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Mirror symmetry

Mirror symmetry has originally been observed for Calabi-Yau (CY)
manifolds. For two n-dimensional mirror manifolds X and Y, we in
particular have:

hP9(X) = h"P9(Y)
where hP9(X) = dim H9(X, Q%) are the hodge numbers of a
complex manifold X.



Mirror symmetry

Mirror symmetry has originally been observed for Calabi-Yau (CY)
manifolds. For two n-dimensional mirror manifolds X and Y, we in
particular have:

hP9(X) = h"P9(Y)

where hP9(X) = dim H9(X, Q%) are the hodge numbers of a
complex manifold X.

For a CY 3-fold X:

(A) hM1(X) is related to symplectic deformations
(B) h*1(X) is related to complex deformations

Hence, for mirror CY 3-folds X and Y, complex deformations of X
correspond to symplectic deformations of Y.



Homological Mirror Symmetry (HMS)

In his 1994 ICM address, Kontsevich made the following
conjectural proposal:

Define X and Y to satisfy HMS provided we have (exact)
equivalences of (triangulated) categories:

D(Qch(X)) = D(F(Y)) and D(Qch(Y)) = D(F(X))

1. HMS implies numerical features of mirror symmetry

2. HMS takes place in an extended realm of certain
“noncommutative spaces” stemming from more general
deformations



Homological Mirror Symmetry (HMS)

In his 1994 ICM address, Kontsevich made the following
conjectural proposal:

Define X and Y to satisfy HMS provided we have (exact)
equivalences of (triangulated) categories:

D(Qch(X)) = D(F(Y)) and D(Qch(Y)) = D(F(X))

1. HMS implies numerical features of mirror symmetry

2. HMS takes place in an extended realm of certain
“noncommutative spaces” stemming from more general
deformations

~> look at categorical invariants!



Hochschild cohomology

X scheme (quasi-compact, separated)

How should we deform X7
> HH"(X) = Extx, x(AOx, A.Ox) (Swan, 1996)

» HKR (smooth case): HH"(X) = @®p4q=nHP(X,NTx)

HH2(X) = HO(X, A%Tx) @ HY(X, Tx) @ H?(X, Ox)

» H(X,7x) ¢ first order scheme deformations



Noncommutative spaces?

X a "noncommutative space”

Qch(X)

HH(X) > Défg(C(R)

~> associate algebraic objects to a scheme and then deform



Affine schemes

X = Spec(A)

A commutative k-algebra

» Qch(X) = Mod(A)
> Attempt: realise HH?(X) by deforming A



Affine schemes

X = Spec(A)

A commutative k-algebra
» Qch(X) = Mod(A)
> Attempt: realise HH?(X) by deforming A

Key example: X = A? = Spec(k[x, y])
~ deforms into the Weyl algebra:

k(x,y)/xy —yx = A

> HH"(Spec(A)) = HH"(A) = Ext’y_ (A, A), the Hochschild
cohomology of A (Hochschild, 1945)



Deligne’s principle
“Every deformation problem is governed by a dg Lie algebra

(DGLA)" (Deligne, 1986)
Let (L,[—, —], d) be a DGLA. Consider the Maurer-Cartan equation
1
MC(9) = d(6) + 5[6,9].
There is an associated deformation functor Def; : Art, — Set

with
Def, (R, m) = {¢ € (m® L)} | MC(¢) = 0}/ ~



Deligne’s principle

“Every deformation problem is governed by a dg Lie algebra
(DGLA)" (Deligne, 1986)

Let (L,[—,—],d) be a DGLA. Consider the Maurer-Cartan equation

MC(6) = () + 5[, 6]

There is an associated deformation functor Def; : Art, — Set
with
Def (R,m) = {¢ € (m® L)} | MC(¢) = 0}/ ~

Remark: DGLA's correspond precisely to “formal moduli problems”
in the setup of derived algebraic geometry (Lurie and Pridham,
2010).



