Exploring dualities beyond sound doctrines

Bruno Lindan University of Manchester

CT2025, Masaryk University, 15 July, 2025

Gabriel-Ulmer duality

The 2-functor

given by sending

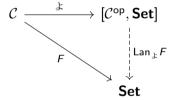
$$\mathcal{C} \hspace{0.2em}\longmapsto\hspace{0.2em} \textbf{Lex}[\mathcal{C},\textbf{Set}]$$

yields an equivalence of 2-categories.

- Lex = 2-category of finitely complete small categories, and
- **LFP** = 2-category of locally finitely presentable categories.

Key Property (of finite limits)

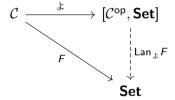
Given $C \in \mathbf{Lex}$, $F : C \to \mathbf{Set}$ lex, $Lan_{\sharp}F$ is also lex:



We say ("the doctrine of") finite limits is **sound**.

Key Property (of finite limits)

Given $C \in Lex$, $F : C \to Set lex$, $Lan_{\sharp}F$ is also lex:



We say ("the doctrine of") finite limits is **sound**. (Important consequence: $G \in [C, \mathbf{Set}]$ is lex iff it is a *filtered colimit* of representables).

Gabriel-Ulmer for sound doctrines

If Φ is a different "limit doctrine" ¹ enjoying Key Property, then

$$\Phi\text{-cat} \xrightarrow{\mathcal{C} \mapsto \Phi[\mathcal{C}, Set]} \text{L}\Phi P^{op}$$

is an equivalence of 2-categories².

C. Centazzo, E. Vitale, A duality relative to a limit doctrine, 2002

¹Class of small shapes

²J. Adámek, F. Borceux, S. Lack, J. Rosický, *A classification of accessible categories*, 2002;

Gabriel-Ulmer for sound doctrines

If Φ is a different "limit doctrine" ¹ enjoying Key Property, then

$$\Phi\text{-cat} \xrightarrow{\mathcal{C} \mapsto \Phi[\mathcal{C}, Set]} \text{L}\Phi \text{P}^{op}$$

is an equivalence of 2-categories².

- Φ-cat: 2-category of small Φ-complete (+ Cauchy complete) categories, ...
- L Φ P: 2-category of locally Φ -presentable categories: that is, locally small, cocomplete, and generated by Φ -presentable objects under Φ -filtered colimits (a shape $\mathcal D$ being Φ -filtered if $\mathcal D$ -colimits commute with Φ -limits in **Set**).

For instance: Φ = finite limits, countable limits, finite products, no limits at all, ...

C. Centazzo, E. Vitale, A duality relative to a limit doctrine, 2002

¹Class of small shapes

² J. Adámek, F. Borceux, S. Lack, J. Rosický, *A classification of accessible categories*, 2002;

Gabriel-Ulmer for sound doctrines

If Φ is a different "limit doctrine" ¹ enjoying Key Property, then

$$\Phi\text{-cat} \xrightarrow{\mathcal{C} \mapsto \Phi[\mathcal{C}, Set]} \text{L}\Phi \text{P}^{op}$$

is an equivalence of 2-categories².

- Φ-cat: 2-category of small Φ-complete (+ Cauchy complete) categories, ...
- L Φ P: 2-category of locally Φ -presentable categories: that is, locally small, cocomplete, and generated by Φ -presentable objects under Φ -filtered colimits (a shape \mathcal{D} being Φ -filtered if \mathcal{D} -colimits commute with Φ -limits in **Set**).

For instance: Φ = finite limits, countable limits, finite products, no limits at all, ...

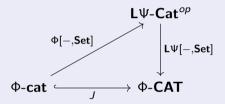
Do we need Φ sound for such a theorem?

