Categories or Spaces? Categorical Concepts in Noncommutative Geometry

Wendy Lowen

j.w. Violeta Borges Marques, Lander Hermans, Arne Mertens

Universiteit Antwerpen

CT2025, July 15th, 2025

Part 0: linear...

categories

Mirror symmetry

Mirror symmetry has originally been observed for Calabi-Yau (CY) manifolds. For two n-dimensional mirror manifolds X and Y, we in particular have:

$$h^{p,q}(X) = h^{n-p,q}(Y)$$

where $h^{p,q}(X) = \dim H^q(X, \Omega_X^p)$ are the *hodge numbers* of a complex manifold X.

Mirror symmetry

Mirror symmetry has originally been observed for Calabi-Yau (CY) manifolds. For two n-dimensional mirror manifolds X and Y, we in particular have:

$$h^{p,q}(X) = h^{n-p,q}(Y)$$

where $h^{p,q}(X) = \dim H^q(X, \Omega_X^p)$ are the *hodge numbers* of a complex manifold X.

For a CY 3-fold X:

- (A) $h^{1,1}(X)$ is related to symplectic deformations
- (B) $h^{2,1}(X)$ is related to complex deformations

Hence, for mirror CY 3-folds X and Y, complex deformations of X correspond to symplectic deformations of Y.

Homological Mirror Symmetry (HMS)

In his 1994 ICM address, Kontsevich made the following conjectural proposal:

Define X and Y to satisfy HMS provided we have (exact) equivalences of (triangulated) categories:

$$D(Qch(X)) \cong D(\mathcal{F}(Y))$$
 and $D(Qch(Y)) \cong D(\mathcal{F}(X))$

- 1. HMS implies numerical features of mirror symmetry
- HMS takes place in an extended realm of certain "noncommutative spaces" stemming from more general deformations

Homological Mirror Symmetry (HMS)

In his 1994 ICM address, Kontsevich made the following conjectural proposal:

Define X and Y to satisfy HMS provided we have (exact) equivalences of (triangulated) categories:

$$D(Qch(X)) \cong D(\mathcal{F}(Y))$$
 and $D(Qch(Y)) \cong D(\mathcal{F}(X))$

- 1. HMS implies numerical features of mirror symmetry
- HMS takes place in an extended realm of certain "noncommutative spaces" stemming from more general deformations

→ look at categorical invariants!

Hochschild cohomology

X scheme (quasi-compact, separated)

How should we deform X?

$$ightharpoonup HH^n(X) = \operatorname{Ext}_{X \times X}^n(\Delta_* \mathcal{O}_X, \Delta_* \mathcal{O}_X)$$
 (Swan, 1996)

► HKR (smooth case): $HH^n(X) = \bigoplus_{p+q=n} H^p(X, \Lambda^q \mathcal{T}_X)$

$$\mathsf{HH}^2(X) = \mathsf{H}^0(X, \Lambda^2 \mathcal{T}_X) \oplus \mathsf{H}^1(X, \mathcal{T}_X) \oplus \mathsf{H}^2(X, \mathcal{O}_X)$$

▶ $H^1(X, \mathcal{T}_X) \leftrightarrow$ first order scheme deformations

Noncommutative spaces?

X a "noncommutative space"

→ associate algebraic objects to a scheme and then deform

Affine schemes

$$X = \operatorname{Spec}(A)$$

A commutative k-algebra

- ▶ Attempt: realise $HH^2(X)$ by deforming A

Affine schemes

$$X = \operatorname{Spec}(A)$$

A commutative k-algebra

- ▶ Attempt: realise $HH^2(X)$ by deforming A

Key example:
$$X = \mathbb{A}^2 = \operatorname{Spec}(k[x, y])$$

→ deforms into the Weyl algebra:

$$k\langle x,y\rangle/xy-yx-\lambda$$

▶ $HH^n(\operatorname{Spec}(A)) \cong HH^n(A) = \operatorname{Ext}_{A-A}^n(A,A)$, the Hochschild cohomology of A (Hochschild, 1945)

Deligne's principle

"Every deformation problem is governed by a dg Lie algebra (DGLA)" (Deligne, 1986)

Let (L, [-, -], d) be a DGLA. Consider the Maurer-Cartan equation

$$MC(\phi) = d(\phi) + \frac{1}{2}[\phi, \phi].$$

There is an associated deformation functor $\mathrm{Def}_L:\mathrm{Art}_k\longrightarrow\mathsf{Set}$ with

$$\operatorname{Def}_{L}(R,\mathfrak{m}) = \{\phi \in (\mathfrak{m} \otimes L)^{1} \mid \operatorname{MC}(\phi) = 0\}/\sim$$

Deligne's principle

"Every deformation problem is governed by a dg Lie algebra (DGLA)" (Deligne, 1986)

Let (L,[-,-],d) be a DGLA. Consider the Maurer-Cartan equation

$$MC(\phi) = d(\phi) + \frac{1}{2}[\phi, \phi].$$

There is an associated deformation functor $\mathrm{Def}_L:\mathrm{Art}_k\longrightarrow\mathsf{Set}$ with

$$\operatorname{Def}_{L}(R,\mathfrak{m}) = \{\phi \in (\mathfrak{m} \otimes L)^{1} \mid \operatorname{MC}(\phi) = 0\}/\sim$$

Remark: DGLA's correspond precisely to "formal moduli problems" in the setup of derived algebraic geometry (Lurie and Pridham, 2010).

