Upgrading equivalences in a weak ω -category to coherent ones

Soichiro Fujii (Masaryk University)

Keisuke Hoshino (Kyoto University)

Yuki Maehara (Kyoto University)

me

CT2025, Brno

Well known (2-categorical case):

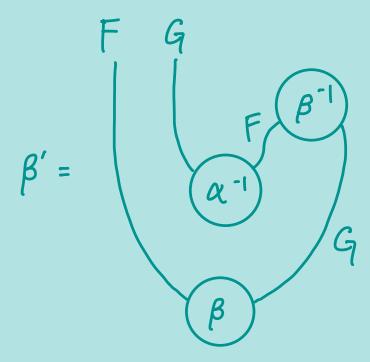
Given C D, A: ide = GF and B: FG = ids,

Well known (2-categorical case):

Given C D, α : ide α GF and β : FG α idg, we can upgrade it to an adjoint equivalence

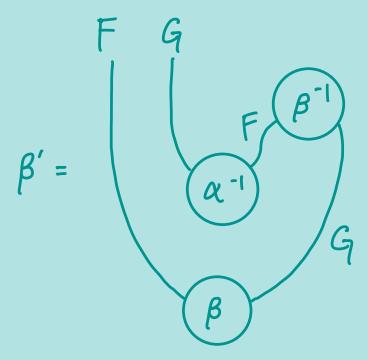
Well known (2-categorical case):

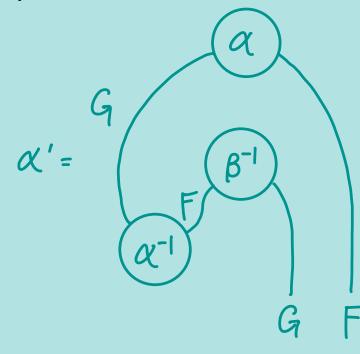
Given $C = \mathcal{D}$, $\alpha : ide \cong GF$ and $\beta : FG \cong id_{\mathfrak{D}}$, we can upgrade it to an adjoint equivalence (F, G, α, β')



Well known (2-categorical case):

Given $C = \mathcal{D}$, $\alpha : ide \cong GF$ and $\beta : FG \cong idg$, we can upgrade it to an adjoint equivalence (F, G, α, β') or dually (F, G, α', β) .





Why upgrade?

Question:

In what sense are adjoint equivalences better than mere equivalences?

Why upgrade?

Question:

In what sense are adjoint equivalences better than mere equivalences?

Answer:

Adjoint equivalences are coherent, so things behave nicely when transferred along them.

Why upgrade?

Question:

In what sense are adjoint equivalences better than mere equivalences?

Answer:

Adjoint equivalences are coherent, so things behave nicely when transferred along them.

Example:

Transferring a monoidal structure along an equivalence of categories $C = \mathcal{D}$.

Formalising coherence

Question:

Can we make precise "adjoint equivalences are coherent"?

Formalising coherence

Question:

Can we make precise "adjoint equivalences are coherent"?

Answer (cf. [L]):

Yes, the free 2-category containing an adjoint equivalence is biequivalent to a point.

equivalent by Adj Eq

Formalising coherence

Question:

Can we make precise "adjoint equivalences are coherent"?

Answer (cf. [L]):

Yes, the free 2-category containing an adjoint equivalence is biequivalent to a point.

equivalent by AdjEq

Specifying an adjoint equivalence in K (Adj Eq $\rightarrow K$)

{ essentially the same

Specifying a single object in K (* \rightarrow K)

Theorem (Fujii - Hoshino - M.):

We constructed a weak w-categorical version of Adj. Eq.

Theorem (Fujii - Hoshino - M.):

We constructed a weak w-categorical version of Adj. Eq. More precisely, we constructed E such that

· E is suitably equivalent to a point ~ E is "coherent"

Theorem (Fujii - Hoshino - M.):

We constructed a weak w-categorical version of Adj. Eq. More precisely, we constructed E such that

- · E is suitably equivalent to a point ~ E is "coherent"
- any "equivalence" in a weak ω -category X can be detected by an ω -functor $E \longrightarrow X$.

~> Any "equivalence" can be upgraded to a coherent one.

Theorem (Fujii - Hoshino - M.):

We constructed a weak w-categorical version of Adj. Eq. More precisely, we constructed E such that

- E is suitably equivalent to a point ~ E is "coherent" (This part is deliberately paraphrased in a misleading way.)
- any "equivalence" in a weak ω -category X can be detected by an ω -functor $E \longrightarrow X$.

~> Any "equivalence" can be upgraded to a coherent one.

Weak w-categories

Informal definition:

Weak w-categories

Informal definition:

A weak ω-category consists of

O-cells, I-cells, 2-cells, 3-cells, ...

equipped with compositions and identities satisfying suitable axioms up to "equivalences".

Weak w-categories

Informal definition:

A weak w-category consists of

O-cells, I-cells, 2-cells, 3-cells, ...

equipped with compositions and identities satisfying suitable axioms up to "equivalences".

Slightly more formal definition (Batanin, Leinster):

A weak w-category is an EM-algebra for the "universal weakening" of the monad for strict w-categories.

