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Part 0: linear...

categories



Mirror symmetry

Mirror symmetry has originally been observed for Calabi-Yau (CY)
manifolds. For two n-dimensional mirror manifolds X and Y , we in
particular have:

hp,q(X ) = hn−p,q(Y )

where hp,q(X ) = dimHq(X ,Ωp
X ) are the hodge numbers of a

complex manifold X .

For a CY 3-fold X :

(A) h1,1(X ) is related to symplectic deformations

(B) h2,1(X ) is related to complex deformations

Hence, for mirror CY 3-folds X and Y , complex deformations of X
correspond to symplectic deformations of Y .
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Homological Mirror Symmetry (HMS)

In his 1994 ICM address, Kontsevich made the following
conjectural proposal:

Define X and Y to satisfy HMS provided we have (exact)
equivalences of (triangulated) categories:

D(Qch(X )) ∼= D(F(Y )) and D(Qch(Y )) ∼= D(F(X ))

1. HMS implies numerical features of mirror symmetry

2. HMS takes place in an extended realm of certain
“noncommutative spaces” stemming from more general
deformations

⇝ look at categorical invariants!
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Hochschild cohomology

X scheme (quasi-compact, separated)

How should we deform X?

▶ HHn(X ) = ExtnX×X (∆∗OX ,∆∗OX ) (Swan, 1996)

▶ HKR (smooth case): HHn(X ) = ⊕p+q=nH
p(X ,ΛqTX )

HH2(X ) = H0(X ,Λ2TX )⊕ H1(X , TX )⊕ H2(X ,OX )

▶ H1(X , TX ) ↔ first order scheme deformations



Noncommutative spaces?

X a “noncommutative space”

Qch(X )

X

OO

yy &&

HH(X ) +3 DefncX (R)

⇝ associate algebraic objects to a scheme and then deform



Affine schemes

X = Spec(A)

A commutative k-algebra

▶ Qch(X ) = Mod(A)

▶ Attempt: realise HH2(X ) by deforming A

Key example: X = A2 = Spec(k[x , y ])

⇝ deforms into the Weyl algebra:

k⟨x , y⟩/xy − yx − λ

▶ HHn(Spec(A)) ∼= HHn(A) = ExtnA−A(A,A), the Hochschild
cohomology of A (Hochschild, 1945)
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Deligne’s principle

“Every deformation problem is governed by a dg Lie algebra
(DGLA)” (Deligne, 1986)

Let (L, [−,−], d) be a DGLA. Consider the Maurer-Cartan equation

MC(ϕ) = d(ϕ) +
1

2
[ϕ, ϕ].

There is an associated deformation functor DefL : Artk −→ Set
with

DefL(R,m) = {ϕ ∈ (m⊗ L)1 | MC(ϕ) = 0}/ ∼

Remark: DGLA’s correspond precisely to “formal moduli problems”
in the setup of derived algebraic geometry (Lurie and Pridham,
2010).
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Algebraic deformation theory

Let A be a k-vector space and put Cn(A) = Homk(A
⊗n,A).

⇝ operadic composition entailing the braces, e.g.

ϕ • ψ =
∑

(−1)ϵϕ ◦ (1⊗ . . . ψ · · · ⊗ 1)

Put
[ϕ, ψ] = ϕ • ψ − (−1)|ϕ||ψ|ψ • ϕ.

Then (C(A)[1], [−,−], 0) is a DGLA such that for
m ∈ Homk(A

⊗2,A) we have

MC(m) = m •m = m ◦ (m ⊗ 1)−m ◦ (1⊗m)

whence
MC(m) = 0 ⇐⇒ m is associative.
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Algebraic deformation theory

Let (A,m) be a k-algebra and consider C(A).
We obtain a differential dHoch = [m,−], with eg.

dHoch(ϕ)(a, b, c) = aϕ(b, c)− ϕ(ab, c) + ϕ(a, bc)− ϕ(a, b)c

for ϕ ∈ C2(A) = Homk(A
⊗2,A), such that HHn(A) = HnC(A).

