CT 2025 - Brno

Relational doctrines, quotient completions and projectives

Fabio Pasquali Università degli Studi di Milano

jww Francesco Dagnino Università degli Studi di Genova

$$\begin{array}{ccc} \mathcal{C}^{op} & \xrightarrow{P} \mathcal{P}os \\ & & & & & \wedge, \top \\ & & & & \wedge, \top \end{array}$$
 variables formulas

$$\begin{array}{ccc} \mathcal{C}^{op} & \xrightarrow{P} \mathcal{P}os \\ & & & & \wedge, \top \\ \text{variables} & & \text{formulas} \end{array}$$

$$d \in P(X \times X)$$
 $\top \vdash d(x,x)$ $d(x,y) \vdash d(y,x)$ $d(x,y) \land d(y,z) \vdash d(x,z)$

$$\begin{array}{ccc} \mathcal{C}^{op} & \xrightarrow{P} \mathcal{P} os \\ & \underbrace{\times, 1} & & \underbrace{\wedge, \top} \\ \text{variables} & \text{formulas} \end{array}$$

$$d \in P(X \times X)$$
 $\top \vdash d(x,x)$ $d(x,y) \vdash d(y,x)$ $d(x,y) \land d(y,z) \vdash d(x,z)$

New objects (X, d) where d is an equivalence relation over X

New arrows
$$f: X \to X'$$
 in \mathcal{C} s.t. $d(x,y) \vdash d'(f(x), f(y))$

New formulas
$$\varphi \in P(X)$$
 such that $\varphi(x) \wedge d(x,y) \vdash \varphi(y)$

Doctrine
$$Q_P^{op} \xrightarrow{\widehat{P}} \mathcal{P}os$$
 d is the equality predicate over (X, d)

Maietti, Rosolini. Elementary quotient completion. 2012

$$\begin{array}{ccc} \mathcal{C}^{op} & \xrightarrow{P} \mathcal{P} os \\ & \underbrace{\times, 1} & & \underbrace{\wedge, \top}_{\text{formulas}} \end{array}$$
 variables

$$d \in P(X \times X)$$
 $\mathbf{1} \vdash d(x,x)$ $d(x,y) \vdash d(y,x)$ $d(x,y) \otimes d(y,z) \vdash d(x,z)$

New objects (X, d) where d is a distance over X

New arrows $f: X \to X'$ in C s.t. $d(x,y) \vdash d(f(x), f(y))$

New formulas $\varphi \in P(X)$ such that $\varphi(x) \otimes d(x,y) \vdash \varphi(y)$

Doctrine $Q_P^{op} \xrightarrow{\widehat{P}} \mathcal{P}os$ d is the equality predicate over (X, d)

Maietti, Rosolini. Elementary quotient completion. 2012

Maietti, Rosolini. Quotient completion for the foundation of constructive mathematics. 2013

Primary linear doctrines

$$\begin{array}{ccc} \mathcal{C}^{op} & \xrightarrow{P} \mathcal{P}os \\ & \underbrace{\times, 1} & & \underbrace{\otimes, \mathbf{1}} \\ \text{variables} & & \text{formulas} \end{array}$$

$$d \in P(X \times X)$$
 $\mathbf{1} \vdash d(x,x)$ $d(x,y) \vdash d(y,x)$ $d(x,y) \otimes d(y,z) \vdash d(x,z)$

New objects (X, d) where d is a distance over X

New arrows $f: X \to X'$ in \mathcal{C} s.t. $d(x,y) \vdash d(f(x), f(y))$

New formulas $\varphi \in P(X)$ such that $\varphi(x) \otimes d(x,y) \vdash \varphi(y)$

Doctrine $Q_P^{op} \xrightarrow{\widehat{P}} \mathcal{P}os$ d is the equality predicate over (X, d)

Maietti, Rosolini. Elementary quotient completion. 2012

Primary linear doctrines

$$\begin{array}{ccc} \mathcal{C}^{op} & \xrightarrow{P} \mathcal{P}os \\ & & \underbrace{\times, 1} & & \underbrace{\otimes, \mathbf{1}}_{\text{formulas}} \end{array}$$

Proposition (Dozen 96)

$$\mathbf{1} \vdash d(x,x) \text{ and } \varphi(x) \otimes d(x,y) \vdash \varphi(y) \text{ imply } d(x,y) \dashv \vdash d(x,y) \otimes d(x,y)$$

