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Introduction

(Grothendieck) topoi can be presented through sites.

As well, geometric morphisms can be presented either:
in a contravariant way, by: in a covariant way, by:

morphisms of sites comorphisms of sites

characterized by some

characterized by some
cover-lifting property

cover-preserving property

Can those two classes be mixed in a same 2-categorical structure on sites ?

Problem: morphisms and comorphisms of sites do not compose with each other !
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Introduction

Solution: make them the horizontal and vertical arrows of a double-category of sites.
Such a structure does not require them to compose with each other.

Moreover the sheaf topos construction arranges nicely into a double-functor.

Some results of topos theory will rephrase as double-categorical statements.

This talk is based on the preprint:

O. Caramello and A. Osmond. “Morphisms and comorphisms of sites | —
Double categories of sites”. In: arXiv:2505.08766 (2025)
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Morphisms and comorphisms of sites
Double-category of sites and sheafification double-functor

(Co)morphisms as (co)lax morphisms of coalgebras



Morphisms and comorphisms of sites



Sieves and sites

A sieve on an object c in a category C is a subobject of the representable S — X_.

A coverage J on C consists for each c of a set J(c) of sieves on c such that
m for each ¢, the maximal sieve, which is &, is in J(c)

m for each arrow a: d — ¢ and each S in J(c), the pullback sieve below is in J(d)

& =
a’sS = {v :d’"—d|3Ju:c’ — c €S and a factorization vl iues}
dT> C

We will assume coverages to be sifted: if S < R and S € J(c), then R € J(c).
A site is a pair (C,J) with J a (sifted) coverage on C.

Any (small generated) site (C, J) induces a topos Sh(C, J).
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Notions of morphisms between sites

A functor between sites may behave in two relevant ways relative to the coverages:
m either by preserving covering sieves;

m either by lifting covering sieves.

Combined with flatness, cover-preservation defines a notion of morphism of sites.
On the other hand cover-lifting defines a notion of comorphism of sites.
Both induce geometric morphisms between associated sheaf topoi.

Let us revisit those ideas through the formalism of extension and restriction.
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Extension and restriction

Recall that any functor f : C — D induces a triple of adjoints

lext

L N

e w5
N~
rexts
where lexts (resp. rextr) sends a presheaf X : C° — Set to
lexts X = lanfop X rexts X = rangop X
while rests sends a presheaf Y : D°° — Set to

restrY = Yo

Beware that lext and rext are covariant in f, while rest is contravariant in f.
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For a sieve S — X in C, the left

extension lextrS induces a sieve

on f(c) by taking the image
lext(m)

(S) F(e
\n A}

corresponding to the set of arrows

lexts )

f[S]

cd — f(c i
{V ()| H‘V /f(u),ues

f(c')

d — f(c) }

Extension and restriction of sieves

For a sieve R — X, in D, the
restriction rests(R) induces a
sieve on ¢ by taking the pullback

f~Y(R) —— restfR
. — D(f,f(c))

L(c)

corresponding to the set of arrows
f(c") 4 f(c)
u:c —sc| g
\L vER

d/
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Morphisms and comorphisms of sites

Let f: (C,J) — (D, K) be a functor between sites; then :

f is cover-preserving if for any c in f is cover-lifting if for any c in C
C and any S — X_ in J(c), the sieve and any R — &y in K(f(c)), the
f[S] is in K(f(c)). sieve f~1(R) is in J(c).

A morphism of sites is a flat functor A comorphism of sites is a functor
that is cover-preserving. that is cover-lifting.

Call Sit” the 2-category of Call Sit* the 2-category of

m sites m sites

m morphisms of sites m comorphisms of sites

m and transformations m and transformations
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Geometric morphisms induced from (co)morphisms of sites

A morphism of sites
f:(C,J)—= (D,K)

induces a geometric morphism
Sh(f) : Dk — Cy

with inverse image

This defines a 1-contravariant,
2-covariant pseudofunctor

(Sit*)°? —", Top

A comorphism of sites
F:(C,J)— (D,K)
induces a geometric morphism
Cr: é\_] — 6/(

with inverse image

This defines a 1-covariant,
2-contravariant pseudofunctor

(it —< Top
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Double-category of sites and sheafification double-functor




Double-category of sites

We define the double-category Sit® as having

m as objects (small generated) sites,
m as horizontal arrows morphisms of sites,

m as vertical arrows comorphisms of sites,
f, h morphisms of sites

m and as a double-cells lax squares as below, with { . .
G, K comorphisms of sites