Algebraic deformation theory

Let A be a k-vector space and put C"(A) = Hom,(A®", A).
~ operadic composition entailing the braces, e.g.
pop=> (-1)¢o(l®...¢--- ®1)

Put
[0, 0] = poyp — (—1)?IV1y) o ¢,



Algebraic deformation theory

Let A be a k-vector space and put C"(A) = Hom,(A®", A).

~ operadic composition entailing the braces, e.g.

poy=> (-1)¢po(1®...¢p---®1)

Put
[0, 0] = poyp — (—1)?IV1y) o ¢,

Then (C(A)[1],[—, —],0) is a DGLA such that for
m € Hom,(A®2, A) we have

MC(m)=mem=mo(m®1)—mo (1®m)

whence
MC(m) =0 <= mis associative.



Algebraic deformation theory

Let (A, m) be a k-algebra and consider C(A).
We obtain a differential dyocp = [m, —], with eg.

droch(®)(a, b, €) = ad(b, c) — ¢(ab, ¢) + ¢(a, bc) — ¢(a, b)c

for ¢ € C2(A) = Hom(A®2 A), such that HH"(A) = H"C(A).



Algebraic deformation theory

Let (A, m) be a k-algebra and consider C(A).
We obtain a differential dyocp = [m, —], with eg.

dHOCh((rb)(a? b7 C) = 3¢(b, C) - ¢(3b, C) + (;5(3, bC) - ¢(a7 b)C
for ¢ € C2(A) = Hom(A®2 A), such that HH"(A) = H"C(A).

Definition (Gerstenhaber, 1964)

Let A be a k-algebra and let R be an Artin local k-algebra. An
R-deformation of A is a flat R-algebra A with an isomorphism
k®r A A

Then L = (C(A)[1], [, =], drocn) is a DGLA with

Def; = Defi\lg.



Algebraic deformation theory



Algebraic deformation theory

Example
Put R = k[e] = k[t]/(t?). Then Def; (k[e]) = HH?(A) and

¢ € Z°C(A) — (A@ Ae, m = m + o)
yields HH?(A) = Def 4(k[e]). For A = k[x, y], we obtain k[e][x, y]

with 5 9
= _ or og
m(f,g) =fg + h@x 8y6

for some h € k[x,y].



Algebraic deformation theory
Example
Put R = k[e] = k[t]/(t?). Then Def; (k[e]) = HH?(A) and
¢ € Z>°C(A) — (A® Ae, m = m + ¢e)
yields HH?(A) = Def 4(k[e]). For A = k[x, y], we obtain k[e][x, y]

with 5 9
= _ or og
m(f,g) =fg + h@x 8ye

for some h € k[x,y].
Observation: if k g A= A, we have
Fung(k, Mod(A)) = Mod(A).

~~ Deformation theory of abelian categories (L - Van den Bergh,
2005).
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Projective schemes

X = Proj(A)

A = (A))iez positively graded, connected commutative k-algebra
» Serre's Theorem: Qch(X) = Qgr(A)
> Attempt: realise HH?(X) by deforming A



Projective schemes

X = Proj(A)

A = (A))iez positively graded, connected commutative k-algebra
» Serre's Theorem: Qch(X) = Qgr(A)
> Attempt: realise HH?(X) by deforming A

Key example: X = P? = Proj(k[xo, x1, x2])
Noncommutative P?'s = Sklyanin algebras

k(xo0, x1, X2>/(CXI2 + bxj11Xiy2 + aXi+2Xi+1)ieZ3

(Artin - Tate - Van den Bergh, 1990, Bondal - Polishchuk, 1993)



Projective schemes

X projective scheme (eg. P?)

~~ Z-algebra a (linear category with objects indexed by 7Z)

There is a linear tails topology on a with

Qch(X) = Mod(a)/Tors(a) = Sh(a, Tiais)

~~ Ttails 1S @ linearisation of the Grothendieck topology on (Z, >)
for which all non-empty sieves are covering



Z.-algebras

X projective with ample invertible line bundle £ and
HY(X,0x) = 0 = H*(X, Ox) (1)

There is a Z-algebra a on the £" with HH"(X) = HH"(a) (Van
den Bergh, 2001; L - Van den Bergh, 2005; L, 2012)

~» deform a algebraically and use Ti.ys to construct geometry!



