

Giry monad revisited

Daniel Luckhardt University College London July 18, 2024

Overview

- Up-date on my poster presentation from last year.
- Issues with extension operation.
- Giry monad only as endofunctor but with nice properties.
- Alternative set theories.

But let's start again at the beginning of the story.

Limitations of general Giry monad

General measures (denoted by $\mathfrak{m}, \mathfrak{n}, \mathfrak{m}_1, \ldots$) lack many desireable properties.

Analytic properties

No Kantorovic-Rubinstein duality

$$W(c) = K(c)$$

for every bounded measurable cost function c, where

$$W(c)(\mathfrak{m}_1,\mathfrak{m}_2) = \sup_{\substack{\mathfrak{c} \text{ couples } \mathfrak{m}_1,\mathfrak{m}_2}} \int c \, \mathrm{d}\mathfrak{c}$$

($\mathfrak{c} \text{ couples } \mathfrak{m}_1,\mathfrak{m}_2 \text{ if } \mathrm{pr}_{i*} \, \mathfrak{c} = \mathfrak{m}_i \text{ for } i = 1,2$) and $K(c)(\mathfrak{m}_1,\mathfrak{m}_2) = \sup_{\substack{h \text{ nonexpansive}}} \int h \, \mathrm{d}(\mathfrak{m}_{\mathsf{X}} - \mathfrak{m}_{\mathsf{y}}).$

Likewise, not the dual Monge-Kantorovic duality.

Weak limit preservation

Weak pullbacks are not preserved.

Projective limits: Weak preservation can not be assumed in general, but without additional assumption, even a limit along

$$(X1, A1) \leftarrow (X2, A2) \leftarrow \dots$$

does not exit (Andersen and Jessen 1948).

Limitations of general Giry monad

General measures (denoted by $\mathfrak{m}, \mathfrak{n}, \mathfrak{m}_1, \ldots$) lack many desireable properties.

Analytic properties

No Kantorovic-Rubinstein duality

$$W(c) = K(c)$$

for every bounded measurable cost function c, where

$$W(c)(\mathfrak{m}_1,\mathfrak{m}_2) = \sup_{\substack{\mathfrak{c} \text{ couples } \mathfrak{m}_1,\mathfrak{m}_2}} \int c \, \mathrm{d}\mathfrak{c}$$

($\mathfrak{c} \text{ couples } \mathfrak{m}_1,\mathfrak{m}_2 \text{ if } \mathrm{pr}_{i*} \, \mathfrak{c} = \mathfrak{m}_i \text{ for } i = 1,2$) and $K(c)(\mathfrak{m}_1,\mathfrak{m}_2) = \sup_{\substack{h \text{ nonexpansive}}} \int h \, \mathrm{d}(\mathfrak{m}_{\mathsf{X}} - \mathfrak{m}_{\mathsf{y}}).$

Likewise, not the dual Monge-Kantorovic duality.

Weak limit preservation

Weak pullbacks are not preserved.

Projective limits: Weak preservation can not be assumed in general, but without additional assumption, even a limit along

 $(X1, A1) \leftarrow (X2, A2) \leftarrow \dots$ does not exit (Andersen and Jessen 1948).

Perfect measures

Think of them as tight measures (being approximateable from within by compact sets).

For them many desired properties hold.

Limitations of general Giry monad

General measures (denoted by $\mathfrak{m}, \mathfrak{n}, \mathfrak{m}_1, \ldots$) lack many desireable properties.

Weak limit preservation

Analytic proper

No Kantorovic-RI W(c) = K(c) for every bounds where

What we want

A restriction of the Giry monad still comprising everything necessary for application (e.g. perfect measures on countably fibered spaces).

reserved.
reservation can al, but without ven a limit along

$$W(c)(\mathfrak{m}_1,\mathfrak{m}_2) = \sup_{\mathfrak{c} \text{ couples } \mathfrak{m}_1,\mathfrak{m}_2} \int c \, \mathrm{d}\mathfrak{c}$$

($\mathfrak{c} \text{ couples } \mathfrak{m}_1,\mathfrak{m}_2 \text{ if } \mathrm{pr}_{i*} \, \mathfrak{c} = \mathfrak{m}_i \text{ for } i = 1,2$) and

$$K(c)(\mathfrak{m}_1,\mathfrak{m}_2) = \sup_{\substack{h \text{ nonexpansive} \\ \text{wrt. } c}} \int h d(\mathfrak{m}_x - \mathfrak{m}_y).$$

Likewise, not the dual Monge-Kantorovic duality.

does not exit (Andersen and Jessen 1948).

Perfect measures

Think of them as tight measures (being approximateable from within by compact sets).

For them many desired properties hold.

Idea: Restricting Giry Monad on Meas

Idea: Restricting Giry Monad on Meas

Remaining structure

We still have

• an endofunctor \mathcal{G}_{perf} : Meas \rightarrow Meas

$$(X, A) \mapsto \left\{ egin{matrix} \mathsf{perf.\ prob.\ m.} \\ \mathsf{on} \ (X, A) \end{matrix} \right\}$$

with a unit
 (→ well-pointed endofunctor).

Alternatively, \mathcal{G}_{perf} can be viewed as a *relative monad* on the identity functor to the category of partial measurable maps.

All advantates of perfect measures

Kantorovic-Rubinstein theorem, ...

Remaining structure

We still have

• an endofunctor \mathcal{G}_{perf} : Meas \rightarrow Meas

$$(X, A) \mapsto \left\{ egin{matrix} \mathsf{perf.\ prob.\ m.} \\ \mathsf{on} \ (X, A) \end{matrix} \right\}$$

with a unit
 (~ well-pointed endofunctor).