Definition (Gerstenhaber, 1964)

Let A be a k-algebra and let R be an Artin local k-algebra. An
R-deformation of A is a flat R-algebra Ā with an isomorphism
k ⊗R Ā ∼= A.

Then L = (C(A)[1], [−,−], dHoch) is a DGLA with

DefL ∼= DefalgA .
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Algebraic deformation theory

Example

Put R = k[ϵ] = k[t]/(t2). Then DefL(k[ϵ]) ∼= HH2(A) and

ϕ ∈ Z2C(A) 7−→ (A⊕ Aϵ, m̄ = m + ϕϵ)

yields HH2(A) ∼= DefA(k[ϵ]). For A = k[x , y ], we obtain k[ϵ][x , y ]
with

m̄(f , g) = fg + h
∂f

∂x

∂g

∂y
ϵ

for some h ∈ k[x , y ].

Observation: if k ⊗R Ā ∼= A, we have

FunR(k ,Mod(Ā)) ∼= Mod(A).

⇝ Deformation theory of abelian categories (L - Van den Bergh,
2005).
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Part 1: linear...

topoi



Projective schemes

X = Proj(A)

A = (Ai )i∈Z positively graded, connected commutative k-algebra

▶ Serre’s Theorem: Qch(X ) = Qgr(A)

▶ Attempt: realise HH2(X ) by deforming A

Key example: X = P2 = Proj(k[x0, x1, x2])
Noncommutative P2’s = Sklyanin algebras

k⟨x0, x1, x2⟩/(cx2i + bxi+1xi+2 + axi+2xi+1)i∈Z3

(Artin - Tate - Van den Bergh, 1990, Bondal - Polishchuk, 1993)
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Projective schemes

X projective scheme (eg. P2)

⇝ Z-algebra a (linear category with objects indexed by Z)

There is a linear tails topology on a with

Qch(X) ∼= Mod(a)/Tors(a) ∼= Sh(a, Ttails)

⇝ Ttails is a linearisation of the Grothendieck topology on (Z,≥)
for which all non-empty sieves are covering



Z-algebras

X projective with ample invertible line bundle L and

H1(X ,OX ) = 0 = H2(X ,OX ) (1)

There is a Z-algebra a on the Ln with HHn(X ) = HHn(a) (Van
den Bergh, 2001; L - Van den Bergh, 2005; L, 2012)

⇝ deform a algebraically and use Ttails to construct geometry!

⇝ HMS has been extended to Del Pezzo surfaces and their
noncommutative deformations (Auroux - Katzarkov - Orlov, 2005)

Question: what about schemes that do not satisfy (1)?
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The quartic

K3 surface X cut out by x40 + x41 + x42 + x43 = 0 in P3, which has
dim(H2(X ,OX )) = h0,2 = 1.



Linear topologies

A Grothendieck category is a cocomplete abelian category with a
generator and exact filtered colimits.

▶ Every Grothendieck category can be represented as a linear
sheaf category (Gabriel - Popescu)

▶ Grothendieck categories are stable under the tensor product of
linear locally presentable categories (L - Ramos González -
Shoikhet, 2017)

Sh(a1, T1)⊠ Sh(a2, T2) = Sh(a1 ⊗ a2, T1 ⊠ T2)

▶ The Grothendieck property is stable under abelian
deformation (L - Van den Bergh, 2005), but a given site may
not deform algebraically!
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Schemes

X scheme (quasi-compact, separated)

▶ HHn(X ) = ExtnX×X (OX ,OX )

▶ HKR (smooth case): HHn(X ) = ⊕p+q=nH
p(X ,ΛqTX )

HH2(X ) = H0(X ,Λ2TX )⊕ H1(X , TX )⊕ H2(X ,OX )

⇝ a class u = (γ, β, α) on the right determines an abelian
deformation Qch(X , u) of Qch(X ) (Toda, 2009; Dinh Van - Liu -
L, 2017)

⇝ derived categories of twisted sheaves (Căldăraru, 2000)

⇝ higher order deformations?