Z.-algebras

X projective with ample invertible line bundle £ and
HY(X,0x) = 0 = H*(X, Ox) (1)

There is a Z-algebra a on the £" with HH"(X) = HH"(a) (Van
den Bergh, 2001; L - Van den Bergh, 2005; L, 2012)

~» deform a algebraically and use Ti.ys to construct geometry!

~» HMS has been extended to Del Pezzo surfaces and their
noncommutative deformations (Auroux - Katzarkov - Orlov, 2005)

Question: what about schemes that do not satisfy (1)?



The quartic

K3 surface X cut out by x§ + x{ + x5 + x§ = 0 in P3, which has
dim(H?(X, Ox)) = h%2 = 1.



Linear topologies

A Grothendieck category is a cocomplete abelian category with a
generator and exact filtered colimits.

» Every Grothendieck category can be represented as a linear
sheaf category (Gabriel - Popescu)

» Grothendieck categories are stable under the tensor product of
linear locally presentable categories (L - Ramos Gonzalez -
Shoikhet, 2017)

Sh(ay, 71) W Sh(az, 72) = Sh(a; ® az, 71 X T>)



Linear topologies

A Grothendieck category is a cocomplete abelian category with a
generator and exact filtered colimits.

» Every Grothendieck category can be represented as a linear
sheaf category (Gabriel - Popescu)

» Grothendieck categories are stable under the tensor product of
linear locally presentable categories (L - Ramos Gonzalez -
Shoikhet, 2017)

Sh(ay, 71) W Sh(az, 72) = Sh(a; ® az, 71 X T>)

> The Grothendieck property is stable under abelian
deformation (L - Van den Bergh, 2005), but a given site may
not deform algebraically!



Schemes

X scheme (quasi-compact, separated)
> HH"(X) = Eth(Xx(OX,OX)
» HKR (smooth case): HH"(X) = @®p4q=nHP(X,NTx)
HH?(X) = HO(X, A*Tx) @ HY(X, Tx) @ H?(X, Ox)

~~ a class u = (v, 5, @) on the right determines an abelian
deformation Qch(X, u) of Qch(X) (Toda, 2009; Dinh Van - Liu -
L, 2017)

~~ derived categories of twisted sheaves (C3ldararu, 2000)

~ higher order deformations?



Part 2: linear...

virtual double categories




Schemes
X quasi-compact separated scheme (eg. X = P?)

~~ structure sheaf A = Ox|y on affine cover U

C[yl,w Clyi ", ys] y2 5]

| ==

Clyr, 2. Y3, y1 '] Cly1, y2. 93 yz,yg Lyl

C[ymy%yihyflvyglay;l]

» Qch(X) can be reconstructed from A
> HH*(X) = H*Cgs(A)
(Gerstenhaber - Schack, 1983; L - Van den Bergh, 2005)



Presheaves of algebras

(A, m, f) presheaf of k-algebras on small category U (A: U — Ay)
~~ associated Gerstenhaber-Schack complex Cgs(A)
Ced(M) = [ Homi(AL As)
ceNy(U)
The total differential dgs is built from

» horizontal Hochschild differentials dyoch

» vertical simplicial differentials dsimp

Components of total degree two:
> Cs(A) = [Tyey Hom(Ay ® Ay, Ay) > m

> ClGZé(A) = Hu:V—>U Homk(AU7AV) > f

2,0
> CGS(A) = H(v:W—>V,u:V—>U) AW



Prestacks

(A, m, f,c) prestack on U

u (Ay, my) my Ay ® Ay — Ay
fo

% (A\/, m\/) fuv=(uv)* fu: AU — Ay
[

<

(Aw, mw) ciny € Homy(v*u*(A), (uv)*(A))



Prestacks: axioms
(A, m, f,c) prestack on U

CRI(A) = H Hom(AZ9(A), A, (07 sA, |o|*tA))
€N (U), AcAIT!

