A higher categorical approach to the André-Quillen cohomology of $(\infty, 1)$ -categories

Simona Paoli1

¹Department of Mathematics University of Aberdeen

*joint work with*David Blanc

Department of Mathematics - University of Haifa

CT2025, Masaryk University

Simplicial categories

Simplicial categories are categories enriched in the category sSet
of simplicial sets. That is, for each pair of objects X, Y, there is a
simplicial set of maps Map(X, Y) and a composition map

$$Map(X,Y) \times Map(Y,Z) \rightarrow Map(X,Z)$$

which is associative and unital.

- Simplicial categories are a model of (∞, 1)-categories. They have a model structure whose weak equivalences are called Dwyer-Kan equivalences.
- Notation: (S, \mathcal{O}) -Cat for simplicial categories with object set \mathcal{O} .

Postnikov system for simplicial sets

• For each simplicial set Y there is a tower of fibrations

$$Y \rightarrow \cdots \rightarrow P^n Y \rightarrow P^{n-1} Y \rightarrow \cdots \rightarrow P^1 Y \rightarrow P^0 Y$$

where P^nY is an *n*-type, that is $\pi_iP^nY=\pi_iY$ if $i\leq n$ and 0 otherwise.

• P^nY is the homotopy fiber of the $(n-1)^{st}$ k-invariant map

$$k_{n-1}: P^{n-1}Y \to E_{\hat{\pi}_1Y}(\pi_nY, n+1)$$

into the twisted Eilenberg-MacLane simplicial set, representing the cohomology group $H^{n+1}(P^{n-1}Y, \pi_n Y)$ with local coefficients.

• The homotopy type of Y is determined by the Postnikov sections $\{P^nY\}$ together with the k-invariants of Y.

Postnikov system for simplicial categories

- Dwyer and Kan showed that this also holds for any simplicial category X.
- $P^n \mathcal{X}$ is a category enriched in simplicial *n*-types.
- $P^n\mathcal{X}$ is the homotopy fiber of the *k*-invariant map of simplicial categories

$$\mathcal{K}_{n-1}: P^{n-1}\mathcal{X} \to E_{\hat{\pi}_1\mathcal{X}}(\pi_n\mathcal{X}, n+1)$$

landing in the Eilenberg-MacLane simplicial category representing the André-Quillen cohomology of \mathcal{X} .

• The homotopy information about \mathcal{X} is encoded in the Postnikov truncations and their k-invariants. The latter can be used to extract various higher homotopy invariants of \mathcal{X} .

Postnikov truncation and André-Quillen cohomology

There is an isomorphism

$$H^n_{\mathsf{AO}}(\mathcal{X};\mathcal{D}) := [\mathcal{X}, \ E_{\hat{\pi}_1\mathcal{X}}(\mathcal{D}, n)] \cong [P^n\mathcal{X}, \ E_{\hat{\pi}_1\mathcal{X}}(\mathcal{D}, n)].$$

- So to study the nth André-Quillen cohomology group of a simplicial category it suffices to look at simplicial categories enriched in simplicial n-types.
- We can use the algebraic models of n-types from higher category theory to produce an algebraic replacement for $P^n \mathcal{X}$.

Main goal and approach

- We seek an algebraic description of the André-Quillen cohomology of a simplicial category.
- Our main tools are the model of weak n-categories called weakly globular n-fold categories [P.] and its subcategory of weakly globular n-fold groupoids [Blanc and P.].
- The n-fold nature of this model allows to give an explicit cofibrant replacement for computing the André-Quillen cohomology, coming from a comonad resolution.

n-Fold categories and n-fold groupoids

• *n*-Fold groupoids and *n*-fold categories are defined by

$$\begin{aligned} \mathsf{Gpd}^1 &= \mathsf{Gpd} & \mathsf{Cat}^1 &= \mathsf{Cat} \\ \mathsf{Gpd}^n &= \mathsf{Gpd}(\mathsf{Gpd}^{n-1}) & \mathsf{Cat}^n &= \mathsf{Cat}\left(\mathsf{Cat}^{n-1}\right) \end{aligned}$$

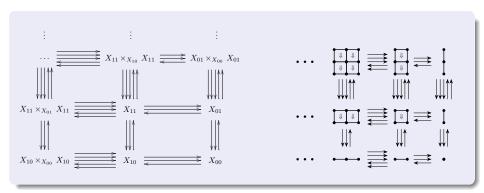
 By iterating the internal nerve construction, we obtain the functor multinerve:

$$\mathsf{Gpd}^\mathsf{n} \to [\Delta^{\mathit{n^{op}}},\mathsf{Set}] \qquad \qquad \mathsf{Cat}^\mathsf{n} \to [\Delta^{\mathit{n^{op}}},\mathsf{Set}] \;.$$