(A,M) —— (B, L) (A, M) —— (B, L)
G\lL ¢ \lLK Gi / J{K
(C,J) —— (D,K) (€, ) —— (D,K)
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Constructing a sheafification double-functor

with horizontal component the pseudofunctor Sh

We want a double-f nctor{ . .
W Y “ with vertical component the pseudofunctor C

For double-cell, suppose one has a 2-cell of the following form:

A—L5 B
gl f/lk

C*h>D

Such a square induces a cross-adjoint square constructed from the composite 2-cell

A B lextrrestg N lextrrestgrestylexty
resth Xﬁ resty gﬂ( ﬂrest¢
é\w D restylexty = lextrrestrrestylexty
h

10/25



Sheafification of double-cells

If now one has sites (A, M), (B,L), (C,J) and (D, K), related through a lax square

(A M) —— (B,L)
f, h morphisms of sites
G K !
l ‘/ l G, K comorphisms of sites
(C,J) —— (D, K)

then the sheafification functor a; :
inverse image part of a geometric transformation

B — B sends ¢ a 2-cell ¢° corresponding to the

Au — B, A B,
“f N J& o« x s
é\J T) 'ZSK C. ﬁ

This is a 2-cell in the lax quintet double-category Top" of Grothendieck topoi
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Sheafification as a double-functor

Sheafification defines a surjective on object double-functor into the lax quintet
double-category of topoi, which is

m horizontally contravariant with horizontal component Sh

m vertically covariant with vertical component C
ho,
(Sit")P —" (Sit?)wee L — (Sith)®

S LA

Lax squares inverted by this double-functor generalize the notion of exact squares.
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Exact squares

A lax square in Cat is exact if the associated extension /restriction 2-cell is invertible

A—"L>B A=, B

gl ;Z/ k rest T E rest

¢c——D C—> D
Ie><t,x7

A lax square as below left (underlying a double-cell of Sith) will be said locally
exact if the corresponding transformation below right is invertible

(A M) — (B,L) Ay 2 B
| 7’/ beowl o a
(C7J)T>(D7K) CJWDK

This admits a concrete characterization in term of relative cofinality a la [2].
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Comma and cocomma squares in Sit’

In Cat the ur-examples of exact squares are comma and cocomma; similarly:

lf{f (Cc,J) — (D K) morph. If{f (C,J) — (B, L) morph.
G:(B,L) — (D, K) comorph. G:(C,J) = (D, K) comorph.

then there is a topology Jg.r on then there is a topology Jr,c on
G | f that makes the comma square a f 1 G that makes the cocomma
double-cell of Sit! square a double-cell of Sit®
(G L f,Jsr) — (B,L) € J) —— (B,L)
mi AG,f \lLG G%L Af.G fo
€, J) —— (D, K) (D,K) —— (f 1 G, Jr.c)

In both cases, the underlying square in Cat is exact.
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Some effects of the mixed variancy of Sh

Vertical and horizontal cells can be related either through:

- conjoint squares - companion squares

AL B B=B8B AL B A=A
I« 46 et | et ¢ | I v 46
A=A A— B B =B A— B
coen=1¢ noe=idr pe)=1g o ¢ =idr

companions to conjoints

By mixed variancy, Sh sends { o .
conjoints to companions

Those squares are alike those in Cat whose exactness captures:
m the fact of being adjoint
m the fact of being respectively fully faithful and absolutely dense.
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Adjunction through exactness

A functor f is right adjoint to G in Cat iff there is an exact square as below
c—-rt>s»
H — lc lexts ~ restg
C —=2C

Definition
A morphism of site f : (C,J) — (D, K) will be said to be weakly right adjoint to a
comorphism G if there exist a locally exact square as below:

(€,J) —— (D.K)

‘ — lc
c,J)) ——(C,J)

Proposition

f is weakly right adjoint to G iff f and G induce the same geometric morphism

Sh(f) ~ Cg : Sh(D, K) — Sh(C, J)
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Local exactness criterion for local and totally connected morphisms

A functor f : C — D is fully faithful iff A functor f : C — D is absolutely

its identity square below is exact: dense iff the square below is exact:
C=—=2¢C C ——
H lf restrlexts = id fl H lextrrests =1
c—rt-» D ——=

Let f be both { a morphlsn? Let f be both { a morphlsm
a comorphism a comorphism

Sh(f) is a local geometric Cr is a totally connected
morphism iff this square is locally geometric morphism iff this square is
exact: locally exact:

| I fl H
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(Co)morphisms as (co)lax morphisms of coalgebras




Why a double-categorical structure ?

