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Primary doctrines

C op P // Pos
×, 1︸︷︷︸

variables

∧,>︸︷︷︸
formulas

d ∈ P(X × X ) > ` d(x , x) d(x , y) ` d(y , x) d(x , y) ∧ d(y , z) ` d(x , z)

New objects (X , d) where d is an equivalence relation over X

New arrows f :X → X ′ in C s.t. d(x , y) ` d ′(f (x), f (y))

New formulas ϕ ∈ P(X ) such that ϕ(x) ∧ d(x , y) ` ϕ(y)

Doctrine Q op
P

P̂ // Pos d is the equality predicate over (X , d)

Maietti, Rosolini. Elementary quotient completion. 2012

Maietti, Rosolini. Quotient completion for the foundation of constructive mathematics. 2013
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Primary linear doctrines

C op P // Pos
×, 1︸︷︷︸

variables

⊗, 1︸︷︷︸
formulas

Proposition (Dozen 96)

1 ` d(x , x) and ϕ(x)⊗ d(x , y) ` ϕ(y) imply d(x , y) a` d(x , y)⊗ d(x , y)

Or also: for f an arrow of C , if ∃f a P(f ), then ∃f (1) = ∃f (1)⊗ ∃f (1).



Relational doctrines

(C × C )op
R // Pos

(X ,Y ) 7−→ R(X ,Y )︸ ︷︷ ︸
relations from X to Y

• with families of monotone functions

R(X ,Y )× R(Y ,Z )
−;−

// R(X ,Z ) 1
d // R(X ,X ) R(X ,Y )

(−)⊥
// R(Y ,X )

such that

(r ; s); t = r ; (s; t) dX ; r = r = r ; dY

(r ; s)⊥ = s⊥; r⊥ d⊥X = dX r⊥⊥ = r

• reindexing lax preserves operations

Rf ,g (r);Rg ,h(s) ≤ Rf ,h(r ; s) dX ≤ Rf ,f dY (Rf ,g (r))⊥ ≤ Rf ,g (r⊥)
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Examples

• [0,∞] is the Lawvere’s quantale. (Set × Set )op
L[0,∞]

// Pos

L[0,∞](X ,Y ) = [0,∞]X×Y L[0,∞](f , g) is given by composition

dX (x , x ′) =

{
0 x = x ′

∞ x 6= x ′
(r ; s)(x , z) =

∧
y∈Y

r(x , y) + s(y , z)

• Spans over a category with weak pullbacks

• Jointly monic spans over a (locally) regular category

• Elementary and existential doctrines (eed)

• Ordered categories with involution (oci)

• . . .



EEDs and OCIs

• An eed P: C op // Pos models the (∃,=,∧,>)-fragment of FOL.

d(x , x ′) is x = x ′ (r ; s)(x , z) = ∃y [r(x , y) ∧ s(y , z)] r⊥(y , x) = r(x , y)

Proposition. A rel. doc. is an eed if and only if it is cartesian and modular

R is Cartesian: 1 R
∆ //!oo R × R have a right adjoint in RD

R is Modular: the (Freyd’s) modular laws holds: α;β ∧ γ ≤ α; (β ∧ α⊥; γ)

• An oci is Pos -enriched category C with an involution •: C op → C

homC : (C × C )op → Pos

Proposition. A rel. doc. is a oci if and only if it satisfies RUC and Ex.

R satisfies RUC if the graph functor homC (X ,Y )→ Map(X ,Y ) is surjective

R satisfies Ex if the graph functor homC (X ,Y )→ Map(X ,Y ) is injective
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Quotients in relational doctrines

(C × C )op
R // Pos

r ∈ R(X ,X ) is an R-equivalence relation over X if r is

reflexive: dX ≤ r symmetric: r⊥ ≤ r transitive: r ; r ≤ r

R has quotients if for every equiv. relation r ∈ R(X ,X ) there is

X
q
// X/r

such that r = Rq,q(dX/r ) and for every X
f // Y with r ≤ Rf ,f (dX/r )

X
q
//

f !!

X/r

∃!
��

Y
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Relational quotient completion

(C × C )op
R // Pos � // (QR ×QR)op

Rq
// Pos

The category QR :

Objects: (X , r) r is an R-equivalence relation on X

Arrows: (X , r)
[f ]
// (Y , s) r ≤ Rf ,f (s)

[f ] = [g ] when r ≤ Rf ,g (s)

The functor Rq:

Rq((X , r), (Y , s)) = {ϕ ∈ R(X ,Y ) | r ;ϕ; s ≤ ϕ} Rq
[f ],[g ](ϕ) = Rf ,g (ϕ)

QRD � � //⊥ RD
oo
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Examples

• (Set × Set )op
L[0,∞]

// Pos . A L[0,∞]-equiv. rel. on X is a distance on X

(L[0,∞])q is (Met ×Met )op
BiMod // Pos

• P: C op → Pos is a eed. A P-equiv. rel. ρ over X is such that

` ρ(x , x) ρ(x , y) ` ρ(y , x) ρ(x , y) ∧ ρ(y , z) ` ρ(x , z)

Pq is Maietti-Rosolini elementary quotient completion.

(Equ , Asm , setoids, pers, ex/wlex completion of cartesian categories)

• C is weakly lex. (C × C )op
Spn

// Pos . Spn-equivalence relations are

pseudo equivalence relations

Spnq is (Cex/wlex × Cex/wlex)op
Spnjm

// Pos
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A (bit off-topic) remark

OCI is RD such that homC (X ,Y ) ≡ Map(X ,Y ). RD
//

⊥ OCI? _oo

Strong relations over a q-topos 7→ Relations over the topos of coarse objects.

Bimod. over V -cats 7→ Bimod. over the Cauchy-complete V -cats

(Top × Top)op
clβ
// Pos 7→ (KH ×KH )op

cl // Pos

RD
quot.

// QRD ⊆ RD
ruc. // OCI

(C × C )op
Spnjm

// Pos 7→ (Cex/reg × Cex/reg)op
Spnjm

// Pos
Maietti, Rosolini. Unifying exact completions. 2013

(Set × Set )op
L[0,∞]

// Pos 7→ (CMet × CMet )op
BiMod // Pos

(Vec ×Vec)op
SN // Pos 7→ (Ban ×Ban)op

SNb // Pos
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Projectives

The graph of f :X → Y is Γf = Rf ,idY
(dY ). We say that f is surjective if

dY ≤ Γ⊥f ; Γf

Let T :R → R be a monad in RD: the rel. doc. (CT × CT )op
RT
// Pos

(A, α) , (B, β) 7→ {r ∈ R(A,B) | α⊥;T (r);β ≤ r}
Propositions

Suppose R: (C × C )op → Pos has quotients and T :R → R is a monad:

• RT has quotients

• P is a projective cover of C iff R ≡ (R|P)q

• P is a projective cover of C iff PT is a projective cover of CT

• if surjections in C split then CT is a prjojective cover
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(A, α) , (B, β) 7→ {r ∈ R(A,B) | α⊥;T (r);β ≤ r}
Propositions

Suppose R: (C × C )op → Pos has quotients and T :R → R is a monad:

• RT has quotients

• P is a projective cover of C iff R ≡ (R|P)q

• P is a projective cover of C iff PT is a projective cover of CT

• if surjections in C split then CT is a prjojective cover



Thank you!