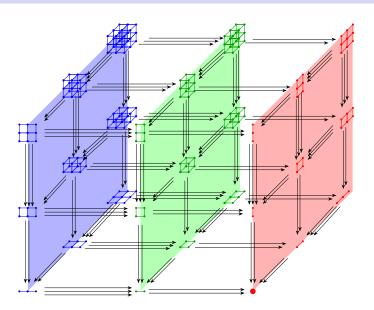
where
$$\Delta^{n^{op}} = \Delta^{op} \times \cdots^n \times \Delta^{op}$$

• This affords a more geometric description.

Example: n = 2



Example: *n* = 3



Strict *n*-categories versus *n*-fold categories

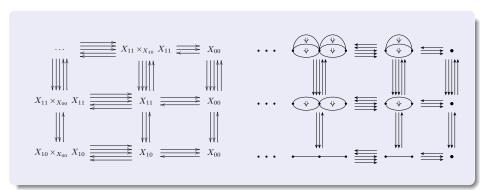
- In an n-fold category, the n directions are interchangeable, making it difficult to identify the 'set of k-cells' for $k = 1, \dots, n$.
- To gain intuition on how remedy this, consider an embedding

$$n$$
-Cat \hookrightarrow Cat n

of strict *n*-categories into *n*-fold categories.

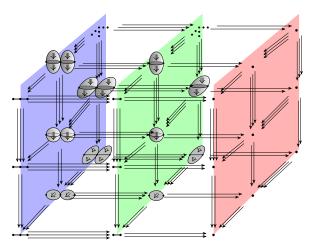
 The multinerve of strict n-categories has certain simplicial directions which are constant simplicial sets. This is the globularity condition.

Example: multinerve of strict 2-categories



Geometric picture of the 3-fold nerve of a strict 3-category X

3-Cat
$$\stackrel{N_{(3)}}{\longleftrightarrow}$$
 [$\Delta^{3^{op}}$, Set]



The idea of weakly globular *n*-fold categories

• The category Catⁿ_{wg} of weakly globular *n*-fold categories is intermediate between strict *n*-categories and *n*-fold categories:

$$n$$
-Cat \hookrightarrow Cat $_{wg}^n \hookrightarrow$ Cat n

- The simplicial directions which are constant in the multinerve of a strict n-category are only 'homotopically constant' in a weakly globular n-fold category.
- This is the weak globularity condition. The precise formulation uses the notion of homotopically discrete *n*-fold categories, which are *n*-dimensional fattening of sets.

A higher categorical model of *n*-types

Theorem (P. $n \ge 3$, P. and Pronk n = 2)

The category Cat^n_{wg} of weakly globular n-fold categories is a model of weak n-categories:

There is a subcategory $GCat_{wg}^n \subset Cat_{wg}^n$ of groupoidal weakly globular n-fold categories which is an algebraic model of n-types:

$$GCat_{wq}^{n}/\sim^{n} \simeq Ho(n-types)$$
.

Weakly globular *n*-fold groupoids.

Definition

The category Gpd_{wg}^n of weakly globular *n*-fold groupoids is the full subcategory of $GCat_{wg}^n$ whose objects are in Gpd^n .

Theorem (Blanc and P.)

There are functors

$$\mathcal{H}_n: n\text{-types} \leftrightarrows \mathsf{Gpd}^\mathsf{n}_{\mathsf{wq}}: B$$

inducing functors

$$\mathcal{H}o(n\text{-types}) \leftrightarrows \mathsf{Gpd}^{\mathsf{n}}_{\mathsf{wq}}/\sim^n$$

with $B\mathcal{H}_n \cong Id$.

n-Track categories

Definition

An n-track category is a category enriched in the category Gpdⁿ_{wg}
of weakly globular n-fold groupoids with respect to the cartesian
monoidal structure. Notation: Trackⁿ_G.

- We work with Gpdⁿ_{wg} instead of GCatⁿ_{wg} as this allows to more easily build a comonad on n-track categories.
- The functor $D: \operatorname{Track}^n_{\mathcal{O}} \to [\Delta^{op}, \operatorname{Cat}_{\mathcal{O}}] = (\mathcal{S}, \mathcal{O})$ -Cat collapses all groupoid directions in an n-track catergory into a single simplicial direction.

