Double-category of sites

Axel Osmond, joint work with Olivia Caramello

Introduction

(Grothendieck) topoi can be presented through sites.

As well, geometric morphisms can be presented either:

in a contravariant way, by: in a covariant way, by:

morphisms of sites comorphisms of sites

characterized by some characterized by some cover-preserving property cover-lifting property

Can those two classes be mixed in a same 2-categorical structure on sites ?

Problem: morphisms and comorphisms of sites do not compose with each other !

Introduction

Solution: make them the horizontal and vertical arrows of a double-category of sites.

Such a structure does not require them to compose with each other.

Moreover the sheaf topos construction arranges nicely into a double-functor.

Some results of topos theory will rephrase as double-categorical statements.

This talk is based on the preprint:

O. Caramello and A. Osmond. "Morphisms and comorphisms of sites I – Double categories of sites". In: arXiv:2505.08766~(2025)

Outlay

Morphisms and comorphisms of sites

Double-category of sites and sheafification double-functor

(Co)morphisms as (co)lax morphisms of coalgebras

Sieves and sites

Definition

A sieve on an object c in a category $\mathcal C$ is a subobject of the representable $S \rightarrowtail \pounds_c.$

A coverage J on C consists for each c of a set J(c) of sieves on c such that

- for each c, the maximal sieve, which is $\&_c$, is in J(c)
- lacksquare for each arrow a:d o c and each S in J(c), the pullback sieve below is in J(d)

$$a^*S = \left\{ v : d' \to d \mid \exists u : c' \to c \in S \text{ and a factorization } d' \xrightarrow{\exists d' \to c'} c' \atop v \downarrow \qquad \downarrow u \in S \atop d \xrightarrow{\exists d} c \right\}$$

We will assume coverages to be *sifted*: if $S \leq R$ and $S \in J(c)$, then $R \in J(c)$.

A site is a pair (C, J) with J a (sifted) coverage on C.

Any (small generated) site (C, J) induces a topos Sh(C, J).

Notions of morphisms between sites

A functor between sites may behave in two relevant ways relative to the coverages:

- either by *preserving* covering sieves;
- either by *lifting* covering sieves.

Combined with flatness, cover-preservation defines a notion of morphism of sites.

On the other hand cover-lifting defines a notion of comorphism of sites.

Both induce geometric morphisms between associated sheaf topoi.

Let us revisit those ideas through the formalism of extension and restriction.

Extension and restriction

Recall that any functor $f:\mathcal{C}\to\mathcal{D}$ induces a triple of adjoints

where lext_f (resp. rext_f) sends a presheaf $X: \mathcal{C}^{op} \to \mathbf{Set}$ to

$$lext_f X = lan_{f^{op}} X$$
 $rext_f X = ran_{f^{op}} X$

while rest_f sends a presheaf $Y: \mathcal{D}^{op} \to \mathbf{Set}$ to

$$\mathsf{rest}_f Y = Y \circ f^\mathsf{op}$$

Beware that lext and rext are covariant in f, while rest is contravariant in f.

Extension and restriction of sieves

For a sieve $S \mapsto \mathcal{L}_c$ in \mathcal{C} , the left extension $lext_f S$ induces a sieve on f(c) by taking the image

$$\operatorname{lext}_{f}(S) \xrightarrow{\operatorname{lext}_{f}(m)} \sharp_{f(c)}$$

$$f[S]$$

corresponding to the set of arrows

$$\left\{v: d \to f(c) \mid \exists \downarrow \\ f(c') \right\} \qquad \left\{u: c' \to c \mid \exists \downarrow \\ v \in R \\ d' \right\}$$

For a sieve $R \rightarrow \sharp_d$ in \mathcal{D} , the restriction $rest_f(R)$ induces a sieve on c by taking the pullback

$$f^{-1}(R) \longrightarrow \operatorname{rest}_f R$$

$$\downarrow \qquad \qquad \downarrow$$

$$\updownarrow_c \xrightarrow{1_{f(c)}} \mathcal{D}(f, f(c))$$

corresponding to the set of arrows

$$\left\{ u: c' \to c \mid \begin{array}{c} f(c') \xrightarrow{f(u)} f(c) \\ \exists \downarrow \\ v \in R \end{array} \right\}$$

Morphisms and comorphisms of sites

Let $f:(\mathcal{C},J)\to(\mathcal{D},K)$ be a functor between sites; then :

Definition

f is cover-preserving if for any c in \mathcal{C} and any $S \rightarrowtail \sharp_c$ in J(c), the sieve f[S] is in K(f(c)).