Let A be a k-vector space and put $\mathbf{C}^n(A) = \operatorname{Hom}_k(A^{\otimes n}, A)$. \rightsquigarrow operadic composition entailing the braces, e.g.

$$\phi ullet \psi = \sum (-1)^\epsilon \phi \circ (1 \otimes \ldots \psi \cdots \otimes 1)$$

Put

$$[\phi, \psi] = \phi \bullet \psi - (-1)^{|\phi||\psi|} \psi \bullet \phi.$$

Let A be a k-vector space and put $\mathbf{C}^n(A) = \operatorname{Hom}_k(A^{\otimes n}, A)$. \rightsquigarrow operadic composition entailing the braces, e.g.

$$\phi ullet \psi = \sum (-1)^\epsilon \phi \circ (1 \otimes \dots \psi \cdots \otimes 1)$$

Put

$$[\phi, \psi] = \phi \bullet \psi - (-1)^{|\phi||\psi|} \psi \bullet \phi.$$

Then $(\mathbf{C}(A)[1], [-, -], 0)$ is a DGLA such that for $m \in \operatorname{Hom}_k(A^{\otimes 2}, A)$ we have

$$\mathrm{MC}(m) = m \bullet m = m \circ (m \otimes 1) - m \circ (1 \otimes m)$$

whence

$$MC(m) = 0 \iff m$$
 is associative.

Let (A, m) be a k-algebra and consider $\mathbf{C}(A)$. We obtain a differential $d_{Hoch} = [m, -]$, with eg.

$$d_{Hoch}(\phi)(a,b,c) = a\phi(b,c) - \phi(ab,c) + \phi(a,bc) - \phi(a,b)c$$

for
$$\phi \in \mathbf{C}^2(A) = \operatorname{Hom}_k(A^{\otimes 2}, A)$$
, such that $\operatorname{HH}^n(A) = H^n\mathbf{C}(A)$.

Let (A, m) be a k-algebra and consider $\mathbf{C}(A)$. We obtain a differential $d_{Hoch} = [m, -]$, with eg.

$$d_{Hoch}(\phi)(a,b,c) = a\phi(b,c) - \phi(ab,c) + \phi(a,bc) - \phi(a,b)c$$

for $\phi \in \mathbf{C}^2(A) = \operatorname{Hom}_k(A^{\otimes 2}, A)$, such that $\operatorname{HH}^n(A) = H^n\mathbf{C}(A)$.

Definition (Gerstenhaber, 1964)

Let A be a k-algebra and let R be an Artin local k-algebra. An R-deformation of A is a flat R-algebra \bar{A} with an isomorphism $k \otimes_R \bar{A} \cong A$.

Then
$$L = (\mathbf{C}(A)[1], [-, -], d_{Hoch})$$
 is a DGLA with

$$\operatorname{Def}_L \cong \operatorname{Def}_A^{alg}$$
.

Example

Put $R = k[\epsilon] = k[t]/(t^2)$. Then $\mathrm{Def}_L(k[\epsilon]) \cong \mathrm{HH}^2(A)$ and

$$\phi \in \mathsf{Z}^2\mathbf{C}(A) \longmapsto (A \oplus A\epsilon, \bar{m} = m + \phi\epsilon)$$

yields $HH^2(A) \cong Def_A(k[\epsilon])$. For A = k[x, y], we obtain $k[\epsilon][x, y]$ with

$$\bar{m}(f,g) = fg + h \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} \epsilon$$

for some $h \in k[x, y]$.

Example

Put $R = k[\epsilon] = k[t]/(t^2)$. Then $\mathrm{Def}_L(k[\epsilon]) \cong \mathrm{HH}^2(A)$ and

$$\phi \in \mathsf{Z}^2\mathbf{C}(A) \longmapsto (A \oplus A\epsilon, \bar{m} = m + \phi\epsilon)$$

yields $HH^2(A) \cong Def_A(k[\epsilon])$. For A = k[x, y], we obtain $k[\epsilon][x, y]$ with

$$\bar{m}(f,g) = fg + h \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} \epsilon$$

for some $h \in k[x, y]$.

Observation: if $k \otimes_R \bar{A} \cong A$, we have

$$\operatorname{\mathsf{Fun}}_R(k,\operatorname{\mathsf{Mod}}(\bar{A}))\cong\operatorname{\mathsf{Mod}}(A).$$

 \leadsto Deformation theory of abelian categories (L - Van den Bergh, 2005).