> C%’g(A): associativity of m: mo(m®1)=mo (1 ® m)
> CEE(A): functoriality of f:  fom=mo (f®f)
> Céé(A): naturality of c: mo((fof)®c)=mo(c®f)

> CL2(A): coherence: mo(c®c)=mo((foc)®c)



Prestacks: axioms
(A, m, f, c) prestack on U

CRI(A) = H Hom(AZ9(A), A, (07 sA, |o|*tA))
€N (U), AcAIT!

> C%g(A): associativity of m: mo(m®1)=mo (1 ® m)
> CEE(A): functoriality of f:  fom=mo (f®f)
> Céé(A): naturality of c: mo((fof)®c)=mo(c®f)

> CL2(A): coherence: mo(c®c)=mo((foc)®c)

~> relations are not quadratic!



Algebras: operadic structure

Recall that there is an N-coloured operad Op whose algebras are
precisely nonsymmetric operads.

» Op is generated by

1 AR D Dy ¢

> elements of Op(k) can be depicted as trees with k vertices.

» Op acts on C(A) of an algebra A by inserting operations of
designated arities at vertices, and composing.



Algebras: operadic structure

Recall that there is an N-coloured operad Op whose algebras are
precisely nonsymmetric operads.

» Op is generated by

1 AR D Dy ¢

> elements of Op(k) can be depicted as trees with k vertices.

» Op acts on C(A) of an algebra A by inserting operations of
designated arities at vertices, and composing.

~~ let a similar coloured operad act on Cgs(A)



Prestacks: box operadic structure

We define an N3-coloured operad Clp (pronounced “box-op”)

0
»  the colour (p,q,r) <« thebox Ly

I



Prestacks: box operadic structure

We define an N3-coloured operad Clp (pronounced “box-op”)
»  the colour (p,q,r) <« thebox

» [Jp is generated by

with associativity relations

(EEE | ——




Prestacks: box operadic structure

» elements of Op(n) can be depicted as n-stackings, that is
trees with n matching (p, g, r)-labeled boxes as vertices. E.g:

I3‘4

— € Op(4
5 p(4)
1|

assembles boxes with labels (0, 2,0), (1,1,1), (2,0,1) and
(2,0,1) respectively into a (3,0, 1)-box.



Prestacks: box operadic structure

The operad Op acts on an enlargement C(A) of Cgs(A) with

cgora)= [ Homi(A(to)PI(A), Also)(o" A, h(o)'tA))
€N (U), he B¢ ([r],[p])
AcA(to)at!

by inserting linear maps into rectangles, and composing:

C
Cc

v mo((foc)®c)

|

m_|



L -structure

We totalise kOp into a graded operad Clpg,. Let Dpéft"(n) be the
set of n-stackings of degree 2 — n + technical assumptions.

For n > 2, we define the element P, € Opg(n) as

Po= > (-1)°S

Sedpg"(n)



L -structure

We totalise kOp into a graded operad Clpg,. Let Dpéft"(n) be the
set of n-stackings of degree 2 — n + technical assumptions.

For n > 2, we define the element P, € Opg(n) as
Po= > (-1)°S
S€0pg"(n)

and the n-Gerstenhaber bracket L, as the anti-symmetrisation

Lo= 3 (-1)L]

O'GSn

Theorem (Dinh Van - Hermans - L)

We have a morphism of dg-operads L, — Upg : I — Lp.



Box operads
In analogy with nonsymmetric operads being Op-algebras, we
introduce the following terminology:

Definition
A [lp-algebra is called a box operad.



Box operads

In analogy with nonsymmetric operads being Op-algebras, we
introduce the following terminology:

Definition

A [lp-algebra is called a box operad.

Rephrasing the theorem, we have shown that every linear box
operad B carries an Ly-structure (with zero differential). The
Maurer-Cartan equation takes the following form, for o € B:

n(n+1)

MC(a) =) (-1)"2 Pa(a, ..., )

Proposition

The resulting Loo-structure on Co(A) restricts to an Lo-structure
on CGs(A).