Internal equivalence relations

- Let Spl C be the category of split epimorphisms in a category C with finite (co)limits.
- The functor $H: \operatorname{Spl} \mathcal{C} \to \operatorname{Gpd} \mathcal{C}$ takes $Y: A \xrightarrow{q \atop t} B$ to the internal groupoid (called internal equivalence relation)

$$A \stackrel{q}{\times} A \stackrel{q}{\times} A \stackrel{m}{\longrightarrow} A \stackrel{q}{\times} A \stackrel{pr_1}{\xrightarrow{pr_2}} A$$

where $A \overset{q}{\times} A$ is the kernel pair of q, $\Delta = (Id_A, Id_A)$ is the diagonal map and $m = (pr_1, pr_2) : A \overset{q}{\times} A \overset{q}{\times} A \cong (A \overset{q}{\times} A) \times_A (A \overset{q}{\times} A) \to A \overset{q}{\times} A$.

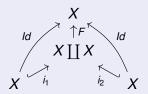
• When C = Set, HY is a groupoid with no non-trivial loops.

The internal arrow functor

• Let U: Gpd $C \to C$ be the internal arrow functor $UY = Y_1$, where Y is

$$Y_1 \times_{Y_0} Y_1 \longrightarrow Y_1 \stackrel{\longrightarrow}{\Longrightarrow} Y_0$$

• Let $\mathcal{L}X = H(X \coprod X \xrightarrow{F \atop i_1} X)$, where F is the map



• Lemma: \mathcal{L} is left adjoint to U.

Some functors on weakly globular *n*-fold groupoids

• By definition of Gpdⁿ_{wa} there is an inclusion

$$\mathsf{Gpd}^{\mathsf{n}}_{\mathsf{wg}} \hookrightarrow \mathsf{Gpd}(\mathsf{Gpd}^{\mathsf{n}-\mathsf{1}}_{\mathsf{wg}})$$

Thus there is the internal arrow functor

$$u_{n-1}:\mathsf{Gpd}^{\mathsf{n}}_{\mathsf{wg}}\to\mathsf{Gpd}^{\mathsf{n}-1}_{\mathsf{wg}}$$

with left adjoint

$$\ell_{n-1}:\operatorname{\mathsf{Gpd}}^{n-1}_{\operatorname{\mathsf{wg}}}\to\operatorname{\mathsf{Gpd}}(\operatorname{\mathsf{Gpd}}^{n-1}_{\operatorname{\mathsf{wg}}})$$

 $\ell_{n-1}X=H(X\amalg X\rightleftarrows X)$

• In fact $\ell_{n-1}X \in \operatorname{Gpd}_{wq}^n$.

Some functors on *n*-track categories

Lemma

The functors $\ell_{n-1} : \mathsf{Gpd}_{\mathsf{wg}}^{\mathsf{n}-1} \leftrightarrows \mathsf{Gpd}_{\mathsf{wg}}^{\mathsf{n}} : \mathit{u}_{n-1} \text{ induce functors}$

$$L_{[n-1]}: \mathsf{Track}^{\mathsf{n}-\mathsf{1}}_{\mathcal{O}} \leftrightarrows \mathsf{Track}^{\mathsf{n}}_{\mathcal{O}}: U_{[n-1]}$$

with $L_{[n-1]}$ left adjoint to $U_{[n-1]}$.

A comonad on *n*-track categories

Applying repeatedly the above lemma we obtain an adjunction

$$\begin{split} & L_n: \text{Cat}_{\,\mathcal{O}} \leftrightarrows \text{Track}^n_{\,\mathcal{O}}: \, U_n \\ & U_n: \, U_{[n-1]} \cdots U_{[1]} U_{[0]}, \qquad L_n = L_{[0]} L_{[1]} \cdots L_{[n-1]} \end{split}$$

 \bullet There is a free-forgetful functors adjunction, where $\mathsf{Graph}_{\mathcal{O}}$ is the category of graphs

$$F: \operatorname{Graph}_{\mathcal{O}} \leftrightarrows \operatorname{Cat}_{\mathcal{O}} : V$$

By composition, we obtain the adjunction

$$L_nF$$
: Graph_O \leftrightarrows Track_Oⁿ: VU_n

giving rise to a comonad on Trackⁿ_O

$$\mathcal{K} = L_n FVU_n : \mathsf{Track}^n_\mathcal{O} \to \mathsf{Track}^n_\mathcal{O}$$
.

Comonad resolution

• Given $X \in \operatorname{Track}_{\mathcal{O}}^n$, the simplicial object $\mathcal{K}_{\bullet}X \in [\Delta^{op}, \operatorname{Track}_{\mathcal{O}}^n]$ is augmented over X via $\varepsilon : \mathcal{K}_{\bullet}X \to X$.

