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Homological categories

De�nition (Bourn)

A �nitely complete category C is protomodular if the change-of-base

functors of the codomain functor Pt(C) → C are conservative.

A pointed category C is protomodular if and only if the split short

�ve lemma holds.

Adding regularity, the short �ve lemma holds. This led to the

notion of homological category (Borceux-Bourn).



Homological categories

De�nition (Bourn)

A �nitely complete category C is protomodular if the change-of-base

functors of the codomain functor Pt(C) → C are conservative.

A pointed category C is protomodular if and only if the split short

�ve lemma holds.

Adding regularity, the short �ve lemma holds. This led to the

notion of homological category (Borceux-Bourn).



Homological categories

De�nition (Bourn)

A �nitely complete category C is protomodular if the change-of-base

functors of the codomain functor Pt(C) → C are conservative.

A pointed category C is protomodular if and only if the split short

�ve lemma holds.

Adding regularity, the short �ve lemma holds.

This led to the

notion of homological category (Borceux-Bourn).



Homological categories

De�nition (Bourn)

A �nitely complete category C is protomodular if the change-of-base

functors of the codomain functor Pt(C) → C are conservative.

A pointed category C is protomodular if and only if the split short

�ve lemma holds.

Adding regularity, the short �ve lemma holds. This led to the

notion of homological category (Borceux-Bourn).



The nine lemma

Theorem (Bourn)

Given a diagram with exact columns in an homological category C:

K

k
��

u // K ′

k ′

��

u′ // K ′′

k ′′

��
A

f
��

a // A′

f ′

��

a′ // A′′

f ′′

��
B

b
// B ′

b′
// B ′′

Upper: rows 2 and 3 exact ⇒ row 1 exact.

Lower: rows 1 and 2 exact ⇒ row 3 exact.

Middle: rows 1 and 3 exact and a′a = 0 ⇒ row 2 exact.
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The denormalized nine lemma

Replacing short exact sequences with exact forks, one can consider

a denormalized version of the nine lemma.

Proposition

The denormalized nine lemma holds in regular Mal'tsev categories

(Bourn).

The denormalized nine lemma holds in regular Goursat categories

(Lack).

The denormalized upper and lower nine lemmas are equivalent for

regular categories, and they characterize Goursat categories

(Gran-Rodelo).

The denormalized middle nine lemma always holds.
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Star-regular categories

Uni�ed treatment (Gran-Janelidze-Rodelo): C lex, N ideal of

morphisms.

A star is a pair S
σ1 //
σ2
// X with σ1 ∈ N .

A star-kernel of f : A → B is a universal star K
κ1 //
κ2
// A such that

f κ1 = f κ2.

A short star-exact sequence is a diagram K
κ1 //
κ2
// A

f // B where

(κ1, κ2) is a star-kernel of f and f = coeq(κ1, κ2).

De�nition (Gran-Janelidze-Rodelo)

C is star-regular if every regular epi is the coequalizer of a star. C
has enough trivial objects if every f ∈ N factors through a trivial

object X (1X ∈ N ), and X trivial ⇒ X × X trivial.
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Homological lemmas in star-regular categories

Theorem (Gran-Janelidze-Rodelo)

If C is star-regular with enough trivial objects, then:

Upper nine lemma ⇔ Lower nine lemma.

Middle nine lemma ⇔ Short �ve lemma (under mild assumptions).

This includes the classical case in (quasi) pointed categories and

the denormalized case but it fails to describe the situation of

algebraic structures with more than one constant, like unitary rings.
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Our context

Let C be a regular category with 0 such that the unique morphism

0 → 1 is a regular epimorphism.

Let Z be the full subcategory

whose objects are the regular quotients of 0.

Proposition

Z is a posetal monocore�ective subcategory of C, and the

core�ector Z inverts monomorphisms.

Let NZ be the ideal of morphisms factoring through Z. We can

consider kernels and cokernels relatively to NZ :

De�nition

The Z-kernel of f : A → B is the universal arrow k : K → A such

that fk ∈ NZ .

The de�nition of Z-cokernel is dual.
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Examples

Let C be moreover protomodular. Examples of such categories are:

ideally exact categories (Janelidze): in particular, all protomodular

varieties with more than one constant (unitary rings, Boolean

algebras, Heyting algebras, MV-algebras...) and all the duals of

elementary toposes;

the topological models of protomodular varieties with more than

one constant.

In this context, Z-kernels always exist, and they are obtained as

pullbacks

K [f ] //

��

Z(B)

��
A

f
// B.
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Problems with Z-cokernels

However, Z-cokernels do not always exists.

For examples, in Ring
the identity on Z× Z does not admit a Z-cokernel. Moreover,

there are regular epimorphisms that are not Z-cokernels (e.g. the

product projections of Z× Z).
So, our categories are not star-regular. Moreover, they do not have

enough trivial objects (Z× Z is not trivial).

Moreover, in a pointed category, given a pullback

A
f //

��

B

��
C g

// D

one has Ker(f ) ∼= Ker(g) (and the converse holds if C is

protomodular and f is a regular epi). In our context this is false.
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Short Z-exact sequences

In Ring Z //

��

Z

��
1 // 1.

However, it becomes true if, in the square A
f //

��

B

��
C g

// D,

Z(B) ∼= Z(D).

De�nition

A short Z-exact sequence is a diagram

K
k // A

f // B

such that f is a regular epi and k is a Z-kernel of f .
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The short �ve lemma

In a short Z-exact sequence

K
k // A

f // B

f is not always the Z-cokernel of k .

Proposition

Let C be a regular protomodular category with 0 → 1 regular epi.

In a commutative diagram

K
k //

u
��

A
f //

a
��

B

b
��

K ′
k ′
// A′

f ′
// B ′

in which the rows are short Z-exact sequences, if u and b are

isomorphisms, then a is an isomorphism, too.
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The nine lemma

Proposition

Given a diagram with Z-exact columns:

K

k
��

u // K ′

k ′

��

u′ // K ′′

k ′′

��
A

f
��

a // A′

f ′

��

a′ // A′′

f ′′

��
B

b
// B ′

b′
// B ′′

Upper: if Z(A′′) ∼= Z(B ′′) ∼= Z(B ′), rows 2 and 3 Z-exact ⇒ row 1

Z-exact.

Lower: if Z(A′′) ∼= Z(B ′′) ∼= Z(B ′) ∼= Z(B), rows 1 and 2 Z-exact
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Middle: if Z(A′′) ∼= Z(B ′′) ∼= Z(B ′), rows 1 and 3 Z-exact and

a′a ∈ NZ ⇒ row 2 Z-exact.
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