Historical notes

P> Box operads are an instance of multicategories over a monad
(Burroni, 1971) and have been called fc multicategories
(Leinster, 1999, 2003). More recently they are being studied
under the name of virtual double categories (Crutwell -
Shulman, 2010; Koudenburg, 2020, ...).



Historical notes

P> Box operads are an instance of multicategories over a monad
(Burroni, 1971) and have been called fc multicategories
(Leinster, 1999, 2003). More recently they are being studied
under the name of virtual double categories (Crutwell -
Shulman, 2010; Koudenburg, 2020, ...).

» In specific cases, Loo-structures on Cgs(A) were obtained by
other methods, for instance for an algebra morphism (Frégier -
Markl - Yau, 2009) and for specific diagrams of algebras
(Barmeier - Frégier, 2018). The case of a general presheaf of
algebras was solved by Hawkins (2020) and extended to
prestacks by Dinh Van - L - Hermans (2022).

However, these approaches do not allow for a characterisation
of the prestack structure.



Prestacks: box operadic structure

Let A be a k-quiver on U (i.e. a prestack without the algebraic
structure).

Theorem (Dinh Van - Hermans - L)

Let Cgs(A) be endowed with the box operadic L -structure.
Consider a = (m, f,c) € C25(A). We have

MC(a) =0 < (A,m,f,c)is a prestack.



Prestacks: box operadic structure

Let A be a k-quiver on U (i.e. a prestack without the algebraic
structure).
Theorem (Dinh Van - Hermans - L)

Let Cgs(A) be endowed with the box operadic L -structure.
Consider a = (m, f,c) € C25(A). We have

MC(a) =0 < (A,m,f,c)is a prestack.

Corollary

Let (A, m, f,c) be a prestack. The deformation theory of A as a
prestack is governed by the box operadic Lo-structure on Cgs(A)
twisted by o = (m, f, c).



Prestacks: box operadic structure

Let A be a k-quiver on U (i.e. a prestack without the algebraic
structure).
Theorem (Dinh Van - Hermans - L)

Let Cgs(A) be endowed with the box operadic L -structure.
Consider a = (m, f,c) € C25(A). We have

MC(a) =0 < (A,m,f,c)is a prestack.

Corollary

Let (A, m, f,c) be a prestack. The deformation theory of A as a
prestack is governed by the box operadic Lo-structure on Cgs(A)
twisted by o = (m, f, c).

~> A minimal model for prestack via Koszul duality for box operads
(Hermans, 2023)



Prestacks: box operadic structure

Proof.
MC(a) = —Pa(a, ) + P3(a, vy @) + Pa(av, oy vy ).

MC(a)p,3) = —P2(a, @)

MC(a)j19 = —P£2(a, )10 + P$5 (v, )1 9

[
T




Prestacks: box operadic structure

Proof.

MC(a)p, = P3GS(oz,a, @)1 + Pfs(a, , @, Q)p,1]

c|f

c

f
f

L™ |

Lm |




Mirror symmetry

Mirror picture:

B: X --» D(Qch(X)) = D(F(Y)) ¢-- Y



Mirror symmetry

Mirror picture:
B: X --»D(Qch(X)) = D(F(Y))«-Y :A

Compelling reasons to deform dg categories:

1. F(X) is an Ax-category
2. D(Qch(X)) = D(A) for a dg algebra A (Keller, 1994;
Neeman, 1996; Bondal - Van den Bergh, 2003)

3. Mirror symmetry involves dg categories on the B-side without
abelian models (Orlov, 2003)



Dg categories

Problem: deformation theory of dg categories is notoriously
difficult due to “curvature” (Keller - Lowen, 2009; Lurie, 2010;

Lehmann, 2024).

Inspiration:
1. dg categories as higher categories:

{pretriangulated dg cats} <> {stable linear co-cats}

(Lurie, 2016, Cohn, 2016)
2. general theory of enriched oco-categories (Gepner - Haugseng,
2015)



Dg categories

Problem: deformation theory of dg categories is notoriously
difficult due to “curvature” (Keller - Lowen, 2009; Lurie, 2010;
Lehmann, 2024).

