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Classical categories of fractions

We sometimes want to freely adjoin inverses of certain morphisms to a category.

If X is a category and Σ is a class of morphisms in X there is a universal category X [Σ−1]

equipped with a functor X → X [Σ−1] which sends morphisms in Σ to isomorphisms.

The construction of the category X [Σ−1] is somewhat involved, but in good cases it can be

greatly simplified: when Σ admits a calculus fractions the morphisms of X [Σ−1] are given

by equivalence classes of certain (co)spans.
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Calculi of fractions

The class Σ admits a calculus of (left) fractions if

• Σ is a wide subcategory of X .
• Given a span • f←− • s−→ • with s ∈ Σ there is a commutative square

• •

• •

s

f f ′

s′

with s ′ ∈ Σ.

• Given a diagram • • •r f

g
with fr = gr and r ∈ Σ, there is morphism

s ∈ Σ that coequalises f and g .
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The resulting category of fractions

If Σ admits a category of fractions, then the category of fractions X [Σ−1] has

• an object for each object in X ,
• morphisms A→ B given by equivalence classes of cospans A

f−→ I
r←− B where r ∈ Σ.

The cospans A
f−→ I

r←− B and A
g−→ J

s←− B are equivalent if there is a commutative diagram

A I B

X B

A J B

f

x1

r

x3

g

x2

s

where x3 ∈ Σ.
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The resulting category of fractions — composition

To compose A
f−→ I

r←− B and B
g−→ J

s←− C we find a composite cospan

A I B

• J C

f

g ′

r

g

r ′ s

where the square is from the 2nd axiom of a calculus of left fractions.
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Bicategories of fractions

Pronk extended the notion of calculus of fractions to the 2-dimensional setting.

Given a bicategory X , we wish to freely turn the 1-morphisms in a given class Σ into

equivalences. The axioms for a 2-dimensional calculus of fractions are a reasonable

extension of the 1-dimensional ones we considered before.

This construction is particularly useful for defining the correct morphisms for internal

categories.
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The case of monoidal categories

For example, internal categories in the category of monoids Mon are (strict) monoidal

categories and the internal functors are strict monoidal functors.

Formally inverting fully faithful internal functors which are regular epimorphisms on objects

results in what is essentially the bicategory of (strict) monoidal categories and strong

monoidal functors.

We might ask if there is a way to describe lax monoidal functors in a similar way.

In fact, we can do this by forcing certain internal functors to become adjoints.
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Bicategories of lax fractions

Rather than turning certain 1-morphisms into equivalences, we want to be able to turn them

into left adjoint right inverses (or left adjoint left inverses, etc).

It is useful to also be able to specify which squares are to become Beck–Chevalley (or BC)

squares. Recall that if r , s are left adjoints and δ is invertible we say that

• •

• •

r

s

f gδ

is a BC square if the mate δ̄ in
• •

• •
f

δ̄

r∗

g

s∗

is also an isomorphism.
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The universal property for lax fractions

Let X be a 2-category and let Σ be a collection of pseudocommutative squares in X .

• •

• •

r

s

f gδ

We call these squares Σ-squares and the horizontal morphisms in such squares Σ-morphisms.

The bicategory of (left) lax fractions X [Σ∗] comes equipped with a pseudofunctor

PΣ : X → X [Σ∗] which is universal amongst pseudofunctors which send Σ-morphisms to left

adjoint right inverses and Σ-squares to BC squares.
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A lax calculus of fractions

Let X be a 2-category and let Σ be a sub-double-category of the double category Sq(X ) of
quintets. In other words, Σ is a collection of squares in X commuting up to isomorphism

that is closed under horizontal and vertical composition.

We say (X ,Σ) admits a calculus of (left) lax fractions when the following conditions hold.
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Let X be a 2-category and let Σ be a sub-double-category of the double category Sq(X ) of
quintets. In other words, Σ is a collection of squares in X commuting up to isomorphism

that is closed under horizontal and vertical composition.

We say (X ,Σ) admits a calculus of (left) lax fractions when the following conditions hold.

Identity. Every object X ∈ X lies in Σ, and for every Σ-morphism s : X → Y we have the

Σ-square

X X

X Y .