Alternatively, \mathcal{G}_{perf} can be viewed as a *relative* monad on the identity functor to the category of partial measurable maps.

All advantates of perfect measures

Kantorovic-Rubinstein theorem, ...

Do we get any emergent properties by restricting?

Remaining structure

We still have

ullet an endofunctor $\mathcal{G}_{\textit{perf}} : \mathbf{Meas} o \mathbf{Meas}$

$$(X, A) \mapsto \left\{ egin{matrix} \mathsf{perf.\ prob.\ m.} \\ \mathsf{on} \ (X, A) \end{matrix} \right\}$$

with a unit
 (→ well-pointed endofunctor).

Alternatively, \mathcal{G}_{perf} can be viewed as a *relative monad* on the identity functor to the category of partial measurable maps.

All advantates of perfect measures

Kantorovic-Rubinstein theorem, ...

Do we get any emergent properties by restricting?

Weak pullback-preservation

If we restrict further to an endofunctor $\mathcal{G}_{\mathsf{rcpp}}$

$$(X, A) \mapsto \left\{ egin{array}{ll} \mathsf{perf. prob. m.} \\ \mathsf{on} \ (X, A) \ \mathsf{with} \\ \mathsf{subfield rcpp} \ (*) \end{array} \right\}$$

for (X, A) countably fibered, \mathcal{G}_{rcpp} preserves weak pullbacks.

(*) regular conditional probability condition

Projective limits

Exist under optimal condition for countably fibered spaces (Musiał 1980).

Do we get any emergent properties by

Remaining stru

We still have

an endofun

$$(X,\mathcal{A})\mapsto$$

 with a unit (~ well-po

Alternatively, \mathcal{G}_{pe} monad on the id category of parti

All advantates

Clue for real-world application

When viewed as a relative monad one could escape in the following way:

- 1. postulate that the extensive quantities you want to model by probability measures are perfect.
- 2. Do some mathematical arguments, resulting in the desired statement provided that mixing goes well
- 3. using the postulate to say that, as the resulting probability measures exist, they must be perfect.

Conceptually not satisfying.

n dofunctor \mathcal{G}_{rcpp} $\mathcal{J}_{\mathsf{rcpp}}$ preserves pility condition

1 for countably

Kantorovic-Rubinstein theorem. ...

fibered spaces (Musiał 1980).

In ZF + CC + AD (with a grain of salt)

Restricting Axiom of Choice

When restricting to the Axiom of Countable choice (CC)

theory of integration and lot more still goes through.

On the other hand, ZF + CC is consistent with AD, the Axiom of Determinancy.

Measure theoretic consequences of AD

All subsets of $\ensuremath{\mathbb{R}}$ are Lebesgue measurable. All prob. m.'s are perfect.

In ZF + CC + AD (with a grain of salt)

Restricting Axiom of Choice

When restricting to the Axiom of Countable choice (CC)

theory of integration and lot more still goes through.

On the other hand, ZF + CC is consistent with AD, the Axiom of Determinancy.

Measure theoretic consequences of AD

All subsets of $\mathbb R$ are Lebesgue measurable. All prob. m.'s are perfect.

The Giry monad in ZF + CC + AD

As $\mathcal{G}_{\mathsf{perf}} = \mathcal{G}$, it is a monad.

Restricting to \mathcal{G}_{rcpp} we obtain again the weak limit preservation properties from above.

The objects G(X, A)

 $\mathcal{G}(\text{countably generated}) = \text{standard}$

 $\mathcal{G}(\mathsf{countably} \ \mathsf{fibered}) = \mathsf{analytic}$

G(arbitray) = smooth

Smooth space generalise analytic spaces going back to Falkner (1981).

Many constructions actually work for smooth spaces, e.g. behavioral distance of Markov decision systems (Beohar, L., Kupke 2025).

References

- Andersen, Erik Sparre and Børge Jessen (1948). "On the Introduction of Measures in Infinite Product Sets". In: Matematisk-fysiske Meddelelser 15.4.
- Ramachandran, Doraiswamy (1974). "Mixtures of Perfect Probability Measures". In: *The Annals of Probability* 2.3, pp. 495–500. ISSN: 00911798, 2168894X.
- Musiał, Kazimierz (1980). "Projective limits of perfect measure spaces". In: Fundamenta Mathematicae 110.163-188.
- Falkner, Neil (1981). "Generalizations of analytic and standard measurable spaces". In: Mathematica Scandinavica, pp. 283–301.
- Beohar, Harsh, Daniel Luckhardt, and Clemens Kupke (2025). "Expressivity of bisimulation pseudometrics over analytic state spaces". In: CALCO25 (11th Conference on Algebra and Coalgebra in Computer Science). Accepted.

- Pachl, Jan K (1979). "Two classes of measures". In: Colloquium Mathematicum 42.1, pp. 331–340. Note Erratum in Vol. 45. 2. 1981, pp. 331–333.
- Fremlin, D.H. (2000–2008). Measure Theory. 5 vols. Torres Fremlin.
- Faden, Arnold M. (1985). "The Existence of Regular Conditional Probabilities: Neceissary and Sufficient Conditions". In: *The Annals of Probability* 13.1, pp. 288–298.
- Ramachandran, Doraiswamy and Ludger Rüschendorf (1995). "A general duality theorem for marginal problems". In: Probability Theory and Related Fields 101, pp. 311–319.
- (2000). "On the Monge-Kantorovich duality theorem". In: Teoriya Veroyatnostei i ee Primeneniya 45.2, pp. 403–409.