Part 2: linear...

virtual double categories



Schemes

X quasi-compact separated scheme (eg. X = P2)

⇝ structure sheaf A = OX |U on affine cover U

▶ Qch(X ) can be reconstructed from A
▶ HH∗(X ) ∼= H∗CGS(A)

(Gerstenhaber - Schack, 1983; L - Van den Bergh, 2005)



Presheaves of algebras

(A,m, f ) presheaf of k-algebras on small category U (A : U 7→ AU)

⇝ associated Gerstenhaber-Schack complex CGS(A)

Cp,q
GS (A) =

∏
σ∈Np(U)

Homk(A
⊗q
tσ ,Asσ)

The total differential dGS is built from

▶ horizontal Hochschild differentials dHoch
▶ vertical simplicial differentials dsimp

Components of total degree two:

▶ C0,2
GS(A) =

∏
U∈U Homk(AU ⊗ AU ,AU) ∋ m

▶ C1,1
GS(A) =

∏
u:V→U Homk(AU ,AV ) ∋ f

▶ C2,0
GS(A) =

∏
(v :W→V ,u:V→U) AW



Prestacks

(A,m, f , c) prestack on U

U (AU ,mU)

u∗=fu
��

fuv=(uv)∗

yy

V

u

OO

(AV ,mV )

v∗=fv
��

W

v

OO

(AW ,mW )

mU : AU ⊗ AU → AU

fu : AU → AV

cAu,v ∈ Homk(v
∗u∗(A), (uv)∗(A))



Prestacks: axioms

(A,m, f , c) prestack on U

Cp,q
GS (A) =

∏
σ∈Np(U),A∈Aq+1

tσ

Homk(A⊗q
tσ (A),Asσ(σ

∗sA, |σ|∗tA))

▶ C0,3
GS(A): associativity of m: m ◦ (m ⊗ 1) = m ◦ (1⊗m)

▶ C1,2
GS(A): functoriality of f : f ◦m = m ◦ (f ⊗ f )

▶ C2,1
GS(A): naturality of c : m ◦ ((f ◦ f )⊗ c) = m ◦ (c ⊗ f )

▶ C3,0
GS(A): coherence: m ◦ (c ⊗ c) = m ◦ ((f ◦ c)⊗ c)

⇝ relations are not quadratic!
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Algebras: operadic structure

Recall that there is an N-coloured operad Op whose algebras are
precisely nonsymmetric operads.

▶ Op is generated by

▶ elements of Op(k) can be depicted as trees with k vertices.

▶ Op acts on C(A) of an algebra A by inserting operations of
designated arities at vertices, and composing.

⇝ let a similar coloured operad act on CGS(A)
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Prestacks: box operadic structure

We define an N3-coloured operad □p (pronounced “box-op”)

▶ the colour (p, q, r) ↔ the box

▶ □p is generated by

with associativity relations
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▶ the colour (p, q, r) ↔ the box

▶ □p is generated by

with associativity relations



Prestacks: box operadic structure

▶ elements of □p(n) can be depicted as n-stackings, that is
trees with n matching (p, q, r)-labeled boxes as vertices. E.g:

∈ □p(4)

assembles boxes with labels (0, 2, 0), (1, 1, 1), (2, 0, 1) and
(2, 0, 1) respectively into a (3, 0, 1)-box.



Prestacks: box operadic structure

The operad □p acts on an enlargement C□(A) of CGS(A) with

Cp,q,r
□ (A) =

∏
σ∈Np(U), h∈∆f ([r ],[p])

A∈A(tσ)q+1

Homk(A(tσ)⊗q(A),A(sσ)(σ∗sA, h(σ)∗tA))

by inserting linear maps into rectangles, and composing:

⇝ m ◦ ((f ◦ c)⊗ c)



L∞-structure

We totalise k□p into a graded operad □pgr. Let □p
2−n
grt (n) be the

set of n-stackings of degree 2− n + technical assumptions.

