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Overview

1. Being and Becoming

2. Levels and dimension

3. Two kinds of ‘non-standard’ dimensions

4. The main result
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A “positive mathematical program”

Lawvere, F. William
Some thoughts on the future of category theory.
Category theory, Proc. Int. Conf., Como/Italy 1990, LNM 1488, 1-13 (1991).
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Being and Becoming
Categories ‘of spaces’ and Generalized-locales
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The category Top vs categories of sheaves

Top/X

{{ ⊣ $$
Top

points ⊣⊣
��

Sh(X )

Set

for each X in Top.
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The ‘gros’ Zariski topos vs the ‘petit’ Zariski toposes

Let Z be the ‘gros’ Zariski topos. (I.e. the classifier of local rings)

For each f.p. ring R, we have an object Spec(R) in Z and

Z/Spec(R)

zz ''
Z

‘points‘

��

Sh(Spec(R))

YY

S

The composite geometric morphism Sh(Spec(R)) → Z ‘is’ the local ring in Sh(Spec(R))
representing R (as the algebra of sections of a sheaf of local rings).

“the important structure sheaf which recalls for the little category the big environment in
which it was born”
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“A general category of Being,
particular categories of Becoming”

A distinction:

Being vs Becoming
Categories ‘of spaces’ vs Generalized locales

and a relation between them:

For each X in a topos of spaces E (over a base S),

E/X
cc

##~~
A topos ‘of spaces’ E

��

P(X ) A generalized locale

S
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A topos ‘of spaces’, particular generalized locales

For each X in a topos E of spaces (over a base S),

E/X
cc

##~~
A topos ‘of spaces’ E

��

P(X ) A generalized locale

S

“I still have not succeeded to describe this in a site-invariant manner starting from a given
pair of toposes [E ] , S satisfying suitable axioms”

“Thus one conjectures that dimX only depends on the category P(X ) of particular
Becoming associated to X”
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Toposes ‘of spaces’ vs Generalized locales

• ∆̂.

• The Topological topos.

• The Bornological topos.

• The Recursive topos

• The ‘gros’ Zariski topos.

• Models of SDG

• Any pre-cohesive topos.

• ...

E
’points’ hyperconnected and local

��
S

Definition

A g.m. f : F → E is localic if every object of F
is a subquotient of f ∗A, for some A in E .

If X is a locale in Set then Sh(X ) → Set is
localic.

Definition (locally localic)

A g.m. E → S is étendue if there is a
well-supported object A such that E/A → E → S
is localic.

Definition

A topos is locally decidable if...
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Back to the motivation

A distinction:

Being vs Becoming
Toposes ‘of spaces’ vs Generalized locales

and

a philosophical guide to relate them:

For each X in a topos of spaces E ,
E/X jj

**~~
a topos ‘of spaces’ E P(X )

A generalized locale ‘externalizing’ X

“Thus one conjectures that dimX only depends on the category P(X ) of particular
Becoming associated to X”
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Dimension Theory
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Levels

Definition

A level of a topos E is an essential subtopos of l : L → E . In other words

E
⊣ l∗

��
⊣

L

l!

OO

l∗

OO

with fully faithful l!, l∗.

For X in E , the counit l!(l
∗X ) → X is the l-skeleton of X .

We say that dimX ≤ l if the l-skeleton of X is an iso.

So l! : L → E is the full subcategory of those X s.t. dimX ≤ l .

“The basic idea is simply to identify dimensions with levels and then try to determine
what the general dimensions are in particular examples. [...]
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Examples of levels

1. Level ∞ = id : E → E .
2. Level −∞ : 1 → E . The initial is the only X s.t. dimX ≤ −∞.

3. (L) The case of finite monoids satisfying aba = ab.

4. (Kelly-Lawvere 1988) Levels of Ĉ ⇐⇒ idempotent ideals on C.
5. (Folk - M’24) If the small C is such that every map factors as a split epic followed by

a split monic then:
the levels of Ĉ ⇐⇒ full subcategories of C that are closed under subobjects.

6. (Simplicial sets) Levels of ∆̂ ⇐⇒

∅ < ∆0 < ∆1 < . . . < ∆n < ∆n+1 < . . . < ∆

For d ∈ N+ {−∞,+∞}, dimX ≤ d iff X is d-skeletal.

7. (Classifier of non-trivial Boolean algebras) Analogous.
For F the cat of finite non-empty sets,
levels of F̂ ⇐⇒ truncations of F.

8. The Zariski topos? Other toposes in AG, SDG, Rig Geometry?
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the levels of Ĉ ⇐⇒ full subcategories of C that are closed under subobjects.