A *morphism of sites* is a **flat** functor that is cover-preserving.

Call Sit[♭] the 2-category of

- sites
- morphisms of sites
- and transformations

Definition

f is cover-lifting if for any c in C and any $R \rightarrowtail \sharp_{f(c)}$ in K(f(c)), the sieve $f^{-1}(R)$ is in J(c).

A *comorphism of sites* is a functor that is cover-lifting.

Call Sit[#] the 2-category of

- sites
- comorphisms of sites
- and transformations

Geometric morphisms induced from (co)morphisms of sites

A morphism of sites

$$f:(\mathcal{C},J)\to(\mathcal{D},K)$$

induces a geometric morphism

$$\mathbf{Sh}(f):\widehat{\mathcal{D}}_K\to\widehat{\mathcal{C}}_J$$

with inverse image

$$\begin{array}{ccc} \widehat{\mathcal{C}} & \xrightarrow{\mathsf{lext}_f} & \widehat{\mathcal{D}} \\ \downarrow^{\mathfrak{g}_f} & & \downarrow^{\mathfrak{a}_K} \\ \widehat{\mathcal{C}}_J & \xrightarrow{\mathsf{Sh}(f)^*} & \widehat{\mathcal{D}}_K \end{array}$$

This defines a 1-contravariant, 2-covariant pseudofunctor

$$(\mathsf{Sit}^{\flat})^{\mathsf{op}} \stackrel{\mathsf{Sh}}{\longrightarrow} \mathsf{Top}$$

A comorphism of sites

$$F:(\mathcal{C},J)\to(\mathcal{D},K)$$

induces a geometric morphism

$$C_F:\widehat{\mathcal{C}}_J\to\widehat{\mathcal{D}}_K$$

with inverse image

$$\begin{array}{ccc}
\widehat{\mathcal{D}} & \xrightarrow{\mathsf{rest}_F} & \widehat{\mathcal{C}} \\
\downarrow^{\mathfrak{a}_K} & & \downarrow^{\mathfrak{a}_K} \\
\widehat{\mathcal{D}}_L & \xrightarrow{\mathcal{C}_E^*} & \widehat{\mathcal{C}}_J
\end{array}$$

This defines a 1-covariant, 2-contravariant pseudofunctor

$$(\mathsf{Sit}^\sharp)^{\mathsf{co}} \stackrel{\mathcal{C}}{\longrightarrow} \mathsf{Top}$$

Double-category of sites

Definition

We define the double-category **Sit**[‡] as having

- as objects (small generated) sites,
- as horizontal arrows morphisms of sites,
- as vertical arrows comorphisms of sites,
- and as a double-cells lax squares as below, with $\begin{cases} f, h \text{ morphisms of sites} \\ G, K \text{ comorphisms of sites} \end{cases}$

$$(\mathcal{A}, M) \xrightarrow{f} (\mathcal{B}, L) \qquad (\mathcal{A}, M) \xrightarrow{f} (\mathcal{B}, L)$$

$$\downarrow \downarrow \qquad \qquad \downarrow \downarrow \kappa \qquad \qquad \downarrow \downarrow \kappa \qquad \qquad \downarrow \downarrow \kappa \qquad \qquad \downarrow \kappa \qquad \qquad$$

Constructing a sheafification double-functor

We want a double-functor $\left\{ egin{array}{ll} \mbox{with horizontal component the pseudofunctor } \mbox{\bf Sh} \\ \mbox{with vertical component the pseudofunctor } \mbox{\bf C} \end{array} \right.$