Part 1: linear...

topoi

Projective schemes

- X = Proj(A)
- $A = (A_i)_{i \in \mathbb{Z}}$ positively graded, connected commutative k-algebra
 - ▶ Serre's Theorem: Qch(X) = Qgr(A)
 - Attempt: realise $HH^2(X)$ by deforming A

Projective schemes

$$X = \text{Proj}(A)$$

 $A = (A_i)_{i \in \mathbb{Z}}$ positively graded, connected commutative k-algebra

- ▶ Serre's Theorem: Qch(X) = Qgr(A)
- Attempt: realise $HH^2(X)$ by deforming A

Key example:
$$X = \mathbb{P}^2 = \operatorname{Proj}(k[x_0, x_1, x_2])$$

Noncommutative \mathbb{P}^2 's = Sklyanin algebras

$$k\langle x_0, x_1, x_2 \rangle / (cx_i^2 + bx_{i+1}x_{i+2} + ax_{i+2}x_{i+1})_{i \in \mathbb{Z}_3}$$

(Artin - Tate - Van den Bergh, 1990, Bondal - Polishchuk, 1993)

Projective schemes

X projective scheme (eg. \mathbb{P}^2)

ightharpoonup \mathbb{Z} -algebra \mathfrak{a} (linear category with objects indexed by \mathbb{Z})

There is a linear tails topology on a with

$$\mathsf{Qch}(\mathsf{X}) \cong \mathsf{Mod}(\mathfrak{a})/\mathsf{Tors}(\mathfrak{a}) \cong \mathsf{Sh}(\mathfrak{a},\mathcal{T}_{\mathrm{tails}})$$

 $\leadsto \mathcal{T}_{\mathrm{tails}}$ is a linearisation of the Grothendieck topology on (\mathbb{Z}, \geq) for which all non-empty sieves are covering

\mathbb{Z} -algebras

X projective with ample invertible line bundle ${\mathcal L}$ and

$$H^1(X, \mathcal{O}_X) = 0 = H^2(X, \mathcal{O}_X) \tag{1}$$

There is a \mathbb{Z} -algebra $\mathfrak a$ on the $\mathcal L^n$ with $\operatorname{HH}^n(X)=\operatorname{HH}^n(\mathfrak a)$ (Van den Bergh, 2001; L - Van den Bergh, 2005; L, 2012)

 \leadsto deform a algebraically and use $\mathcal{T}_{\mathrm{tails}}$ to construct geometry!

\mathbb{Z} -algebras

X projective with ample invertible line bundle ${\mathcal L}$ and

$$H^1(X, \mathcal{O}_X) = 0 = H^2(X, \mathcal{O}_X) \tag{1}$$

There is a \mathbb{Z} -algebra \mathfrak{a} on the \mathcal{L}^n with $HH^n(X)=HH^n(\mathfrak{a})$ (Van den Bergh, 2001; L - Van den Bergh, 2005; L, 2012)

 \leadsto deform $\mathfrak a$ algebraically and use $\mathcal T_{\rm tails}$ to construct geometry!

→ HMS has been extended to Del Pezzo surfaces and their noncommutative deformations (Auroux - Katzarkov - Orlov, 2005)

Question: what about schemes that do not satisfy (1)?

The quartic

K3 surface X cut out by $x_0^4+x_1^4+x_2^4+x_3^4=0$ in \mathbb{P}^3 , which has $\dim(H^2(X,\mathcal{O}_X))=h^{0,2}=1$.

Linear topologies

A Grothendieck category is a cocomplete abelian category with a generator and exact filtered colimits.

- Every Grothendieck category can be represented as a linear sheaf category (Gabriel - Popescu)
- Grothendieck categories are stable under the tensor product of linear locally presentable categories (L - Ramos González -Shoikhet, 2017)

$$\mathsf{Sh}(\mathfrak{a}_1,\mathcal{T}_1) \boxtimes \mathsf{Sh}(\mathfrak{a}_2,\mathcal{T}_2) = \mathsf{Sh}(\mathfrak{a}_1 \otimes \mathfrak{a}_2,\mathcal{T}_1 \boxtimes \mathcal{T}_2)$$

Linear topologies

A Grothendieck category is a cocomplete abelian category with a generator and exact filtered colimits.

- Every Grothendieck category can be represented as a linear sheaf category (Gabriel - Popescu)
- Grothendieck categories are stable under the tensor product of linear locally presentable categories (L - Ramos González -Shoikhet, 2017)

$$\mathsf{Sh}(\mathfrak{a}_1,\mathcal{T}_1) \boxtimes \mathsf{Sh}(\mathfrak{a}_2,\mathcal{T}_2) = \mathsf{Sh}(\mathfrak{a}_1 \otimes \mathfrak{a}_2,\mathcal{T}_1 \boxtimes \mathcal{T}_2)$$

► The Grothendieck property is stable under abelian deformation (L - Van den Bergh, 2005), but a given site may not deform algebraically!

Schemes

X scheme (quasi-compact, separated)

- $\blacktriangleright \mathsf{HH}^n(X) = \mathsf{Ext}^n_{X \times X}(\mathcal{O}_X, \mathcal{O}_X)$
- ► HKR (smooth case): $HH^n(X) = \bigoplus_{p+q=n} H^p(X, \Lambda^q \mathcal{T}_X)$

$$\mathsf{HH}^2(X) = \mathsf{H}^0(X, \Lambda^2 \mathcal{T}_X) \oplus \mathsf{H}^1(X, \mathcal{T}_X) \oplus \mathsf{H}^2(X, \mathcal{O}_X)$$

 \leadsto a class $u=(\gamma,\beta,\alpha)$ on the right determines an abelian deformation Qch(X,u) of Qch(X) (Toda, 2009; Dinh Van - Liu - L, 2017)

- → derived categories of twisted sheaves (Căldăraru, 2000)
- → higher order deformations?