¹Class of small shapes

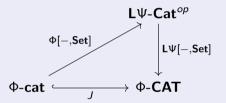
²J. Adámek, F. Borceux, S. Lack, J. Rosický, *A classification of accessible categories*, 2002;

C. Centazzo, E. Vitale, A duality relative to a limit doctrine, 2002

Letting L Ψ -Cat be the 2-category of locally small, complete, Φ -filtered-cocomplete categories, there is a (relative) adjunction $\Phi[-, \mathbf{Set}] \dashv_J \mathbf{L}\Psi[-, \mathbf{Set}]$.



Letting L Ψ -Cat be the 2-category of locally small, complete, Φ -filtered-cocomplete categories, there is a (relative) adjunction $\Phi[-, \mathbf{Set}] \dashv_J \mathbf{L}\Psi[-, \mathbf{Set}]$.



Theorem

If $\Phi[-, \mathbf{Set}] : \Phi\text{-}\mathbf{cat} \to \mathbf{L}\Phi\mathbf{P}^{op}$ is an equivalence, then Φ is sound.

Some limit doctrines are not sound (e.g. pullbacks, countable products, ...), but we still want to be able to recover

$$\mathcal{C} \in \Phi\text{-cat}$$

from

$$\Phi[\mathcal{C},\textbf{Set}] \in \textbf{?}$$

Some limit doctrines are not sound (e.g. pullbacks, countable products, ...), but we still want to be able to recover

$$\mathcal{C} \in \Phi ext{-cat}$$

from

$$\Phi[\mathcal{C}, \mathsf{Set}] \in ?$$

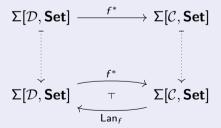
Towards an understanding of the general situation, we investigate whether $\Phi[-, \mathbf{Set}]$ reflects equivalences.

(Under technical assumption on Φ) $\Phi[-, \mathbf{Set}]$ reflects equivalences $\iff \Phi\text{-}\mathbf{cat}$ has the property that for 1-cells, fully faithful + lax epimorphism \implies equivalence.

(Under technical assumption on Φ) $\Phi[-, \mathbf{Set}]$ reflects equivalences $\iff \Phi\text{-}\mathbf{cat}$ has the property that for 1-cells, fully faithful + lax epimorphism \implies equivalence.

Brief comment on proof.

(\Longrightarrow) Assumption on Φ gives us a larger, sound doctrine $\Sigma \supset \Phi$ with $\mathbf{L}\Phi \mathbf{P} \simeq \mathbf{L}\Sigma \mathbf{P}$. Can show property holds of Σ exploiting fact that Σ -cat sends arrows to right adjoint arrows, via *Key Property*.



(Then show that property passes to $\Phi \subset \Sigma$).

Moreover³,

Lemma

A 1-cell f in Φ -cat is a lax epimorphism \iff it is Φ -absolutely codense.

Together:

Theorem

 $\Phi[-, \mathbf{Set}]$ reflects equivalences \iff a functor is Φ -absolutely codense only if it is essentially surjective.

("All Φ-complete categories are Φ-absolutely complete").

 $^{^3}$ Lifting to Φ -cat the characterisation of lax epis in cat due to: J. Adámek, R. El Bashir, M. Sobral, J. Velebil, *On functors which are lax epimorphisms*, 2001

Moreover³,

Lemma

A 1-cell f in Φ -cat is a lax epimorphism \iff it is Φ -absolutely codense.

Together:

Theorem

 $\Phi[-, \mathbf{Set}]$ reflects equivalences \iff a functor is Φ -absolutely codense only if it is essentially surjective.

("All Φ-complete categories are Φ-absolutely complete"). In summary:

- To get a Gabriel-Ulmer-style duality $\Phi[-, \mathbf{Set}] \colon \Phi\text{-}\mathbf{cat} \to \mathbf{L}\Phi\mathbf{P}^{op}$, we need that Φ is sound.
- ...but, so long as there are no interesting Φ -absolute limits, we can at least say that $\Phi[-, \mathbf{Set}]$ reflects equivalences.

 $^{^3}$ Lifting to Φ -cat the characterisation of lax epis in cat due to: J. Adámek, R. El Bashir, M. Sobral, J. Velebil, *On functors which are lax epimorphisms*, 2001