For double-cell, suppose one has a 2-cell of the following form:

$$\begin{array}{ccc}
\mathcal{A} & \xrightarrow{f} & \mathcal{B} \\
\downarrow g & & \downarrow k \\
\mathcal{C} & \xrightarrow{h} & \mathcal{D}
\end{array}$$

Such a square induces a cross-adjoint square constructed from the composite 2-cell

Sheafification of double-cells

If now one has sites (A, M), (B, L), (C, J) and (D, K), related through a lax square $(A, M) \xrightarrow{f} (B, L)$

$$(\mathcal{A}, M) \xrightarrow{r} (\mathcal{B}, L)$$

$$\downarrow G \qquad \qquad \downarrow \kappa \qquad \qquad f, h \text{ morphisms of sites}$$

$$(\mathcal{C}, J) \xrightarrow{h} (\mathcal{D}, K)$$

$$f, h \text{ morphisms of sites}$$

$$G, K \text{ comorphisms of sites}$$

then the sheafification functor $\mathfrak{a}_L:\widehat{\mathcal{B}}\to\widehat{\mathcal{B}}_L$ sends $\overline{\phi}$ a 2-cell ϕ^\flat corresponding to the inverse image part of a geometric transformation

$$\begin{array}{cccc} \widehat{\mathcal{A}}_{M} & \xrightarrow{\widehat{f}^{*}} & \widehat{\mathcal{B}}_{L} & & \widehat{\mathcal{A}}_{M} & \xleftarrow{\mathbf{Sh}(f)} & \widehat{\mathcal{B}}_{L} \\ c_{G}^{*} & & \uparrow c_{K}^{*} & & c_{G} \downarrow & \downarrow c_{K} \\ \widehat{C}_{J} & \xrightarrow{\widehat{h}^{*}} & \widehat{\mathcal{D}}_{K} & & \widehat{C}_{J} & \xleftarrow{\mathbf{Sh}(h)} & \widehat{\mathcal{D}}_{K} \end{array}$$

This is a 2-cell in the *lax quintet* double-category **Top** of Grothendieck topoi.

Sheafification as a double-functor

Theorem

Sheafification defines a surjective on object double-functor into the lax quintet double-category of topoi, which is

- horizontally contravariant with horizontal component Sh
- vertically covariant with vertical component C

Lax squares inverted by this double-functor generalize the notion of exact squares.

Exact squares

A lax square in **Cat** is *exact* if the associated extension/restriction 2-cell is invertible

$$\begin{array}{cccc} \mathcal{A} & \xrightarrow{f} & \mathcal{B} & & \widehat{\mathcal{A}} & \xrightarrow{lext_f} & \widehat{\mathcal{B}} \\ g \downarrow & & \downarrow_k & & \operatorname{rest}_g \uparrow & \overline{\varphi} & \uparrow \operatorname{rest}_k \\ \mathcal{C} & \xrightarrow{h} & \mathcal{D} & & \widehat{\mathcal{C}} & \overline{-lext_h} & \widehat{\mathcal{D}} \end{array}$$

Definition

A lax square as below left (underlying a double-cell of \mathbf{Sit}^{\natural}) will be said *locally* exact if the corresponding transformation below right is invertible

This admits a concrete characterization in term of relative cofinality à la [2].

Comma and cocomma squares in Sit[‡]

In Cat the ur-examples of exact squares are comma and cocomma; similarly:

Proposition

If
$$\begin{cases} f: (\mathcal{C}, J) \to (\mathcal{D}, K) \text{ morph.} \\ G: (\mathcal{B}, L) \to (\mathcal{D}, K) \text{ comorph.} \end{cases}$$

then there is a topology $J_{G,f}$ on $G\downarrow f$ that makes the comma square a double-cell of \mathbf{Sit}^{\natural}

