Profinite completions and clones

Vincent Moreau

CT2025

July 17, 2025

IRIF. Université Paris Cité. Inria Paris

Ultrafilters and codensity

Theorem (Kennison and Gildenhuys). The ultrafilter monad β is the codensity monad of the inclusion FinSet \rightarrow Set, i.e. the right Kan extension

This means that we have

$$\beta X \cong \int_{F \in \mathbf{FinSet}} F^{\mathbf{Set}(X,F)}$$

Profinite completion of monoids

We write **FinMon** for the full subcategory of **Mon** containing finite monoids.

The profinite completion of monoids is defined as the codensity monad

As before, we have

$$\widehat{M} = \int_{N \in \mathsf{FinMon}} N^{\mathsf{Mon}(M,N)}$$

This profinite completion is very important in automata theory.

Abstract clones

A clone C is a family of sets

$$C_n$$
 where n ranges over natural numbers

together with elements representing variables

$$v_k \in C_n$$
 for every $n, k \in \mathbb{N}$ such that $1 \le k \le n$

and functions representing composition

$$s_{m,n}$$
: $C_n \times (C_m)^n \longrightarrow C_m$ for every $m, n \in \mathbb{N}$

that verify some conditions. Equivalently: one-object cartesian multicategories.

Together with the appropriate morphisms, they form the category **Clone**.

Profinite completion of clones

We write **FinClone** for the full subcategory of **Clone** containing the clones D such that the sets D_n are finite for every $n \in \mathbb{N}$.

Definition. The profinite completion of clones is defined as the codensity monad

Yet again,

$$\widehat{C} \cong \int_{D \in \mathbf{FinClone}} D^{\mathbf{Clone}(C,D)}$$

The theory of clones

We write T_{Clone} for the cartesian category whose objects are signatures

$$\Sigma := [n_1, \ldots, n_l]$$

with cartesian product being the concatenation, and whose hom-sets are

$$T_{\mathsf{Clone}}(\Sigma,[m]) := \{\mathsf{trees} \; \mathsf{built} \; \mathsf{from} \; \Sigma \; \mathsf{with} \; \mathsf{variables} \; \mathsf{among} \; v_1,\ldots,v_m\}$$

A special case of a theorem by Fiore shows that

$$\mathsf{Mod}(T_{\mathsf{Clone}}) \cong \mathsf{Clone}$$

where Mod(T) is the category of product-preserving functors $T \to \mathbf{Set}$ for any T.

Free/forgetful adjunctions

An important observation by Lawvere is that any product-preserving functor

$$F : T \longrightarrow T'$$

between cartesian categories induces an adjunction

$$\mathsf{Mod}(T) \xrightarrow[(-)\circ F]{\mathsf{Lan}_F} \mathsf{Mod}(T')$$

Encodings of sets and monoids

The fully faithful functor $T_{\mathsf{Mon}} o T_{\mathsf{Clone}}$ yields the coreflective adjunction

$$\mathsf{Mon} \xleftarrow{\begin{array}{c} M \ \mapsto \ (M \times \{v_1, \dots, v_n\})_n \\ \longleftarrow \\ \hline C_1 \ \leftarrow \ C \end{array}} \mathsf{Clone}$$

The fully faithful functor $T_{\mathbf{Set}} o T_{\mathbf{Clone}}$ yields the coreflective adjunction

Set
$$\xrightarrow{X \mapsto (X \sqcup \{v_1, \dots, v_n\})_n} \xrightarrow{\bot} Clone$$

Parametric right adjoints

As in Soichiro's talk, we consider parametric right adjoints, i.e. functors

$$F : \mathbf{C} \longrightarrow \mathbf{D}$$

where ${f C}$ has a terminal object 1, such that there exists a left adjoint

$$\mathbf{C} \cong \mathbf{C}/1 \xrightarrow{\stackrel{\longleftarrow}{\perp}} \mathbf{D}/F1 \longrightarrow \mathbf{D}$$

where the functor $\mathbf{C} \to \mathbf{D}/F1$ sends an object X on the morphism $F(!_X): FX \to F1$.

Goal and illustrating example

If F is a parametric right adjoint, then it preserves all connected limits.

To relate the different profinite completions, we want our two fully faithful functors

to be parametric right adjoints.

Today's talk: we focus on a simpler functor

$$Sgp \longrightarrow Mon$$

from semigroups to monoids, that showcases the techniques used for clones.