Inspiration:
1. dg categories as higher categories:

{pretriangulated dg cats} <> {stable linear co-cats}

(Lurie, 2016, Cohn, 2016)
2. general theory of enriched oco-categories (Gepner - Haugseng,
2015)

~> establish a concrete model of linear co-categories amenable to
algebraic deformation theory



Part 3: linear...
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Quasi-categories in modules

“Quasi-categories in V are oo-categories weakly enriched in SV

VY =Set ~» V = Mod(k); SSet ~» SMod(k)= C(k)>o

Goals: develop their
» homotopy theory (Arne Mertens)
» deformation theory ~~ today

First step: introduce an appropriate ambient category SgV of
templicial objects or tensor-simplicial objects



Enriched nerve

Let C be a small k-linear category. Consider the k-modules

N (C)p = B (A A) @ ... ®C(Ar1,An)
Ag,..,An€Ob(C)

u=H® - -Qf € C(Ao,Al) X ... ®C(An_1,An)

> di(u)=H® - @fifi® - @ffor 1<i<n-1



Enriched nerve

Let C be a small k-linear category. Consider the k-modules

N (C)p = B (A A) @ ... ®C(Ar1,An)
Ag,..,An€Ob(C)

u=H® - -Qf € C(Ao,Al) X ... ®C(An_1,An)

> di(u)=H® - @fifi® - @ffor 1<i<n-1
> do(u) =7  dn(u) =7

Problem: the Ni(C), do not constitute a simplicial k-module



Enriched nerve

Solution: restrict A to the finite interval category Ay¢:

» objects: the posets [n] = {0,...,n} with n >0

» order morphisms f : [n] — [m] with f(0) =0 and f(n) =m
The category Ar is strict monoidal with [n] + [m] = [n + m] and
[0] as tensor unit.



Enriched nerve

Solution: restrict A to the finite interval category Ay¢:
» objects: the posets [n] = {0,...,n} with n >0
» order morphisms f : [n] — [m] with f(0) =0 and f(n) =m

The category Ar is strict monoidal with [n] + [m] = [n + m] and
[0] as tensor unit.

Proposition (Leinster, 2000)

Let (V, x,1) be a cartesian monoidal category. There is an
isomorphism of categories

Colax(AZ?, V) = SV.

In particular, we have Colax(A?”, Set) = SSet.



Templicial objects

Let (V,®, 1) be a monoidal category and O a set. A V-quiver on
vertex set O consists of V-objects Q(a, b) for a,b € O. The
category V Quivp of V-quivers on O is monoidal with

I ifa=0b
(QeoP)(a,b) CEI_IOQ a,c)®P(c,b) and Ip(a,b) = {0 a4 b



Templicial objects

Let (V,®, 1) be a monoidal category and O a set. A V-quiver on
vertex set O consists of V-objects Q(a, b) for a,b € O. The
category V Quivp of V-quivers on O is monoidal with

I ifa=0b
(QeoP)(a,b) CEI_IOQ a,c)®P(c,b) and Ip(a,b) = {0 a4 b

Definition
A templicial object in (V,®, 1) with vertex set O is a strongly
unital, colax monoidal functor

X : A?p — VY Quivp .
The category of templicial objects in V is denoted by SgV .

~> Discrete vertices in simplicial objects internal to a monoidal
category (Mertens, 2025)



Templicial objects
Example
Let V = Mod(k). Consider the templicial vector space X:

b1 by

fl S Xl(a, bl), g1 € Xl(bl, C)
f € Xl(aa b2)7 & € Xl(b27 C)
he Xi(a,c), we Xy(a,c)

with di(w) = hand p11(w) =LA ® g1+ L ® g.