$$(G \downarrow f, J_{G,f}) \xrightarrow{\pi_0} (\mathcal{B}, L)$$

$$\downarrow^{\pi_1} \downarrow \qquad \qquad \downarrow^{G}$$

$$(\mathcal{C}, J) \xrightarrow{f} (\mathcal{D}, K)$$

Proposition

If
$$\{f: (\mathcal{C}, J) \rightarrow (\mathcal{B}, L) \text{ morph.} \ G: (\mathcal{C}, J) \rightarrow (\mathcal{D}, K) \text{ comorph.} \}$$

then there is a topology $J_{f,G}$ on $f \uparrow G$ that makes the cocomma square a double-cell of \mathbf{Sit}^{\natural}

$$\begin{array}{ccc} (\mathcal{C},J) & \stackrel{f}{\longrightarrow} (\mathcal{B},L) \\ \downarrow & \downarrow^{\iota_0} & \downarrow^{\iota_0} \\ (\mathcal{D},K) & \stackrel{\iota_1}{\longrightarrow} (f \uparrow G,J_{f,G}) \end{array}$$

In both cases, the underlying square in Cat is exact.

Some effects of the mixed variancy of Sh

Vertical and horizontal cells can be related either through:

Definition	
- conjoint squares	
$ \begin{array}{ccc} A & \xrightarrow{f} & B \\ \parallel & \epsilon & \downarrow G \\ A & == & A \end{array} $	$ \begin{array}{ccc} B & = & B \\ G \downarrow & \eta & \parallel \\ A & \xrightarrow{f} & B \end{array} $
$\epsilon ullet \eta = 1_{\mathcal{G}}$	$\eta\circ\epsilon=id_{\mathit{f}}$

By mixed variancy, **Sh** sends { companions to conjoints conjoints to companions

Those squares are alike those in **Cat** whose exactness captures:

- the fact of being adjoint
- the fact of being respectively fully faithful and absolutely dense.

Adjunction through exactness

A functor f is right adjoint to G in Cat iff there is an exact square as below

$$egin{aligned} \mathcal{C} & \stackrel{f}{\longrightarrow} \mathcal{D} \ & & & | \epsilon_{G} & | | \epsilon_{G} & | | \epsilon_{G} & | | \end{aligned}$$

Definition

A morphism of site $f:(\mathcal{C},J)\to(\mathcal{D},K)$ will be said to be *weakly right adjoint* to a comorphism G if there exist a locally exact square as below:

$$(\mathcal{C}, J) \xrightarrow{f} (\mathcal{D}, K)$$

$$\parallel \xleftarrow{\epsilon} \qquad \downarrow c$$

$$(\mathcal{C}, J) = (\mathcal{C}, J)$$

Proposition

f is weakly right adjoint to G iff f and G induce the same geometric morphism

$$\mathsf{Sh}(f) \simeq \mathcal{C}_{\mathcal{G}} : \mathsf{Sh}(\mathcal{D}, \mathcal{K}) \to \mathsf{Sh}(\mathcal{C}, \mathcal{J})$$

Local exactness criterion for local and totally connected morphisms

A functor $f: \mathcal{C} \to \mathcal{D}$ is fully faithful iff its identity square below is exact:

$$\begin{array}{ccc} \mathcal{C} = & \mathcal{C} \\ \parallel & & \downarrow_f \\ \mathcal{C} \stackrel{f}{\longrightarrow} \mathcal{D} \end{array} \qquad \text{rest}_f \mathsf{lext}_f = \mathsf{id}$$

A functor $f: \mathcal{C} \to \mathcal{D}$ is absolutely dense iff the square below is exact:

$$egin{array}{cccc} \mathcal{C} & \stackrel{f}{\longrightarrow} \mathcal{D} & & & & & & & \\ f & & & \parallel & & & & & & & \\ \mathcal{D} & & & & & & & & & \\ \mathcal{D} & & & & \mathcal{D} & & & & & & \end{array}$$

Proposition

Let f be both $\begin{cases} a \text{ morphism} \\ a \text{ comorphism} \end{cases}$

Sh(f) is a local geometric morphism iff this square is locally exact:

$$(\mathcal{C}, J) = (\mathcal{C}, J)$$

$$\downarrow f$$

$$(\mathcal{C}, J) \xrightarrow{f} (\mathcal{D}, K)$$

Proposition

Let f be both { a morphism a comorphism

 C_f is a totally connected geometric morphism iff this square is locally exact:

$$(\mathcal{C}, J) \xrightarrow{f} (\mathcal{D}, K)$$

$$\downarrow f \qquad \qquad \parallel$$

$$(\mathcal{D}, K) = (\mathcal{D}, K)$$

Why a double-categorical structure?