Part 2: linear...

virtual double categories

Schemes

X quasi-compact separated scheme (eg. $X=\mathbb{P}^2$)

ightsquigar structure sheaf $\mathbb{A}=\mathcal{O}_X|_{\mathcal{U}}$ on affine cover \mathcal{U}

- ightharpoonup Qch(X) can be reconstructed from A
- ► $HH^*(X) \cong H^*\mathbf{C}_{GS}(\mathbb{A})$ (Gerstenhaber - Schack, 1983; L - Van den Bergh, 2005)

Presheaves of algebras

(A, m, f) presheaf of k-algebras on small category \mathcal{U} $(A : U \mapsto A_U)$ \rightsquigarrow associated Gerstenhaber-Schack complex $\mathbf{C}_{GS}(A)$

$$\mathbf{C}_{GS}^{p,q}(A) = \prod_{\sigma \in \mathcal{N}_p(\mathcal{U})} \mathsf{Hom}_k(A_{t\sigma}^{\otimes q}, A_{s\sigma})$$

The total differential d_{GS} is built from

- horizontal Hochschild differentials d_{Hoch}
- vertical simplicial differentials d_{simp}

Components of total degree two:

$$ightharpoonup \mathbf{C}_{GS}^{0,2}(A) = \prod_{U \in \mathcal{U}} \operatorname{\mathsf{Hom}}_k(A_U \otimes A_U, A_U) \ni m$$

$$ightharpoonup \mathbf{C}_{GS}^{1,1}(A) = \prod_{u:V \to U} \operatorname{\mathsf{Hom}}_k(A_U, A_V) \ni f$$

$$\mathbf{C}_{GS}^{2,0}(A) = \prod_{(v:W \to V, u:V \to U)} A_W$$

Prestacks

 (\mathbb{A}, m, f, c) prestack on \mathcal{U}

Prestacks: axioms

 (\mathbb{A}, m, f, c) prestack on \mathcal{U}

$$\mathbf{C}^{p,q}_{\mathit{GS}}(\mathbb{A}) = \prod_{\sigma \in \mathit{N}_p(\mathcal{U}),\, A \in \mathbb{A}^{q+1}_{t\sigma}} \mathsf{Hom}_k(\mathbb{A}^{\otimes q}_{t\sigma}(A), \mathbb{A}_{s\sigma}(\sigma^* \mathit{sA}, |\sigma|^* \mathit{tA}))$$

- ▶ $\mathbf{C}_{GS}^{0,3}(A)$: associativity of m: $m \circ (m \otimes 1) = m \circ (1 \otimes m)$
- ▶ $\mathbf{C}_{GS}^{1,2}(A)$: functoriality of f: $f \circ m = m \circ (f \otimes f)$
- ▶ $\mathbf{C}_{GS}^{2,1}(A)$: naturality of c: $m \circ ((f \circ f) \otimes c) = m \circ (c \otimes f)$
- ▶ $\mathbf{C}_{GS}^{3,0}(A)$: coherence: $m \circ (c \otimes c) = m \circ ((f \circ c) \otimes c)$

Prestacks: axioms

 (\mathbb{A}, m, f, c) prestack on \mathcal{U}

$$\mathbf{C}^{p,q}_{GS}(\mathbb{A}) = \prod_{\sigma \in \mathcal{N}_p(\mathcal{U}),\, A \in \mathbb{A}^{q+1}_{t\sigma}} \mathsf{Hom}_k(\mathbb{A}^{\otimes q}_{t\sigma}(A), \mathbb{A}_{s\sigma}(\sigma^* sA, |\sigma|^* tA))$$

- ▶ $\mathbf{C}_{GS}^{0,3}(A)$: associativity of m: $m \circ (m \otimes 1) = m \circ (1 \otimes m)$
- ▶ $C_{GS}^{1,2}(A)$: functoriality of f: $f \circ m = m \circ (f \otimes f)$
- ▶ $\mathbf{C}_{GS}^{2,1}(A)$: naturality of c: $m \circ ((f \circ f) \otimes c) = m \circ (c \otimes f)$
- ▶ $\mathbf{C}_{GS}^{3,0}(A)$: coherence: $m \circ (c \otimes c) = m \circ ((f \circ c) \otimes c)$

→ relations are not quadratic!

Algebras: operadic structure

Recall that there is an \mathbb{N} -coloured operad Op whose algebras are precisely nonsymmetric operads.

► Op is generated by

- \triangleright elements of Op(k) can be depicted as trees with k vertices.
- ightharpoonup Op acts on $\mathbf{C}(A)$ of an algebra A by inserting operations of designated arities at vertices, and composing.

Algebras: operadic structure

Recall that there is an \mathbb{N} -coloured operad Op whose algebras are precisely nonsymmetric operads.

