approach. Need to show f = f’ and
g = g’ composable then gf = g'f’

-
-
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g
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rta -

= S |3, 0 EWerT st - v
; A~A ) ,
r A =

-

LAY
H

2
= &

Define composition in (C) and show well-definedness.

Replicate Hofmann's approach. Need to show f = f’ and
g = g’ composable then gf = g’f’. Amounts to showing the middle
square commutes up to homotopy.




Role of the UIP Axiom 17/19

P

By UIP, if w,w’: X ~ X’ € WgtT then w ~ w'.




Role of the UIP Axiom 17/19

v D
By UIP, if w,w’: X ~ X’ € WgtT then w ~ w'.

o WerT is a class of maps defined inductively.

Az.fz*Az —— A

Al.fi*A]_ —l) M.A; l
l Jp— l—> M
Aq 1

A

RS



Role of the UIP Axiom 17/19

v QD

By UIP, if w,w’: X ~ X’ € WgtT then w ~ w'.

o WerT is a class of maps defined inductively.

Az.fz*Az —— A
~T
Al-fIkAl —|> M.A; l

2]
A —T
/7 /7

Ay M

A

If the solid maps above are in Werr

RS



Role of the UIP Axiom 17/19

v QD

By UIP, if w,w’: X ~ X’ € WgtT then w ~ w'.

o WerT is a class of maps defined inductively.

Az.fz*Az —— A
~T
Al-fIkAl —l) M.A; l

f
A —T
/7 /7

Ay M

A

If the solid maps above are in VWert and bottom face commute
up to homotopy

RS



Role of the UIP Axiom 17/19

v QD

By UIP, if w,w’: X ~ X’ € WgtT then w ~ w'.

o WerT is a class of maps defined inductively.

Az.fz*Az —— A
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Al — rl ~

A

If the solid maps above are in VWert and bottom face commute
up to homotopy then induced map is in Werr.
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v D
By UIP, if w,w’: X ~ X’ € WgtT then w ~ w'.

o WerT is a class of maps defined inductively.

Az.fz*Az —— A

~7 | ~ /:a
Al.fi*A]_ — 1. A l
Ar 2 — 2
:/ . :Jﬂ
Al — rl ~

A

Inductively: parallel purple maps are homotopic. Show parallel
orange maps are homotopic. Construction is homotopy invari-
ant.
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By UIP, if w,w’: X ~ X’ € WgtT then w ~ w'.

o WerT is a class of maps defined inductively.
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Show that any two homotopies H, H’ for the bottom face are
homotopic.
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v D
By UIP, if w,w’: X ~ X’ € WgtT then w ~ w'.

o WerT is a class of maps defined inductively.

Az.fz*Az —_— |_2.A2
~ 7

(=] ~
= 2

AyffA ——————T1.A
1. A1 1AL M+ H,H :Ida(a1, a0)

l - As Nfz l_N} r T EUIP(H, H') : Idig ,(ay,20) (H, H')
/

~

Ay M

A

Show that any two homotopies H, H’ for the bottom face are
homotopic. Homotopies are equality proofs. Follows by UIP.

Qo

RS
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v D
By UIP, if w,w': X ~ X’ € WgtT then w ~ w'.

v QD

If C € CxICatyrr.uip cellular then the quotient category (C) €
CxlCater is a category with well-defined composition.
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- v -CED
By UIP, if w,w': X ~ X’ € WgtT then w ~ w'.
...
If C € CxICatyrr.uip cellular then the quotient category (C) €
CxlCater is a category with well-defined composition.

~ ¢ -G

The type theories ITT4+UIP and ETT are Morita equivalent.

CxICatyTrruip (|¢_|,> CxlCatgTT

RS
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a Future directions

» Constructive proof of Hofmann's result.

» Encompassing internal universes.

» Further instances of Morita equivalence.

Thank you!
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