Why morphisms and comorphisms do arrange in a double-category?

This double-category is an instance of a special family of double-categories.

double-categories of profunctors have a different flavour and are less symmetrical.

Here horizontal and vertical maps are two classes of functors with dual properties, rather than a class of functors and a class of relations generalizing them.

This reminds a more symmetric kind of double-categories, those that arise as double-categories of (co)algebras with lax and colax morphisms for (co)monads!

Coalgebra and (co)lax morphisms for a copointed endofunctor

Definition

Let $\mathcal K$ be a 2-category and $T:\mathcal K\to\mathcal K$ a copointed endo-2-functor; A *coalgebra* for (T,ε) is a pair (C,γ) with C in $\mathcal K$ and α a section of the counit

 $C \xrightarrow{\gamma} TC \downarrow_{\varepsilon_C}$

A lax (resp. colax) morphism of coalgebras $(C, \gamma) \to (D, \delta)$ is a pair (f, ϕ) with $f: C \to D$ in $\mathcal K$ and ϕ a 2-cell as on the left (resp. on the right)

$$\begin{array}{ccc}
C & \xrightarrow{f} & D & C & \xrightarrow{f} & D \\
\gamma \downarrow & \xleftarrow{\phi} & \downarrow \delta & \gamma \downarrow & \xrightarrow{\phi} & \downarrow \delta \\
TC & \xrightarrow{T_f} & TD & TC & \xrightarrow{T_f} & TD
\end{array}$$

whose pasting along the naturality square of the pointer is an identity 2-cell.

Double-category of coalgebras, lax and colax morphisms

Proposition (After Paré-Grandis [3])

For any copointed endo-2-functor T, one can form a double-category T-coAlg of strict coalgebras, lax morphisms as horizontal cells, colax morphisms as vertical cells, and as 2-cell, the lax squares of the form

$$(A, \alpha) \xrightarrow{(f,\phi)} (B, \beta)$$

$$(h,\eta) \downarrow \xrightarrow{\psi} \qquad \downarrow (k,\chi)$$

$$(C,\gamma) \xrightarrow{(g,\kappa)} (D,\delta)$$

The double-cells of this double-category consist hence in 2-cells $\psi: gh \Rightarrow kf$ intertwinning the lax and colax morphism structures in the following coherence

The category $\mathbb{S}\mathcal{C}$

Definition

Define for each category $\mathcal C$ the category $\mathbb S\mathcal C$ as having:

- as objects pairs (c, F) with c an object of C and F a filter of $Sub_{\widehat{C}} \sharp_c$
- lacktriangle as morphisms (c,F) o (c',F') morphisms u:c o c' such that

$$F' \leq (u^*)^{-1}(F)$$

This category is fibered over C with posetal fibers $\mathbb{F}_{C}(c)$ at each c

$$\mathbb{S}\mathcal{C} \xrightarrow{\pi_{\mathcal{C}}} \mathcal{C}$$

For a functor $f: \mathcal{C} \to \mathcal{D}$, one can define at each filter F of $\operatorname{Sub}_{\widehat{\mathcal{C}}} \, \sharp_c$ the filter f[F] generated from the set of sieves of the form f[S] for S in F.

Defines the functor $\mathbb{S}f: \mathbb{S}\mathcal{C} \to \mathbb{S}\mathcal{D}$ sending (c, F) to the pair (f(c), f[F]).