Op is generated by

- \triangleright elements of Op(k) can be depicted as trees with k vertices.
- ightharpoonup Op acts on $\mathbf{C}(A)$ of an algebra A by inserting operations of designated arities at vertices, and composing.
- \rightsquigarrow let a similar coloured operad act on $C_{GS}(\mathbb{A})$

We define an $\mathbb{N}^3\text{-coloured}$ operad $\Box p$ (pronounced "box-op")

▶ the colour (p, q, r) \leftrightarrow the box p

We define an $\mathbb{N}^3\text{-coloured}$ operad $\Box p$ (pronounced "box-op")

▶ the colour (p,q,r) \leftrightarrow the box p

▶ □p is generated by

with associativity relations

▶ elements of $\Box p(n)$ can be depicted as *n-stackings*, that is trees with *n* matching (p, q, r)-labeled boxes as vertices. E.g.:

assembles boxes with labels (0,2,0), (1,1,1), (2,0,1) and (2,0,1) respectively into a (3,0,1)-box.

The operad \Box p acts on an enlargement $\mathbf{C}_{\Box}(\mathbb{A})$ of $\mathbf{C}_{GS}(\mathbb{A})$ with

$$\mathbf{C}_{\square}^{p,q,r}(\mathbb{A}) = \prod_{\substack{\sigma \in \mathsf{N}_p(\mathcal{U}), \, h \in \mathbf{\Delta}_f([r],[p]) \\ A \in \mathbb{A}(t\sigma)^{q+1}}} \mathsf{Hom}_k(\mathbb{A}(t\sigma)^{\otimes q}(A), \mathbb{A}(s\sigma)(\sigma^*sA, h(\sigma)^*tA))$$

by inserting linear maps into rectangles, and composing:

L_{∞} -structure

We totalise $k \square p$ into a graded operad $\square p_{gr}$. Let $\square p_{grt}^{2-n}(n)$ be the set of *n*-stackings of degree 2-n + technical assumptions.

For $n \geq 2$, we define the element $P_n \in \Box p_{gr}(n)$ as

$$P_n = \sum_{S \in \square \mathsf{p}^{2-n}_{\mathsf{grt}}(n)} (-1)^S S$$

L_{∞} -structure

We totalise $k \square p$ into a graded operad $\square p_{gr}$. Let $\square p_{grt}^{2-n}(n)$ be the set of n-stackings of degree 2-n+1 technical assumptions.

For $n \geq 2$, we define the element $P_n \in \Box p_{gr}(n)$ as

$$P_n = \sum_{S \in \square p_{\text{grt}}^{2-n}(n)} (-1)^S S$$

and the n-Gerstenhaber bracket L_n as the anti-symmetrisation

$$L_n = \sum_{\sigma \in \mathbb{S}_n} (-1)^{\sigma} L_n^{\sigma}$$

Theorem (Dinh Van - Hermans - L)

We have a morphism of dg-operads $L_{\infty} \to \Box p_{gr} : I_n \mapsto L_n$.

Box operads

In analogy with nonsymmetric operads being Op-algebras, we introduce the following terminology:

Definition

A \Box p-algebra is called a *box operad*.

Box operads

In analogy with nonsymmetric operads being Op-algebras, we introduce the following terminology:

Definition

A \Box p-algebra is called a *box operad*.

Rephrasing the theorem, we have shown that every linear box operad $\mathcal B$ carries an L_∞ -structure (with zero differential). The Maurer-Cartan equation takes the following form, for $\alpha \in \mathcal B$:

$$\mathrm{MC}(\alpha) = \sum_{n\geq 2} (-1)^{\frac{n(n+1)}{2}} P_n(\alpha,\ldots,\alpha)$$

Proposition

The resulting L_{∞} -structure on $\mathbf{C}_{\square}(\mathbb{A})$ restricts to an L_{∞} -structure on $\mathbf{C}_{GS}(\mathbb{A})$.

Historical notes

▶ Box operads are an instance of multicategories over a monad (Burroni, 1971) and have been called fc multicategories (Leinster, 1999, 2003). More recently they are being studied under the name of virtual double categories (Crutwell - Shulman, 2010; Koudenburg, 2020, ...).

Historical notes

- ▶ Box operads are an instance of multicategories over a monad (Burroni, 1971) and have been called fc multicategories (Leinster, 1999, 2003). More recently they are being studied under the name of virtual double categories (Crutwell Shulman, 2010; Koudenburg, 2020, ...).
- In specific cases, L_∞-structures on C_{GS}(A) were obtained by other methods, for instance for an algebra morphism (Frégier Markl Yau, 2009) and for specific diagrams of algebras (Barmeier Frégier, 2018). The case of a general presheaf of algebras was solved by Hawkins (2020) and extended to prestacks by Dinh Van L Hermans (2022).

However, these approaches do not allow for a characterisation of the prestack structure.

Let $\mathbb A$ be a k-quiver on $\mathcal U$ (i.e. a prestack without the algebraic structure).

Theorem (Dinh Van - Hermans - L)

Let $\mathbf{C}_{GS}(\mathbb{A})$ be endowed with the box operadic L_{∞} -structure.