6. (Simplicial sets) Levels of ∆̂ ⇐⇒

∅ < ∆0 < ∆1 < . . . < ∆n < ∆n+1 < . . . < ∆

For d ∈ N+ {−∞,+∞}, dimX ≤ d iff X is d-skeletal.

7. (Classifier of non-trivial Boolean algebras) Analogous.
For F the cat of finite non-empty sets,
levels of F̂ ⇐⇒ truncations of F.

8. The Zariski topos? Other toposes in AG, SDG, Rig Geometry?

13 / 27



Examples of levels

1. Level ∞ = id : E → E .
2. Level −∞ : 1 → E . The initial is the only X s.t. dimX ≤ −∞.

3. (L) The case of finite monoids satisfying aba = ab.

4. (Kelly-Lawvere 1988) Levels of Ĉ ⇐⇒ idempotent ideals on C.
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The poset of levels

Definition

For levels l , m of a topos E :

m is above l if it is so as a subtopos (iff l! ≤ m! as subcats).

M m! // E M m! // E

L

OO

l!

>>

L

OO

l!

>>

The poset of levels in a topos need not be totally ordered

This poset is the basis for defining dimensions.

For instance, the Aufhebung (of a dimension).
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Two kinds of ‘non-standard’ dimensions

15 / 27



Example: Level ϵ

A hyperconected and local p : E → S is a quality type if the canonical p∗ → p! is an iso.

Definition (Marmolejo-M.)

Level ϵ of a hyperconnected and local E → S is the largest level of L → E such that
L → E → S is a quality type.

Example

The Zariski topos Z → Set for C has a level ϵ and it coincides with Weil topos.

W

quality type !!

ϵ // Z

��
Set
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Level é

1. (Recall) A g.m. F → S is an étendue if there is a well-supported object A such that
F/A → F → S is localic.

2. (New!) A g.m. g : G → S has a level é if G has a largest level L → G such that
L → G → S is an étendue.

3. (Ad-hoc) A g.m. p : E → S has locally localic externalizations (or has étendues) if,
for every X in E , E/X → E → S has a level é (denoted by ÉX → E/X ).

E/X

~~
A topos ‘of spaces’ E

p

��

ÉX

aa

An étendue for each X

S
“in a site-invariant manner”
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Toposes with étendues

Theorem

Let C be a small category such that:

1. it has split-epi/mono factorizations,

2. posets of subobjects have the ACC,

then Ĉ → Set has étendues.

Example

The classifier of non-trivial Boolean algebras, ∆̂, ∆̂1, etc.
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The main result
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Back to the motivation

E/X
cc

##~~
a topos ‘of spaces’ E P(X )

“one conjectures that dimX only depends on the category P(X ) of particular Becoming
associated to X [...].

In other words, if we have an equivalence of categories P(X ) ≡ P(Y ), then X ,Y should
belong to the same class of UIO levels within the category of Being in which they are
objects.”
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The case of simplicial sets

∆̂/X

||
∆̂

points

��

ÉX

aa

Set

Theorem

For every strongly regular X , Y in ∆̂, if ÉX ∼= ÉY then dimX = dimY .

The same result works for many other presheaf toposes.

The ÉX are not always localic.
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Example: a non-localic category of Becoming

For the reflexive graph Y
• fee

the site for ÉY looks as follows

•
0 //

1
// f

and is obviously not a poset.

The resulting ‘petit’ ÉY is the (non-localic) topos of non-reflexive graphs.
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Sketch of the proof

Define
IBD−∞ := ⊥
IBD0 := (∀x : Ω)(x ∨ (x ⇒ IBD−∞)) = (∀x : Ω)(x ∨ ¬x)
IBDn+1 := (∀x : Ω)(x ∨ (x ⇒ IBDn))

for every n ∈ N.

Theorem

For any X in ∆̂ and d ∈ N+ {−∞},

ÉX satisfies IBDd iff dimX ≤ d.
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The ‘petit’ toposes in detail
(minimal objects)
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Minimal objects

Fix a small category C with split-epic/mono factorizations.

Lemma

For any object C in C the following are equivalent:

1. Every split-epic C → D is an iso.

2. Every C → D is monic.

If the above conditions hold then we say that C is minimal.

Definition

A presheaf X on C is strongly regular if, for every monic map m in Ĉ/X with minimal
codomain, the domain of m is also minimal.
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Conclusion

“In other words, if we have an equivalence of categories P(X ) ≃ P(Y ), then X ,Y should
belong to the same class of UIO levels within the category of Being in which they are
objects.

Suitable hypotheses to make this conjecture true should begin to clarify the relationships
between the two suggested philosophical guides.”

F. W. Lawvere, Some thoughts on the future of ct. LNM 1488.

E/X
bb

""~~
E

pre−cohesive

��

?(X )

S
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Thank you for your attention.
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