Definition:

An n-cell $f: x \rightarrow y$ in a weak w-category is an equivalence if there exist

- · an n-cell g:y →x,
- an equivalence (n+1) cell $u: 1_x \rightarrow gf$, and
- an equivalence (n+1) cell $v: 1_y \rightarrow f_g$

Definition:

An n-cell $f: x \rightarrow y$ in a weak w-category is an equivalence if there exist

- an n-cell $g: y \to x$,
- an equivalence (n+1) cell $u: 1_x \rightarrow gf$, and
- an equivalence (n+1) cell $v: 1_y \rightarrow f_g$

So there should exist at least

· u': gf -> 1x and equivalences 1 -> u'u, 1 -> uu', ...

Definition:

An n-cell $f: x \rightarrow y$ in a weak w-category is an equivalence if there exist

- · an n-cell g:y →x,
- an equivalence (n+1) cell $u: 1_x \rightarrow gf$, and
- an equivalence (n+1) cell $v: 1_y \rightarrow f_g$

So there should exist at least

- · U': gf -> 1x and equivalences 1 -> u'u, 1 -> uu', ...
- · v': fg → 1y and equivalences 1 → v'v, 1 → vv', ...

Definition:

An n-cell $f: x \rightarrow y$ in a weak w-category is an equivalence if there exist

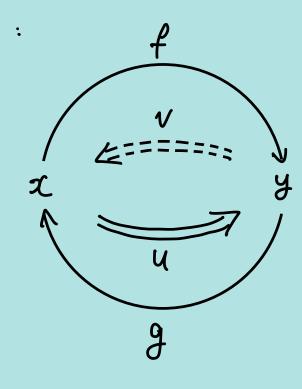
- · an n-cell g:y →x,
- an equivalence (n+1) cell $u: 1_x \rightarrow gf$, and
- an equivalence (n+1) cell $v: 1_y \rightarrow f_g$

So there should exist at least

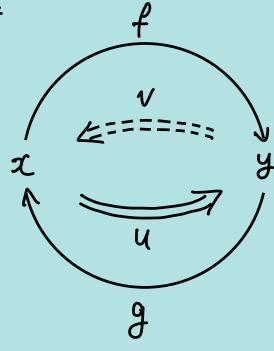
- · U': gf -> 1x and equivalences 1 -> u'u, 1 -> uu', ...
- · v': fg → 1y and equivalences 1 → v'v, 1 → vv', ...

The "free equivalence" is

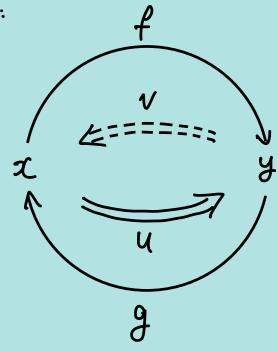
made of



The "free equivalence" is not coherent because it is made of spheres:

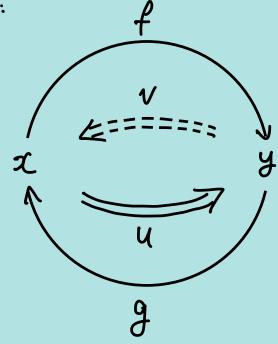


The "free equivalence" is not coherent because it is made of spheres:



In order to make it equivalent to a point, we need to cut it open to obtain a disk, or

The "free equivalence" is not coherent because it is made of spheres:

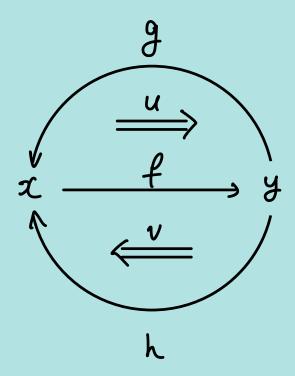


In order to make it equivalent to a point, we need to cut it open to obtain a disk, or

· fill it to obtain a ball.

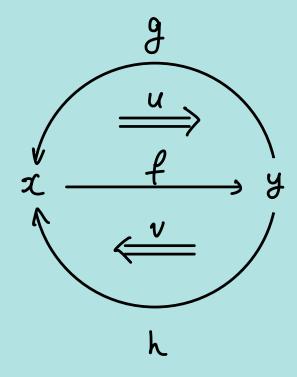
Two approaches (cf. [R])

Cutting open the sphere:
Ask for separate left
and right inverses.



Two approaches (cf. [R])

Cutting open the sphere:
Ask for separate left
and right inverses.



Filling the sphere: Ask for one of the triangle identities. # equivalence

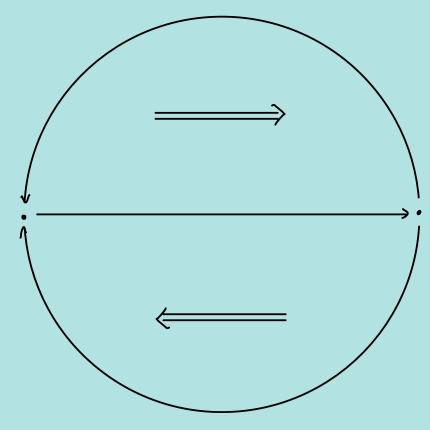
In the "cutting open" approach, the free coherent equivalence looks like:

E = .