Consider $\alpha = (m, f, c) \in \mathbf{C}^2_{GS}(\mathbb{A})$. We have

 $MC(\alpha) = 0 \iff (A, m, f, c)$ is a prestack.

Let $\mathbb A$ be a k-quiver on $\mathcal U$ (i.e. a prestack without the algebraic structure).

Theorem (Dinh Van - Hermans - L)

Let $\mathbf{C}_{GS}(\mathbb{A})$ be endowed with the box operadic L_{∞} -structure. Consider $\alpha=(m,f,c)\in\mathbf{C}_{GS}^2(\mathbb{A})$. We have

$$MC(\alpha) = 0 \iff (A, m, f, c)$$
 is a prestack.

Corollary

Let (\mathbb{A}, m, f, c) be a prestack. The deformation theory of \mathbb{A} as a prestack is governed by the box operadic L_{∞} -structure on $\mathbf{C}_{GS}(\mathbb{A})$ twisted by $\alpha = (m, f, c)$.

Let $\mathbb A$ be a k-quiver on $\mathcal U$ (i.e. a prestack without the algebraic structure).

Theorem (Dinh Van - Hermans - L)

Let $C_{GS}(\mathbb{A})$ be endowed with the box operadic L_{∞} -structure. Consider $\alpha = (m, f, c) \in C^2_{GS}(\mathbb{A})$. We have

$$MC(\alpha) = 0 \iff (A, m, f, c)$$
 is a prestack.

Corollary

Let (\mathbb{A}, m, f, c) be a prestack. The deformation theory of \mathbb{A} as a prestack is governed by the box operadic L_{∞} -structure on $\mathbf{C}_{GS}(\mathbb{A})$ twisted by $\alpha = (m, f, c)$.

 \rightsquigarrow A minimal model for prestack via Koszul duality for box operads (Hermans, 2023)

Proof.

$$MC(\alpha) = -P_2(\alpha, \alpha) + P_3(\alpha, \alpha, \alpha) + P_4(\alpha, \alpha, \alpha, \alpha).$$

$$MC(\alpha)_{[0,3]} = -P_2(\alpha,\alpha)_{[0,3]}$$

$$MC(\alpha)_{[1,2]} = -P_2^{GS}(\alpha,\alpha)_{[1,2]} + P_3^{GS}(\alpha,\alpha,\alpha)_{[1,2]}$$

$$= \begin{array}{c|cc} \hline & m \\ \hline & f \\ \hline \end{array} \begin{array}{c|cc} \hline & f \\ \hline & m \\ \hline \end{array}$$

Proof.

$$\mathrm{MC}(\alpha)_{[2,1]} = P_3^{GS}(\alpha,\alpha,\alpha)_{[2,1]} + P_4^{GS}(\alpha,\alpha,\alpha,\alpha)_{[2,1]}$$

$$\mathrm{MC}(\alpha)_{[3,0]} = P_3^{GS}(\alpha,\alpha,\alpha)_{[3,0]} + P_4^{GS}(\alpha,\alpha,\alpha,\alpha)_{[3,0]}$$

Mirror symmetry

Mirror picture:

$$B: X \dashrightarrow D(Qch(X)) \cong D(\mathcal{F}(Y)) \longleftarrow Y : A$$

Mirror symmetry

Mirror picture:

$$B: X \dashrightarrow D(Qch(X)) \cong D(\mathcal{F}(Y)) \longleftarrow Y : A$$

Compelling reasons to deform dg categories:

- 1. $\mathcal{F}(X)$ is an A_{∞} -category
- 2. $D(Qch(X)) \cong D(A)$ for a dg algebra A (Keller, 1994; Neeman, 1996; Bondal Van den Bergh, 2003)
- 3. Mirror symmetry involves dg categories on the B-side without abelian models (Orlov, 2003)

Dg categories

Problem: deformation theory of dg categories is notoriously difficult due to "curvature" (Keller - Lowen, 2009; Lurie, 2010; Lehmann, 2024).

Inspiration:

1. dg categories as higher categories:

```
{pretriangulated dg cats} \leftrightarrow {stable linear \infty-cats} (Lurie, 2016, Cohn, 2016)
```

2. general theory of enriched ∞ -categories (Gepner - Haugseng, 2015)

Dg categories

Problem: deformation theory of dg categories is notoriously difficult due to "curvature" (Keller - Lowen, 2009; Lurie, 2010; Lehmann, 2024).

Inspiration:

1. dg categories as higher categories:

```
{pretriangulated dg cats} \leftrightarrow {stable linear \infty-cats} (Lurie, 2016, Cohn, 2016)
```

2. general theory of enriched ∞ -categories (Gepner - Haugseng, 2015)

 \leadsto establish a concrete model of linear ∞ -categories amenable to algebraic deformation theory

Part 3: linear...