Necklaces

Let X : A?” — V Quivp be a templicial object in V.
For a, b € O, the functor X,(a, b) : A?® — V can naturally be
extended to a functor

Xo(a, b) : Nec®® — V
determined by
Xamy..vam(a, b) = Xp, ®0 - @0 X, (a, b)

on objects and

& Al An > dj : Xn = Xn-1
ol A" — A1 —> sii X1 — Xp
VP9 APV AT — APTD s 0 Xpyg — Xp @ X

on morphisms.



Quasi-categories in )/

Definition
Let Y : Nec®® — V be a functor. We say that Y is weak Kan if
for all 0 < j < n any lifting problem

F(/\J’-’).(O7 n) j Y
[
F(A")4(0, n)
in Fun(NecP V) has a solution.

We call a templicial object X a quasi-category in V if the functors
Xeo(a, b) are weak Kan for all a,b € O.



The templicial dg nerve

Theorem (L - Mertens)

There is a templicial dg nerve Nfg from the category Catgg (k) of
small dg-categories to the category Sz Mod(k) of templicial
modules, which lands in quasi-categories in modules:

dg

N
Catgg(k) —— Sg Mod(k)

NJU

SSet



The templicial dg nerve

Theorem (L - Mertens)

There is a templicial dg nerve Nfg from the category Catgg (k) of
small dg-categories to the category Sz Mod(k) of templicial
modules, which lands in quasi-categories in modules:

dg

N
Catgg(k) —— Sg Mod(k)

NJU

SSet

~~ Nerves of enriched categories via necklaces (Mertens, 2024)

~ Templicial nerve of an A-category (Borges Marques -
Mertens, 2024)



Base change

Consider the following functors relating different enriching
categories V (for R a commutative k-algebra):

Mod(R) S Mod(R)




Base change

Consider the following functors relating different enriching
categories V (for R a commutative k-algebra):

Mod(R) S5 Mod(R)

Set

Proposition (L - Mertens)
The free functor Fr preserves (enriched) quasi-categories.

The proof makes use of non-associative Frobenius structures and
wings W™ = 9gA" U 9,A" C A",



Deformations of templicial modules

Definition

Let R be an Artin local k-algebra. An R-deformation of a
templicial k-module X is a levelwise flat templicial R-module X
with k ®p X = X.

Example

Let C be a (flat) R-deformation of a k-linear category C. Then
Ng(C) is a R-deformation of Ny (C).

Example

Let X be a simplicial set. Then Fr(X) is an R-deformation of
Fi(X).



Deformations of templicial modules

Example
Put R = k[e] with € = 0. We define P = F(A2 ][ 1 OA?) using
the inclusions 61 : Al — A2 and §; : A — 9A? in SSet:

b1 b

fi ’2
a *» C

h

fi € Pi(a, b1), g1 € Pi(b1,0)
f, € Pi(a, b2), g € Pi(b2,0)
he€ Pi(a,c), «a€ Py(a,c)

with di(a) = hand p11(a) = L ® g1.



Deformations of templicial modules

Example (continued)
We obtain a k[e]-deformation P of P with

fri(a) =L ®g+h® ge
(?1(04) =h

A picture of P and P, on the left and right, respectively:

b1 b2 bl b2
fi ’2 fi ﬂz
a X a X
h h

Note that P is a non-free deformation of the free templicial
module P.



Deformations of templicial modules

Theorem (Borges Marques - L - Mertens)

The quasi-category property is stable under infinitesimal
deformation of templicial modules.



Deformations of templicial modules

Theorem (Borges Marques - L - Mertens)

The quasi-category property is stable under infinitesimal
deformation of templicial modules.

Theorem (Borges Marques)

Let X be a templicial k-module. There is a Hochschild complex
C(X) that governs infinitesimal deformations of X via an
obstruction theory involving HH*3(X) = H?3C(X).

Future goal: for C a cohomologically bounded above or
pretriangulated dg category, establish

C(C) = C(NE(C))



Quasi-categories in modules as noncommutative spaces?

X quasi-category in modules

c(X) s Detx(R)

Future goals:
1. Develop linear higher topos theory to define sheaf categories
2. Use 1. in deformation theory cfr Part 1.
3. Endow C(X) with higher structure cfr Part 2.