In the "cutting open" approach, the free coherent equivalence

looks like:

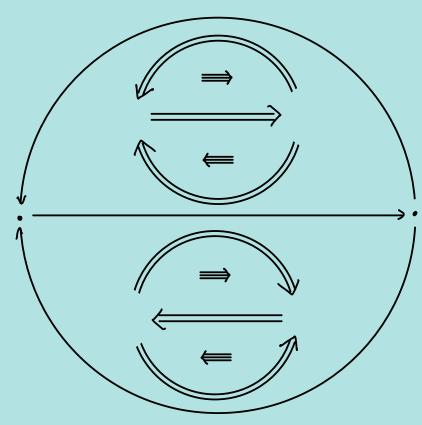
E =



In the "cutting open" approach, the free coherent equivalence

looks like:

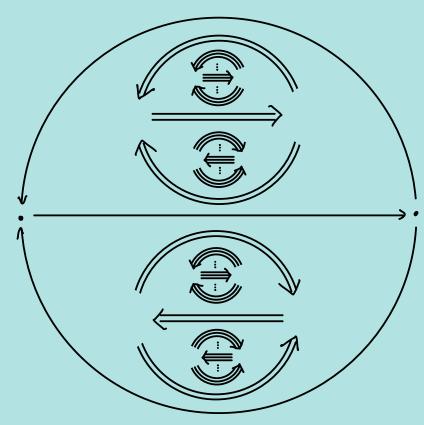
E =



In the "cutting open" approach, the free coherent equivalence

looks like:

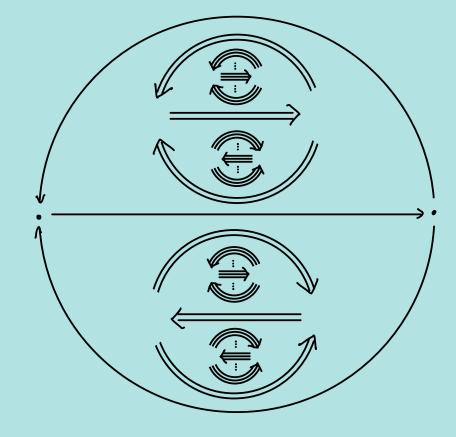
E =



In the "cutting open" approach, the free coherent equivalence

looks like:

E =



Applying $Wk-\omega-Cat \longrightarrow Str-\omega-Cat$ to E yields $\widehat{\omega}E$ in [OR].

In the "cutting open" approach, the free coherent equivalence

looks like:

-missing in the abstract

Applying Wk-w-Cat Str-w-Cat to E yields

Main result

Definition:

An ω -functor $F: X \to Y$ between weak ω -categories is an ω -equifibration if $\forall x \in X_n \ \forall eq. \ Fx \xrightarrow{f} y \in Y_{n+1} \ \exists eq. \ x \xrightarrow{f} \overline{y} \ s.t. \ F\overline{f} = f$

Main result

Definition:

An ω -functor $F: X \to Y$ between weak ω -categories is an ω -equifibration if $\forall x \in X_n \ \forall eq. \ Fx \xrightarrow{f} y \in Y_{n+1} \ \exists eq. \ x \xrightarrow{f} y \ s.t. \ Ff = f$ Theorem (Fujii - Hoshino - M.):

 $F: X \longrightarrow Y$ is an w-equifibration if and only if

F has the RLP against $\{\sum_{i=1}^{n}(*-----)E\} \mid n \ge 0\}$.

Suspension

Can use either version

Relation to homotopy theory of strict w-categories

Theorem (Fujii - Hoshino - M.):

Applying $Wk-w-Cat \longrightarrow Str-w-Cat$ to $\{\sum_{i=1}^{n}(*\longrightarrow E)\mid n\geq 0\}$ yields a generating set of trivial cofibrations in the folk model structure on Str-w-Cat.

Constructed in [LMW]

Relation to homotopy theory of strict w-categories

Theorem (Fujii - Hoshino - M.):

Applying $Wk-w-Cat \longrightarrow Str-w-Cat$ to $\{\sum_{i=1}^{n}(*\longrightarrow E)\mid n\geq 0\}$ yields a generating set of trivial cofibrations in the folk model structure on Str-w-Cat.

Constructed in [LMW]

Consequently, the folk fibrations are precisely the ω -equifibrations between strict ω -categories.

References

- [L] Stephen Lack, "A Quillen model structure for bicategories"
 DOI: 10.1007/s10977-004-6757-9
- [LMW] Yves Latont, François Métayer, Krzysztof Worytkiewicz,
 "A folk model structure on omega-cat"

 DOI: 10.1016/j. aim. 2010.01.007
 - [OR] Viktoriya Ozornova. Martina Rovelli,
 "What is an equivalence in a higher category?"

 DOI: 10.1112/blms.12947
 - [R] Alex Rice, "Coinductive invertibility in higher categories" arXiv: 2008.10307