The copointed endo-2-functor $\mathbb S$

Hence this construction is functorial on Cat: we have an endo-2-functor

$$Cat \xrightarrow{\mathbb{S}} Cat$$

Moreover this endofunctor is copointed through the projections $\pi_{\mathcal{C}}: \mathbb{S}\mathcal{C} \to \mathcal{C}$, whose naturality produce morphisms of fibrations

$$\begin{array}{ccc} \mathbb{S}\mathcal{C} & \stackrel{\mathbb{S}f}{\longrightarrow} \mathbb{S}\mathcal{D} \\ \pi_{\mathcal{C}} \downarrow & & \downarrow \pi_{\mathcal{D}} \\ \mathcal{C} & \stackrel{f}{\longrightarrow} \mathcal{D} \end{array}$$

Coverages as coalgebra structure

Proposition

A coalgebra structure on C for the copointed endofunctor (S, π) is a coverage on C.

Indeed a section $J: \mathcal{C} \to \mathbb{S}\mathcal{C}$ of $\pi_{\mathcal{C}}$ picks for each c a filter of sieves on c.

Moreover functoriality says that for any $u: c \to c'$, one has a restriction

$$J(c) \longrightarrow \operatorname{Sub}_{\widehat{\mathcal{C}}} \&_c$$

$$\uparrow \qquad \qquad \uparrow^{u^*}$$
 $J(c') \longrightarrow \operatorname{Sub}_{\widehat{\mathcal{C}}} \&_{c'}$

expressing that for any R in J(c') the pullback sieve u^*R is in J(c).

This is exactly what a coverage is!

(Co)morphisms of sites as (co)lax morphisms of coalgebras

Proposition

A functor is a lax morphism of coalgebras iff it is cover-preserving.

Having a 2-cell as below

$$\begin{array}{ccc}
\mathcal{C} & \xrightarrow{f} & \mathcal{D} \\
\downarrow \downarrow & & \downarrow \kappa \\
\mathbb{S}\mathcal{C} & \xrightarrow{\mathbb{S}f} & \mathbb{S}\mathcal{D}
\end{array}$$

amounts to an inequality at each c

$$f[J(c)] \leq K(f(c))$$

which means that for any S in J(c), f[S] is in K(f(c)).

Proposition

A functor is a colax morphism of coalgebras iff it is cover-lifting.

Having a 2-cell as below

$$\begin{array}{ccc}
\mathcal{C} & \xrightarrow{f} & \mathcal{D} \\
\downarrow \downarrow & \xrightarrow{\phi} & \downarrow \kappa \\
\mathbb{S}\mathcal{C} & \xrightarrow{\mathbb{S}f} & \mathbb{S}\mathcal{D}
\end{array}$$

amounts to an inequality at each c

$$K(f(c)) \leq f[J(c)]$$

which means that any R in K(f(c)) contains some f[S] for a S in J(c).

Further aspects and future directions

There are still several questions regarding this double-categorical approach:

- actually S bears a structure of 2-comonad, but sites are only *normal lax* coalgebras; it is still unclear what strict coalgebras for the full comonad are.
- this can be fixed by an indexed form of this comonad, where sites correctly corresponds to coalgebras;
- combine this with flatness s morphisms of sites are lax morphisms of coalgebras ?
- in [4] Top was shown to be a bilocalization of Sit^b at dense morphisms of sites. Is similarly Top[□] a double-localization of Sit^b ?
- in a upcomming work we will also show how morphisms and comorphisms are subsumed by continuous distributors between sites;
- is **Sit**[‡] a good framework to do some formal category theory sites mixing the Yoneda structure of **Cat** with coverages ?

Thank you for your attention !

Bibliography

- [1] O. Caramello and A. Osmond. "Morphisms and comorphisms of sites I Double categories of sites". In: arXiv:2505.08766 (2025).
- [2] Olivia Caramello. Denseness conditions, morphisms and equivalences of toposes. 2020. arXiv: 1906.08737 [math.CT]
- [3] Marco Grandis and Robert Paré. Multiple categories of generalized quintets.
- [4] Julia Ramos González. "Grothendieck Categories as a Bilocalization of Linear Sites". In: Applied Categorical Structures 26.4 (Jan. 2018), pp. 717–745. ISSN: 1572-9095.