For n ≥ 2, we define the element Pn ∈ □pgr(n) as

Pn =
∑

S∈□p2−n
grt (n)

(−1)SS

and the n-Gerstenhaber bracket Ln as the anti-symmetrisation

Ln =
∑
σ∈Sn

(−1)σLσn

Theorem (Dinh Van - Hermans - L)

We have a morphism of dg-operads L∞ → □pgr : ln 7→ Ln.
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Box operads

In analogy with nonsymmetric operads being Op-algebras, we
introduce the following terminology:

Definition
A □p-algebra is called a box operad.

Rephrasing the theorem, we have shown that every linear box
operad B carries an L∞-structure (with zero differential). The
Maurer-Cartan equation takes the following form, for α ∈ B:

MC(α) =
∑
n≥2

(−1)
n(n+1)

2 Pn(α, . . . , α)

Proposition

The resulting L∞-structure on C□(A) restricts to an L∞-structure
on CGS(A).
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Historical notes

▶ Box operads are an instance of multicategories over a monad
(Burroni, 1971) and have been called fc multicategories
(Leinster, 1999, 2003). More recently they are being studied
under the name of virtual double categories (Crutwell -
Shulman, 2010; Koudenburg, 2020, ...).

▶ In specific cases, L∞-structures on CGS(A) were obtained by
other methods, for instance for an algebra morphism (Frégier -
Markl - Yau, 2009) and for specific diagrams of algebras
(Barmeier - Frégier, 2018). The case of a general presheaf of
algebras was solved by Hawkins (2020) and extended to
prestacks by Dinh Van - L - Hermans (2022).
However, these approaches do not allow for a characterisation
of the prestack structure.
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Prestacks: box operadic structure

Let A be a k-quiver on U (i.e. a prestack without the algebraic
structure).

Theorem (Dinh Van - Hermans - L)

Let CGS(A) be endowed with the box operadic L∞-structure.
Consider α = (m, f , c) ∈ C2

GS(A). We have

MC(α) = 0 ⇐⇒ (A,m, f , c) is a prestack.

Corollary

Let (A,m, f , c) be a prestack. The deformation theory of A as a
prestack is governed by the box operadic L∞-structure on CGS(A)
twisted by α = (m, f , c).

⇝ A minimal model for prestack via Koszul duality for box operads
(Hermans, 2023)
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Prestacks: box operadic structure

Proof.
MC(α) = −P2(α, α) + P3(α, α, α) + P4(α, α, α, α).

MC(α)[0,3] = −P2(α, α)[0,3]

MC(α)[1,2] = −PGS
2 (α, α)[1,2] + PGS

3 (α, α, α)[1,2]



Prestacks: box operadic structure

Proof.
MC(α)[2,1] = PGS

3 (α, α, α)[2,1] + PGS
4 (α, α, α, α)[2,1]

MC(α)[3,0] = PGS
3 (α, α, α)[3,0] + PGS

4 (α, α, α, α)[3,0]



Mirror symmetry

Mirror picture:

B : X 99K D(Qch(X )) ∼= D(F(Y )) L99 Y : A

Compelling reasons to deform dg categories:

1. F(X ) is an A∞-category

2. D(Qch(X )) ∼= D(A) for a dg algebra A (Keller, 1994;
Neeman, 1996; Bondal - Van den Bergh, 2003)

3. Mirror symmetry involves dg categories on the B-side without
abelian models (Orlov, 2003)
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Dg categories

Problem: deformation theory of dg categories is notoriously
difficult due to “curvature” (Keller - Lowen, 2009; Lurie, 2010;
Lehmann, 2024).