From semigroups to monoids

We write Sgp for the category of semigroups, which is equivalent to $Mod(T_{Sgp})$ for

$$T_{\operatorname{Sgp}}(n,1) = \{\text{non-empty finite words over } \{a_1,\ldots,a_n\}\}$$

We get a faithful functor $T_{\mathsf{Sgp}} o T_{\mathsf{Mon}}$, which yields the adjunction

$$\mathbf{Sgp} \xrightarrow{\begin{array}{c} S \mapsto S \sqcup \{1\} \\ & \bot \end{array}} \mathbf{Mon}$$

The left adjoint sends the terminal semigroup $\{0\}$ on the monoid

$$U := (\{0,1\},\times)$$

Monoids over U

${\bf Monoids\ over}\ {\cal U}$

${\bf Monoids\ over}\ {\cal U}$

12/19

${\bf Monoids\ over}\ {\cal U}$

12/19

Prime ideals in an indexed way

The data of a homomorphism

$$p$$
: $M \longrightarrow U := \{0,1\}$

can be equivalently described as two sets

$$M_0 := p^{-1}\{0\}$$
 and $M_1 := p^{-1}\{1\}$

together with adequately behaving composition functions

$$M_0 \times M_0 \longrightarrow M_0$$
 $M_0 \times M_1 \longrightarrow M_0$ $M_1 \times M_0 \longrightarrow M_1$ $M_1 \times M_1 \longrightarrow M_1$

Therefore, Mon/U corresponds to an algebraic theory with two sorts.

The theory of the slice

For any T and any model $X \in \mathbf{Mod}(T)$, we define $X \setminus T$ as the pullback

We get an equivalence of categories

$$\mathsf{Mod}(X \backslash T) \cong \mathsf{Mod}(T)/X$$

Applying the free construction

We want to show that the functor

$$\mathsf{Sgp} \;\cong\; \mathsf{Mod}(T_{\mathsf{Sgp}}) \quad\longrightarrow\quad \mathsf{Mon}/U \;\cong\; \mathsf{Mod}(U\backslash T_{\mathsf{Mon}})$$

has a left adjoint.

For this, we show that this functor is forgetful, i.e. that it is the precomposition by some product-preserving functor

$$U \backslash T_{\mathsf{Mon}} \longrightarrow T_{\mathsf{Sgp}}$$

hence it has a left adjoint given by left Kan extension.

The internal model of prime ideals

For any semigroup S, the monoid homomorphism

corresponds in the indexed way to the two sets

$$(S \sqcup \{1\})_0 := S \cong \operatorname{Sgp}(\mathbb{N}^*, S)$$

 $(S \sqcup \{1\})_1 := \{1\} \cong \operatorname{Sgp}(\emptyset, S)$

We get in this way a model of $U \setminus T_{Mon}$ internal to T_{Sgp} .

Parametric right adjoints from universal algebra

The left adjoint $\mathbf{Sgp} \to \mathbf{Mon}$ is itself a parametric right adjoint:

In the same way, the two left adjoints

$$\mathsf{Cl}_1 : \mathsf{Mon} \longrightarrow \mathsf{Clone}$$
 and $\mathsf{Cl}_0 : \mathsf{Set} \longrightarrow \mathsf{Clone}$

are parametric right adjoints.

Profinite completions of sets and monoids

Moreover, the adjunctions

$$\mathsf{Mon} \xleftarrow{ \overset{\mathsf{Cl}_1}{-} }_{ \overset{\mathsf{C}_1}{\leftarrow} \overset{\mathsf{C}}{\leftarrow} \mathsf{C}} \mathsf{Clone} \qquad \mathsf{and} \qquad \mathsf{Set} \xleftarrow{ \overset{\mathsf{Cl}_0}{-} }_{ \overset{\mathsf{C}}{\leftarrow} \overset{\mathsf{C}}{\leftarrow} \mathsf{C}} \mathsf{Clone}$$

crucially restrict to finite structures.

Theorem. The profinite completion of clones generalize the one of monoids:

$$\widehat{\mathsf{Cl}_1(M)} \cong \mathsf{Cl}_1(\widehat{M})$$
 for any monoid M

Theorem. The profinite completion of clones generalize the ultrafilter monad:

$$\widehat{\mathsf{Cl_0}(X)} \cong \mathsf{Cl_0}(\beta X)$$
 for any set X

Conclusion

Much more to say:

- The algebraic viewpoint shows that clones and cartesian closed categories are closely related, cf. the work of Fiore, Mahmoud and Arkor.
- We have a third theorem relating the profinite completion of free clones to the profinite λ -calculus, a compactification of the syntax of cartesian closed categories.
- All details available in the last chapter of my PhD thesis, defended last week!

Future work: given a product-preserving functor $F: T \to T'$, when is the free construction functor $\text{Lan}_F: \mathbf{Mod}(T) \to \mathbf{Mod}(T')$ a parametric right adjoint?

Conclusion

Much more to say:

- The algebraic viewpoint shows that clones and cartesian closed categories are closely related, cf. the work of Fiore, Mahmoud and Arkor.
- We have a third theorem relating the profinite completion of free clones to the profinite λ -calculus, a compactification of the syntax of cartesian closed categories.
- All details available in the last chapter of my PhD thesis, defended last week!

Future work: given a product-preserving functor $F: T \to T'$, when is the free construction functor $\mathsf{Lan}_F: \mathbf{Mod}(T) \to \mathbf{Mod}(T')$ a parametric right adjoint?

Thank you for your attention!

Any questions?