 ∞ -categories

Quasi-categories in modules

"Quasi-categories in ${\mathcal V}$ are ∞ -categories weakly enriched in ${\mathcal S}{\mathcal V}$ "

$$V = \mathsf{Set} \ \leadsto \ V = \mathsf{Mod}(k); \ \mathsf{SSet} \ \leadsto \ S \, \mathsf{Mod}(k) \cong C(k)_{\geq 0}$$

Goals: develop their

- homotopy theory (Arne Mertens)
- ► deformation theory *→ today*

First step: introduce an appropriate ambient category $S_{\otimes}\mathcal{V}$ of templicial objects or tensor-simplicial objects

Let C be a small k-linear category. Consider the k-modules

$$N_k(\mathcal{C})_n = \bigoplus_{A_0,...,A_n \in \mathsf{Ob}(\mathcal{C})} \mathcal{C}(A_0,A_1) \otimes ... \otimes \mathcal{C}(A_{n-1},A_n)$$

$$u = f_1 \otimes \cdots \otimes f_n \in \mathcal{C}(A_0, A_1) \otimes \ldots \otimes \mathcal{C}(A_{n-1}, A_n)$$

$$d_i(u) = f_1 \otimes \cdots \otimes f_{i+1} f_i \otimes \cdots \otimes f_n \text{ for } 1 \leq i \leq n-1$$

Let C be a small k-linear category. Consider the k-modules

$$N_k(\mathcal{C})_n = \bigoplus_{A_0,...,A_n \in \mathsf{Ob}(\mathcal{C})} \mathcal{C}(A_0,A_1) \otimes ... \otimes \mathcal{C}(A_{n-1},A_n)$$

$$u = f_1 \otimes \cdots \otimes f_n \in \mathcal{C}(A_0, A_1) \otimes \ldots \otimes \mathcal{C}(A_{n-1}, A_n)$$

- ▶ $d_i(u) = f_1 \otimes \cdots \otimes f_{i+1} f_i \otimes \cdots \otimes f_n$ for $1 \leq i \leq n-1$
- $ightharpoonup d_0(u) = ? d_n(u) = ?$

Problem: the $N_k(\mathcal{C})_n$ do not constitute a simplicial k-module

Solution: restrict Δ to the *finite interval category* Δ_f :

- ▶ objects: the posets $[n] = \{0, ..., n\}$ with $n \ge 0$
- ▶ order morphisms $f:[n] \to [m]$ with f(0) = 0 and f(n) = m

The category Δ_f is strict monoidal with [n] + [m] = [n + m] and [0] as tensor unit.

Solution: restrict Δ to the finite interval category Δ_f :

- ▶ objects: the posets $[n] = \{0, ..., n\}$ with $n \ge 0$
- ▶ order morphisms $f:[n] \to [m]$ with f(0) = 0 and f(n) = m

The category Δ_f is strict monoidal with [n] + [m] = [n + m] and [0] as tensor unit.

Proposition (Leinster, 2000)

Let $(\mathcal{V}, \times, 1)$ be a cartesian monoidal category. There is an isomorphism of categories

$$\mathsf{Colax}(\mathbf{\Delta}_f^{op}, \mathcal{V}) \cong S\mathcal{V}.$$

In particular, we have $Colax(\Delta_f^{op}, Set) \cong SSet$.

Templicial objects

Let $(\mathcal{V}, \otimes, I)$ be a monoidal category and O a set. A \mathcal{V} -quiver on vertex set O consists of \mathcal{V} -objects Q(a,b) for $a,b\in O$. The category \mathcal{V} Quiv $_O$ of \mathcal{V} -quivers on O is monoidal with

$$(Q \otimes_O P)(a,b) = \coprod_{c \in O} Q(a,c) \otimes P(c,b)$$
 and $I_O(a,b) = \begin{cases} I & \text{if } a = b \\ 0 & \text{if } a \neq b \end{cases}$

Templicial objects

Let $(\mathcal{V}, \otimes, I)$ be a monoidal category and O a set. A \mathcal{V} -quiver on vertex set O consists of \mathcal{V} -objects Q(a,b) for $a,b\in O$. The category \mathcal{V} Quiv $_O$ of \mathcal{V} -quivers on O is monoidal with

$$(Q \otimes_O P)(a,b) = \coprod_{c \in O} Q(a,c) \otimes P(c,b)$$
 and $I_O(a,b) = \begin{cases} I & \text{if } a = b \\ 0 & \text{if } a \neq b \end{cases}$

Definition

A templicial object in $(\mathcal{V}, \otimes, I)$ with vertex set O is a strongly unital, colax monoidal functor

$$X: \mathbf{\Delta}^{op}_f
ightarrow \mathcal{V} \operatorname{\mathsf{Quiv}}_O$$
 .

The category of templicial objects in V is denoted by $S_{\otimes}V$.

→ Discrete vertices in simplicial objects internal to a monoidal category (Mertens, 2025)

Templicial objects

Example

Let V = Mod(k). Consider the templicial vector space X:

$$f_1 \in X_1(a, b_1), \quad g_1 \in X_1(b_1, c)$$

 $f_2 \in X_1(a, b_2), \quad g_2 \in X_1(b_2, c)$
 $h \in X_1(a, c), \quad w \in X_2(a, c)$

with $d_1(w) = h$ and $\mu_{1,1}(w) = f_1 \otimes g_1 + f_2 \otimes g_2$.