Proposition (Blanc and P.)

 ε induces a map α : Diag $\mathcal{K}_{\bullet}X \to DX$ of $(\mathcal{S},\mathcal{O})$ -Cat which exhibits Diag $\mathcal{K}_{\bullet}X$ as a cofibrant replacement of DX in the Dwyer-Kan model category on $(\mathcal{S},\mathcal{O})$ -Cat.

Modules

• Let (Gpd C, X_0) the subcategory of Gpd C consisting of those Y with $Y_0 = X_0$, and groupoid maps which are the identity on X_0 .

Definition

For $X \in (\operatorname{Gpd} \mathcal{C}, X_0)$, an X-module is an abelian group object M in the slice category $(\operatorname{Gpd} \mathcal{C}, X_0)$ / X.

Eilenberg-MacLane objects

Proposition

There exist objects $E^{(n)}(Q,M) \in \operatorname{Track}_{\mathcal{O}}^n$ such that

- a) $E^{(n)}(Q, M)$ is an abelian group object in $(\operatorname{Gpd}^n\operatorname{-Cat}_{\mathcal{O}}, \operatorname{d}^{(n-1)}Q)/\operatorname{d}^{(n)}Q.$
- b) $E^{(n)}(Q, M)$ is an Eilenberg-Mac Lane object in Gpd^n - $Cat_{\mathcal{O}}$.

André-Quillen cohomology of track categories

 \bullet Recall the functor D : Track $^n_{\mathcal O} \to (\mathcal S, \mathcal O)\text{-Cat}$.

Definition (Dwyer, Kan, Smith)

Let $X \in \operatorname{Track}^n_{\mathcal{O}}$, M a module over $p^{(1)}X \in \operatorname{Track}_{\mathcal{O}}$, $E_X(M,n)$ the corresponding twisted Eilenberg-MacLane $(\mathcal{S},\mathcal{O})$ -category. The André-Quillen cohomology of X with coefficients in M is given by

$$H^{n-i}_{\mathsf{AQ}}(\mathit{DX},\mathit{M}) = \pi_i \; \mathsf{map}_{(\mathcal{S},\mathcal{O})\text{-}\mathsf{Cat}\,/\mathit{DX}}(\mathsf{Diag}\,\overline{\mathcal{F}}_ullet \mathit{DX}, \mathit{E}_X((,\mathit{M}),\mathit{n})) \; .$$

where $\operatorname{Diag} \overline{\mathcal{F}}_{ullet} DX o DX$ is the Dwyer-Kan standard free resolution.

Algebraic cohomology of a track category

• Let $X \in \operatorname{Track}^{n}_{\mathcal{O}}$, M a module over $p^{(1)}X \in \operatorname{Track}_{\mathcal{O}}$. Let $d_{1}: \mathcal{K}_{s}X \to X$ be the iterated face map. Let

$$\textit{D}^{\textit{s}} = \mathsf{Hom}_{\mathsf{Track}^n_{\mathcal{O}}/\mathcal{K}_{\textit{s}}\textit{X}}(\mathcal{K}_{\textit{s}}\textit{X}, \textit{E}^{(\textit{n})}(\textit{p}^{(1)}\mathcal{K}_{\textit{s}}\textit{X}, \textit{d}^*_{\textit{l}}\textit{M})) \; .$$

Then $\{D^s\}_{s>0}$ is a cosimplicial abelian group.

Definition

Let $X \in \operatorname{Track}_{\mathcal{O}}^n$, M a $p^{(1)}X$ -module. The n-th algebraic cohomology group of X with coefficients in M is

$$H^n_{Alg}(X;M) := \pi^n D^{\bullet}$$

 Question: How do André-Quillen cohomology and algebraic cohomology of a track category compare?

A long exact sequence for cohomology of track categories

Theorem (Blanc and P.)

For any $X \in \operatorname{Track}^n_{\mathcal{O}}$ and module M over $p^{(1)}X \in \operatorname{Track}_{\mathcal{O}}$, there is a long exact sequence of cohomology groups

$$\rightarrow H^{s}_{\mathsf{AQ}}(\mathit{DX};\mathit{M}) \rightarrow H^{s}_{\mathsf{AQ}}(\mathit{DX}_0;\mathit{M}) \rightarrow H^{s}_{\mathsf{AIg}}(\mathit{X};\mathit{M}) \rightarrow H^{s-1}_{\mathsf{AQ}}(\mathit{DX};\mathit{M}) \cdots.$$

An algebraic description of André-Quillen cohomology

Proposition (Blanc and P.)