1X

1X

s

sΣid

10



A lax calculus of fractions

Let X be a 2-category and let Σ be a sub-double-category of the double category Sq(X ) of
quintets. In other words, Σ is a collection of squares in X commuting up to isomorphism

that is closed under horizontal and vertical composition.
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Vertical Repletion. If r : X → Y is a Σ-morphism and δ : r ⇒ s is an invertible 2-cell, then

s is Σ-morphism and we have the Σ-square
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r
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quintets. In other words, Σ is a collection of squares in X commuting up to isomorphism
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A lax calculus of fractions

Let X be a 2-category and let Σ be a sub-double-category of the double category Sq(X ) of
quintets. In other words, Σ is a collection of squares in X commuting up to isomorphism

that is closed under horizontal and vertical composition.
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• • .
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Σ
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quintets. In other words, Σ is a collection of squares in X commuting up to isomorphism

that is closed under horizontal and vertical composition.

We say (X ,Σ) admits a calculus of (left) lax fractions when the following conditions hold.

Equi-insertion. For every Σ-square and every 2-cell α : f ′r ⇒ gr as in the diagram below on

the left, there is a Σ-square as on the right and a 2-cell α′ : df ′ ⇒ dg such that dα = α′r .

B

A B

C D

g

r

r

f

α

f ′

s

Σ
δ

C D

C E

s

d

ds

Σ
id
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Let X be a 2-category and let Σ be a sub-double-category of the double category Sq(X ) of
quintets. In other words, Σ is a collection of squares in X commuting up to isomorphism

that is closed under horizontal and vertical composition.

We say (X ,Σ) admits a calculus of (left) lax fractions when the following conditions hold.

Equification. For every Σ-square and pair of 2-cells, as in the diagram on the left, with

αr = βr , there is a Σ-square as on the right such that dα = dβ.

A B

C D

r

f f ′ g

s

Σ
δ

β

α C D

C E

s

d

ds

Σ
id
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The bicategory of lax fractions

If (X ,Σ) admits a calculus of lax fractions we can form the bicategory X [Σ∗] as follows.

• The objects are simply the objects of X .
• The 1-cells (f , I , r) : X → Y are cospans X

f−→ I
r←− Y .

• The 2-cells α : (f , I , r)→ (g , J, s) are given by equivalence classes of diagrams of the

form:

A I B

X B

A J B.

f

x1
α

r

x3

g

x2

s

Σ
δ1

Σ
δ2
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Composition and coherence

Composition of 1-cells is similar to the 1d case. We omit the descriptions of vertical and

horizontal composition of 2-cells.

To deal with the associators and issues of coherence, we defined a class of ‘simple’ 2-cells

and proved that these compose in a particularly simple way.
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Ω 2-cells

Given two different Σ-squares with the same top-left span,

• •

• •

s

f f ′1

s′1

Σ
α1 and

• •

• • ,

s

f f ′2

s′2

Σ
α2

our axioms allow us to construct a 2-cell in X [Σ∗] that relates the bottom-right cospans:

A I B

X B

A J B.

f ′1

Ω

r ′1

f ′2 r ′2

Σ

Σ

This 2-cell is canonical in the sense that any choices made in its construction do not change

its equivalence class.
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Σ-paths

Now given two staircase diagrams of the form

• •

• •

•

• •

r1

g1

ℓ

r2

g2. . .
...

gn

rn

m

with the same top-left border, each tiled with Σ-squares, we can obtain a 2-cell between the

bottom-right borders by replacing similar Σ-squares and composing the resulting Ω 2-cells.

However, it is now a rather difficult theorem to show that the order in which we make these

swaps (at least for the cases we need) does not affect the resulting composite 2-cell.
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An application

It is possible to describe the Kleisli category of a lax idempotent pseudomonad in terms of

lax fractions.

In particular, this (or rather its dual) allows us to recover our bicategory of (strict) monoidal

categories and lax monoidal functors by taking:

• X = Cat(Mon)

• The Σ-morphisms to be the strict monoidal functors whose underlying functors have

fully faithful right adjoints,

• The Σ-squares to be the BC squares for the underlying functors,

and finding the bicategory of right lax fractions.
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