Necklaces

Let $X: \mathbf{\Delta}_f^{\mathrm{op}} \longrightarrow \mathcal{V} \operatorname{Quiv}_O$ be a templicial object in \mathcal{V} . For $a,b \in O$, the functor $X_{\bullet}(a,b): \mathbf{\Delta}_f^{\mathrm{op}} \longrightarrow \mathcal{V}$ can naturally be extended to a functor

$$X_{\bullet}(a,b): \mathcal{N}ec^{\mathrm{op}} \longrightarrow \mathcal{V}$$

determined by

$$X_{\Delta^{n_1}\vee\cdots\vee\Delta^{n_k}}(a,b)=X_{n_1}\otimes_O\cdots\otimes_O X_{n_k}(a,b)$$

on objects and

on morphisms.

Quasi-categories in ${\mathcal V}$

Definition

Let $Y: \mathcal{N}ec^{op} \longrightarrow \mathcal{V}$ be a functor. We say that Y is weak Kan if for all 0 < j < n any lifting problem

in $\operatorname{Fun}(\mathcal{N}ec^{op},\mathcal{V})$ has a solution.

We call a templicial object X a *quasi-category in* \mathcal{V} if the functors $X_{\bullet}(a,b)$ are weak Kan for all $a,b\in O$.

The templicial dg nerve

Theorem (L - Mertens)

There is a templicial dg nerve N_k^{dg} from the category $\operatorname{Cat}_{dg}(k)$ of small dg-categories to the category $S_{\otimes} \operatorname{Mod}(k)$ of templicial modules, which lands in quasi-categories in modules:

The templicial dg nerve

Theorem (L - Mertens)

There is a templicial dg nerve N_k^{dg} from the category $\operatorname{Cat}_{dg}(k)$ of small dg-categories to the category $S_{\otimes} \operatorname{Mod}(k)$ of templicial modules, which lands in quasi-categories in modules:

- → Nerves of enriched categories via necklaces (Mertens, 2024)
- \leadsto Templicial nerve of an A_{∞} -category (Borges Marques Mertens, 2024)

Base change

Consider the following functors relating different enriching categories V (for R a commutative k-algebra):

Base change

Consider the following functors relating different enriching categories V (for R a commutative k-algebra):

Proposition (L - Mertens)

The free functor \tilde{F}_R preserves (enriched) quasi-categories.

The proof makes use of non-associative Frobenius structures and wings $W^n = \partial_0 \Delta^n \cup \partial_n \Delta^n \subseteq \Delta^n$.

Definition

Let R be an Artin local k-algebra. An R-deformation of a templicial k-module X is a levelwise flat templicial R-module \bar{X} with $k \otimes_R \bar{X} \cong X$.

Example

Let \bar{C} be a (flat) R-deformation of a k-linear category C. Then $N_R(\bar{C})$ is a R-deformation of $N_k(C)$.

Example

Let X be a simplicial set. Then $\tilde{F}_R(X)$ is an R-deformation of $\tilde{F}_k(X)$.

Example

Put $R = k[\epsilon]$ with $\epsilon^2 = 0$. We define $P = \tilde{F}(\Delta^2 \coprod_{\Delta^1} \partial \Delta^2)$ using the inclusions $\delta_1 : \Delta^1 \to \Delta^2$ and $\delta_1 : \Delta^1 \to \partial \Delta^2$ in SSet:

$$f_1 \in P_1(a, b_1), \quad g_1 \in P_1(b_1, c)$$

 $f_2 \in P_1(a, b_2), \quad g_2 \in P_1(b_2, c)$
 $h \in P_1(a, c), \quad \alpha \in P_2(a, c)$

with $d_1(\alpha) = h$ and $\mu_{1,1}(\alpha) = f_1 \otimes g_1$.

Example (continued)

We obtain a $k[\epsilon]$ -deformation \bar{P} of P with

$$ar{\mu}_{1,1}(lpha) = f_1 \otimes g_1 + f_2 \otimes g_2 \epsilon \ ar{d}_1(lpha) = h$$

A picture of P and \bar{P} , on the left and right, respectively:

Note that \bar{P} is a non-free deformation of the free templicial module P.

Theorem (Borges Marques - L - Mertens)

The quasi-category property is stable under infinitesimal deformation of templicial modules.

Theorem (Borges Marques - L - Mertens)

The quasi-category property is stable under infinitesimal deformation of templicial modules.

Theorem (Borges Marques)

Let X be a templicial k-module. There is a Hochschild complex $\mathbf{C}(X)$ that governs infinitesimal deformations of X via an obstruction theory involving $\mathrm{HH}^{2,3}(X)=H^{2,3}\mathbf{C}(X)$.

Future goal: for C a cohomologically bounded above or pretriangulated dg category, establish

$$\mathbf{C}(\mathcal{C}) \cong \mathbf{C}(N_k^{dg}(\mathcal{C}))$$

Quasi-categories in modules as noncommutative spaces?

X quasi-category in modules

Future goals:

- 1. Develop *linear* higher topos theory to define sheaf categories
- 2. Use 1. in deformation theory cfr Part 1.
- 3. Endow C(X) with higher structure cfr Part 2.