Given $X \in \operatorname{Track}^n_{\mathcal{O}}$ for $n \geq 2$, there exists $S(X) \in \operatorname{Track}^n_{\mathcal{O}}$ with $p^{(0)}(S(X))_0 \in \operatorname{Cat}_{\mathcal{O}}$ a free category, and an n-equivalence $v_X : S(X) \to X$.

Corollary

Given $X \in \text{Track}_{\mathcal{O}}^n$ a module M over $p^{(1)}X$ and S(X) as in the above Proposition, for each s > 1 we have an isomorphism

$$H^{s+1}_{AO}(DX;M) \cong H^s_{Alg}(S(X);M)$$
.

Proof of corollary

• The *n*-equivalence $v_X: S(X) \to X$ induces a Dwyer-Kan equivalence $Dv_X: DS(X) \to DX$ and therefore an isomorphism

$$H_{\mathsf{AQ}}^s(\mathit{DX};M)\cong H_{\mathsf{AQ}}^s(\mathit{DS}(X);M)$$

• Since $S(X)_0$ is homotopically discrete, for each s > 1

$$H_{AQ}^{s}(DS(X)_{0};M)\cong H_{AQ}^{s}(p^{(0)}S(X)_{0};M)=0$$

where the last equality holds since $p^{(0)}S(X)_0$ is a free category.

• The long exact sequence of the theorem applied to S(X) yields

$$H_{AQ}^{s+1}(DS(X); M) \cong H_{Alg}^{s}(S(X); M)$$
.

• In conclusion $H_{AQ}^{s+1}(DX; M) \cong H_{AQ}^{s+1}(DS(X); M) \cong H_{Alg}^{s}(S(X); M)$.

Sketch of proof of theorem

• Let $Z = H\left(Z_0 \xrightarrow{q \atop t} \pi_0\right)$ be an object of Spl \mathcal{C} , M a Z-module. There is a short exact sequence of abelian groups

$$\pi_1 \operatorname{\mathsf{map}}_{\operatorname{\mathsf{Gpd}}(\mathcal{C})/Z}(Z,M) \rightarrowtail \operatorname{\mathsf{Hom}}_{\mathcal{C}/Z_0}(Z_0,j^*M_1) \twoheadrightarrow \operatorname{\mathsf{Hom}}_{\mathcal{C}/Z}(Z,M).$$

• When $Z = \mathcal{K}_{\bullet}X$, $X \in \operatorname{Track}_{\mathcal{O}}^{n}$, M a module over $p^{(1)}X \in \operatorname{Track}_{\mathcal{O}}$, we obtain a short exact sequence of cosimplicial abelian groups

$$\begin{split} 0 &\to \pi_1 \, \mathsf{map}_{\mathsf{Track}^n_{\mathcal{O}}/\mathcal{K}_{\bullet}X}(\mathcal{K}_{\bullet}X, \, \, E^n(p^{(1)}\mathcal{K}_{\bullet}X, \delta^*M)) \to \\ &\to \pi_1 \, \mathsf{map}((\mathcal{K}_{\bullet}X)_0, E^n(p^{(1)}\mathcal{K}_{\bullet}X, \delta^*M)) \to \\ &\to \mathsf{Hom}_{\mathsf{Track}^n_{\mathcal{O}}/\mathcal{K}_{\bullet}X}(\mathcal{K}_{\bullet}X, E^n(p^{(1)}\mathcal{K}_{\bullet}X, \delta^*M)) \to 0 \; . \end{split}$$

 The corresponding long exact cohomotopy sequence yields the result.

Summary

- Simplicial categories have Postnikov systems whose k-invariants are André-Quillen cohomology classes. In fact it is enough to work with categories enriched in simplicial n-types.
- To treat the latter algebraically we need higher category theory. Using the model of weakly globular n-fold categories leads to the notion of n-track category.
- There is a comonad on n-track categories built from techniques of internal category theory.
- The corresponding comonad resolution on n-track categories gives a cofibrant replacement.
- Using the latter leads to a long exact cohomology sequence for the André-Quillen cohomology and then to an algebraic description of the latter.

References

- D. Blanc, S. Paoli, A model of the André-Quillen cohomology of an $(\infty, 1)$ -category, arxiv.org/abs/2405.12674
- W.G. Dwyer, D.M. Kan, J. H. Smith An obstruction theory for diagrams of simplicial categories, *Proc. Kon. Ned. Akad. Wet. -Ind. Math.* 48 (1986), pp. 153-161.
- S. Paoli, Simplicial Methods for Higher Categories: Segal-type Models of Weak n-Categories, Algebra and Applications 26, Springer (2019).