Why morphisms and comorphisms do arrange in a double-category ?
This double-category is an instance of a special family of double-categories.
double-categories of profunctors have a different flavour and are less symmetrical.

Here horizontal and vertical maps are two classes of functors with dual properties,
rather than a class of functors and a class of relations generalizing them.

This reminds a more symmetric kind of double-categories, those that arise as double-
categories of (co)algebras with lax and colax morphisms for (co)monads !
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Coalgebra and (co)lax morphisms for a copointed endofunctor

Let I be a 2-category and T : K — K a copointed endo-2-functor;
A coalgebra for (T,¢) is a pair (C,~) with C in K and o a section of the counit

A lax (resp. colax) morphism of coalgebras (C,~) — (D, 9) is a pair (f, ¢) with
f:C— Din K and ¢ a 2-cell as on the left (resp. on the right)

c—+p c—f b
| =2 | | =2 |s
TC —— TD TC —— TD

whose pasting along the naturality square of the pointer is an identity 2-cell.
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Double-category of coalgebras, lax and colax morphisms

Proposition (After Paré-Grandis [3])

For any copointed endo-2-functor T, one can form a double-category T-coAlg of
strict coalgebras, lax morphisms as horizontal cells, colax morphisms as vertical cells,
and as 2-cell, the lax squares of the form

(A, a) L2 (B, 8)

(h,n)l N l(k,x)

(C.7) oy (D:9)

The double-cells of this double-category consist hence in 2-cells ¢ : gh = kf inter-
twinning the lax and colax morphism structures in the following coherence

B 7B B4 TB
me=mT N AN
A A M
Alas TA Ty ™ = A " D—s— TD
N 7 A
X:N@Th 4 A /g:%
C —— TC C —— TC
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The category SC

Define for each category C the category SC as having:

m as objects pairs (c, F) with c an object of C and F a filter of Subgd,

m as morphisms (¢, F) — (c’, F’) morphisms v : ¢ — ¢’ such that

F' < (u)7(F)
This category is fibered over C with posetal fibers F¢(c) at each ¢

sc < ¢

For a functor f : C — D, one can define at each filter F of SubgJd, the filter f[F]
generated from the set of sieves of the form f[S] for S in F.

Defines the functor Sf : SC — SD sending (c, F) to the pair (f(c), f[F]).
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The copointed endo-2-functor S

Hence this construction is functorial on Cat: we have an endo-2-functor
Cat —5 Cat

Moreover this endofunctor is copointed through the projections n¢ : SC — C, whose
naturality produce morphisms of fibrations

sc -5 sp

e |

CﬁD
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Coverages as coalgebra structure

A coalgebra structure on C for the copointed endofunctor (S, ) is a coverage on C.

Indeed a section J : C — SC of m¢ picks for each c a filter of sieves on c.

Moreover functoriality says that for any u: ¢ — ¢, one has a restriction

J(c) —— Subs &,

A
Tu*

J(C’) — SUbCAJ:C/
expressing that for any R in J(c’) the pullback sieve u*R is in J(c).

This is exactly what a coverage is!
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(Co)morphisms of sites as (co)lax morphisms of coalgebras

A functor is a lax morphism of A functor is a colax morphism of
coalgebras iff it is cover-preserving. coalgebras iff it is cover-lifting.
Having a 2-cell as below Having a 2-cell as below

c—rt-no c—r-—no?
)| = |k )| == |«
SC —— SD SC —— SD
amounts to an inequality at each ¢ amounts to an inequality at each ¢
flJ(e)] < K(f(c)) K(f(c)) < flJ(c)]
which means that for any S in J(c), which means that any R in K(f(c))
f[S] is in K(f(c)). contains some f[S] for a S in J(c).
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Further aspects and future directions

There are still several questions regarding this double-categorical approach:

m actually S bears a structure of 2-comonad, but sites are only normal lax
coalgebras; it is still unclear what strict coalgebras for the full comonad are.

m this can be fixed by an indexed form of this comonad, where sites correctly
corresponds to coalgebras;

m combine this with flatness s morphisms of sites are lax morphisms of coalgebras ?

m in [4] Top was shown to be a bilocalization of Sit’ at dense morphisms of sites.
Is similarly Top™ a double-localization of Sit? ?

m in a upcomming work we will also show how morphisms and comorphisms are
subsumed by continuous distributors between sites;

m is Sit? a good framework to do some formal category theory sites mixing the
Yoneda structure of Cat with coverages 7
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Thank you for your attention !
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