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Overview

• Up-date on my poster presentation from last year.
• Issues with extension operation.
• Giry monad only as endofunctor but with nice properties.
• Alternative set theories.

But let’s start again at the beginning of the story.
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Limitations of general Giry monad

General measures (denoted by m, n,m1, . . .) lack
many desireable properties.

Analytic properties
No Kantorovic-Rubinstein duality
W(c) = K(c)

for every bounded measurable cost function c,
where
W(c)(m1,m2) = sup

c couples m1,m2

∫
c dc

(c couples m1,m2 if pri∗ c = mi for i = 1, 2) and

K(c)(m1,m2) = sup
h nonexpansive

wrt. c

∫
h d(mx −my).

Likewise, not the dual Monge-Kantorovic duality.

Weak limit preservation
Weak pullbacks are not preserved.
Projective limits: Weak preservation can
not be assumed in general, but without
additional assumption, even a limit along

(X1,A1)↞ (X2,A2)↞ . . .
does not exit (Andersen and Jessen 1948).

Perfect measures
Think of them as tight measures (being
approximateable from within by compact
sets).
For them many desired properties hold.

What we want
A restriction of the Giry monad still comprising everything
necessary for application (e.g. perfect measures on
countably fibered spaces).
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Idea: Restricting Giry Monad on Meas

restricting G(X,A)

? ? ?

⊤
perfect

weakly-α-favourable
α-favourable

monocompact

countably compact
compact

regular conditional
probability conditions

standard analytic universally
measurable

countably
generated

countably
fibered

restricting
to a full

subcategory

restricting
to a full

subcategory

Problem
Kleisli extension is not well-defined, i.e.:
A perfect mixing of perfect measures is not necessarily
perfect (Ramachandran 1974).
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What can be done

Remaining structure
We still have

• an endofunctor Gperf : Meas→ Meas

(X,A) 7→
{

perf. prob. m.
on (X,A)

}
• with a unit

(⇝ well-pointed endofunctor).
Alternatively, Gperf can be viewed as a relative
monad on the identity functor to the
category of partial measurable maps.

All advantates of perfect measures
Kantorovic-Rubinstein theorem, ...

Do we get any emergent properties by
restricting?

Weak pullback-preservation
If we restrict further to an endofunctor Grcpp

(X,A) 7→


perf. prob. m.

on (X,A) with
subfield rcpp (*)


for (X,A) countably fibered, Grcpp preserves
weak pullbacks.
(*) regular conditional probability condition

Projective limits
Exist under optimal condition for countably
fibered spaces (Musiał 1980).

Clue for real-world application
When viewed as a relative monad one could escape in the
following way:

1. postulate that the extensive quantities you want to
model by probability measures are perfect.

2. Do some mathematical arguments, resulting in the
desired statement provided that mixing goes well

3. using the postulate to say that, as the resulting
probability measures exist, they must be perfect.

Conceptually not satisfying.
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In ZF + CC + AD (with a grain of salt)

Restricting Axiom of Choice
When restricting to the Axiom of Countable
choice (CC)

X Y︸︷︷︸
countable

surjective

section

theory of integration and lot more still goes
through.
On the other hand, ZF + CC is consistent with
AD, the Axiom of Determinancy.

Measure theoretic consequences of AD
All subsets of R are Lebesgue measurable.
All prob. m.’s are perfect.

The Giry monad in ZF + CC + AD
As Gperf = G, it is a monad.
Restricting to Grcpp we obtain again the weak
limit preservation properties from above.

The objects G(X,A)
G(countably generated) = standard

G(countably fibered) = analytic
G(arbitray) = smooth

Smooth space generalise analytic spaces
going back to Falkner (1981).
Many constructions actually work for smooth
spaces, e.g. behavioral distance of Markov
decision systems (Beohar, L., Kupke 2025).
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