Inspiration:

1. dg categories as higher categories:

{pretriangulated dg cats} ↔ {stable linear ∞-cats}

(Lurie, 2016, Cohn, 2016)

2. general theory of enriched ∞-categories (Gepner - Haugseng,
2015)

⇝ establish a concrete model of linear ∞-categories amenable to
algebraic deformation theory
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Part 3: linear...

∞-categories



Quasi-categories in modules

“Quasi-categories in V are ∞-categories weakly enriched in SV”

V = Set ⇝ V = Mod(k); SSet ⇝ S Mod(k) ∼= C (k)≥0

Goals: develop their

▶ homotopy theory (Arne Mertens)

▶ deformation theory ⇝ today

First step: introduce an appropriate ambient category S⊗V of
templicial objects or tensor-simplicial objects



Enriched nerve

Let C be a small k-linear category. Consider the k-modules

Nk(C)n =
⊕

A0,...,An∈Ob(C)

C(A0,A1)⊗ ...⊗ C(An−1,An)

u = f1 ⊗ · · · ⊗ fn ∈ C(A0,A1)⊗ ...⊗ C(An−1,An)

▶ di (u) = f1 ⊗ · · · ⊗ fi+1fi ⊗ · · · ⊗ fn for 1 ≤ i ≤ n − 1

▶ d0(u) =? dn(u) =?

Problem: the Nk(C)n do not constitute a simplicial k-module
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Enriched nerve

Solution: restrict ∆ to the finite interval category ∆f :

▶ objects: the posets [n] = {0, . . . , n} with n ≥ 0

▶ order morphisms f : [n] → [m] with f (0) = 0 and f (n) = m

The category ∆f is strict monoidal with [n] + [m] = [n +m] and
[0] as tensor unit.

Proposition (Leinster, 2000)

Let (V,×, 1) be a cartesian monoidal category. There is an
isomorphism of categories

Colax(∆op
f ,V) ∼= SV.

In particular, we have Colax(∆op
f ,Set)

∼= SSet.
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Templicial objects

Let (V,⊗, I ) be a monoidal category and O a set. A V-quiver on
vertex set O consists of V-objects Q(a, b) for a, b ∈ O. The
category V QuivO of V-quivers on O is monoidal with

(Q⊗OP)(a, b) =
∐
c∈O

Q(a, c)⊗P(c, b) and IO(a, b) =

{
I if a = b

0 if a ̸= b

Definition
A templicial object in (V,⊗, I ) with vertex set O is a strongly
unital, colax monoidal functor

X : ∆op
f → V QuivO .

The category of templicial objects in V is denoted by S⊗V.

⇝ Discrete vertices in simplicial objects internal to a monoidal
category (Mertens, 2025)
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Templicial objects

Example

Let V = Mod(k). Consider the templicial vector space X :

a

b1 b2

c
w

f1 f2 g1g2

h

f1 ∈ X1(a, b1), g1 ∈ X1(b1, c)

f2 ∈ X1(a, b2), g2 ∈ X1(b2, c)

h ∈ X1(a, c), w ∈ X2(a, c)

with d1(w) = h and µ1,1(w) = f1 ⊗ g1 + f2 ⊗ g2.



Necklaces

Let X : ∆op
f −→ V QuivO be a templicial object in V.

For a, b ∈ O, the functor X•(a, b) : ∆
op
f −→ V can naturally be

extended to a functor

X•(a, b) : N ecop −→ V

determined by

X∆n1∨···∨∆nk (a, b) = Xn1 ⊗O · · · ⊗O Xnk (a, b)

on objects and

δj : ∆n−1 → ∆n 7→ dj : Xn → Xn−1

σi : ∆n → ∆n−1 7→ si : Xn−1 → Xn

νp,q : ∆p ∨∆q → ∆p+q 7→ µp,q : Xp+q → Xp ⊗ Xq

on morphisms.



Quasi-categories in V

Definition
Let Y : N ecop −→ V be a functor. We say that Y is weak Kan if
for all 0 < j < n any lifting problem

F̃ (Λn
j )•(0, n)

//

_�

��

Y

F̃ (∆n)•(0, n)

∃

::

in Fun(N ecop,V) has a solution.

We call a templicial object X a quasi-category in V if the functors
X•(a, b) are weak Kan for all a, b ∈ O.



The templicial dg nerve

Theorem (L - Mertens)

There is a templicial dg nerve Ndg
k from the category Catdg (k) of

small dg-categories to the category S⊗Mod(k) of templicial
modules, which lands in quasi-categories in modules:

Catdg (k)
Ndg
k //

Ndg
''

S⊗Mod(k)

Ũ
��

SSet

⇝ Nerves of enriched categories via necklaces (Mertens, 2024)

⇝ Templicial nerve of an A∞-category (Borges Marques -
Mertens, 2024)
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Base change

Consider the following functors relating different enriching
categories V (for R a commutative k-algebra):

Mod(R)

k⊗R−
��

Mod(k)

Set

FR=R(−)

DD

Fk=k(−)

::

S⊗Mod(R)

k⊗R−
��

S⊗Mod(k)

SSet

F̃R

BB

F̃k

88

Proposition (L - Mertens)

The free functor F̃R preserves (enriched) quasi-categories.

The proof makes use of non-associative Frobenius structures and
wings W n = ∂0∆

n ∪ ∂n∆n ⊆ ∆n.
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Deformations of templicial modules

Definition
Let R be an Artin local k-algebra. An R-deformation of a
templicial k-module X is a levelwise flat templicial R-module X̄
with k ⊗R X̄ ∼= X .

Example

Let C̄ be a (flat) R-deformation of a k-linear category C. Then
NR(C̄) is a R-deformation of Nk(C).

Example

Let X be a simplicial set. Then F̃R(X ) is an R-deformation of
F̃k(X ).



Deformations of templicial modules

Example

Put R = k[ϵ] with ϵ2 = 0. We define P = F̃ (∆2
∐

∆1 ∂∆2) using
the inclusions δ1 : ∆

1 → ∆2 and δ1 : ∆
1 → ∂∆2 in SSet:

a

b1 b2

c
α

f1 f2 g1 g2

h

f1 ∈ P1(a, b1), g1 ∈ P1(b1, c)

f2 ∈ P1(a, b2), g2 ∈ P1(b2, c)

h ∈ P1(a, c), α ∈ P2(a, c)

with d1(α) = h and µ1,1(α) = f1 ⊗ g1.



Deformations of templicial modules

Example (continued)

We obtain a k[ϵ]-deformation P̄ of P with

µ̄1,1(α) = f1 ⊗ g1 + f2 ⊗ g2ϵ

d̄1(α) = h

A picture of P and P̄, on the left and right, respectively:

a

b1 b2

c
α

f1 f2 g1 g2

h
a

b1 b2

c

α
f1 f2 g1 g2

h

Note that P̄ is a non-free deformation of the free templicial
module P.



Deformations of templicial modules

Theorem (Borges Marques - L - Mertens)

The quasi-category property is stable under infinitesimal
deformation of templicial modules.

Theorem (Borges Marques)

Let X be a templicial k-module. There is a Hochschild complex
C(X ) that governs infinitesimal deformations of X via an
obstruction theory involving HH2,3(X ) = H2,3C(X ).

Future goal: for C a cohomologically bounded above or
pretriangulated dg category, establish

C(C) ∼= C(Ndg
k (C))
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Quasi-categories in modules as noncommutative spaces?

X quasi-category in modules

Sh(X , T )

X

OO

yy &&

C(X ) +3 DefX (R)

Future goals:

1. Develop linear higher topos theory to define sheaf categories

2. Use 1. in deformation theory cfr Part 1.

3. Endow C(X ) with higher structure cfr Part 2.