Or also: for f an arrow of C, if $\exists_f \dashv P(f)$, then $\exists_f (\mathbf{1}) = \exists_f (\mathbf{1}) \otimes \exists_f (\mathbf{1})$.

$$(C \times C)^{op} \xrightarrow{R} \mathcal{P}os$$

$$(X, Y) \longmapsto \underbrace{R(X, Y)}_{\text{relations from } X \text{ to } Y}$$

$$(\mathcal{C} \times \mathcal{C})^{op} \xrightarrow{R} \mathcal{P}os$$

$$(X, Y) \longmapsto \underbrace{R(X, Y)}_{\text{relations from } X \text{ to } Y}$$

• with families of monotone functions

$$R(X,Y) \times R(Y,Z) \xrightarrow{-;-} R(X,Z) \quad 1 \xrightarrow{d} R(X,X) \quad R(X,Y) \xrightarrow{(-)^{\perp}} R(Y,X)$$
 such that

$$(r;s); t = r; (s;t)$$
 $d_X; r = r = r; d_Y$
 $(r;s)^{\perp} = s^{\perp}; r^{\perp}$ $d_X^{\perp} = d_X$ $r^{\perp \perp} = r$

$$(\mathcal{C} \times \mathcal{C})^{op} \xrightarrow{R} \mathcal{P}os$$

$$(X, Y) \longmapsto \underbrace{R(X, Y)}_{\text{relations from } X \text{ to } Y}$$

• with families of monotone functions

$$R(X,Y) \times R(Y,Z) \xrightarrow{-;-} R(X,Z) \quad 1 \xrightarrow{d} R(X,X) \quad R(X,Y) \xrightarrow{(-)^{\perp}} R(Y,X)$$
 such that

$$(r;s); t = r; (s;t)$$
 $d_X; r = r = r; d_Y$
 $(r;s)^{\perp} = s^{\perp}; r^{\perp}$ $d_X^{\perp} = d_X$ $r^{\perp \perp} = r$

reindexing lax preserves operations

$$R_{f,g}(r); R_{g,h}(s) \leq R_{f,h}(r;s)$$
 $d_X \leq R_{f,f}d_Y$ $(R_{f,g}(r))^{\perp} \leq R_{f,g}(r^{\perp})$

• $[0,\infty]$ is the Lawvere's quantale. $(Set \times Set)^{op} \xrightarrow{\mathcal{L}_{[0,\infty]}} \mathcal{P}os$

$$\mathcal{L}_{[0,\infty]}(X,Y) = [0,\infty]^{X imes Y}$$
 $\mathcal{L}_{[0,\infty]}(f,g)$ is given by composition

$$d_X(x,x') = \begin{cases} 0 & x = x' \\ \infty & x \neq x' \end{cases} (r;s)(x,z) = \bigwedge_{y \in Y} r(x,y) + s(y,z)$$

- Spans over a category with weak pullbacks
- Jointly monic spans over a (locally) regular category
- Elementary and existential doctrines (eed)
- Ordered categories with involution (oci)
- ...

• An eed $P: \mathcal{C}^{op} \longrightarrow \mathcal{P}\!\mathit{os} \mod \mathsf{Els}$ models the $(\exists, =, \land, \top)$ -fragment of FOL.

$$d(x, x')$$
 is $x = x'$ $(r; s)(x, z) = \exists_y [r(x, y) \land s(y, z)]$ $r^{\perp}(y, x) = r(x, y)$

 $\bullet \ \, \text{An eed} \ \, P \colon \mathcal{C}^{op} \longrightarrow \mathcal{P}\!\mathit{os} \ \, \text{models the } (\exists, =, \land, \top) \text{-fragment of FOL}.$

$$d(x,x')$$
 is $x=x'$ $(r;s)(x,z)=\exists_y\left[r(x,y)\wedge s(y,z)\right]$ $r^\perp(y,x)=r(x,y)$

Proposition. A rel. doc. is an eed if and only if it is cartesian and modular

R is **Cartesian**: $1 \leftarrow \stackrel{!}{\longleftarrow} R \xrightarrow{\Delta} R \times R$ have a right adjoint in **RD** *R* is **Modular**: the (Freyd's) modular laws holds: α ; $\beta \land \gamma \leq \alpha$; $(\beta \land \alpha^{\perp}; \gamma)$

• An eed $P: \mathcal{C}^{op} \longrightarrow \mathcal{P}\!\mathit{os} \mod \mathsf{ls}$ the $(\exists, =, \land, \top)$ -fragment of FOL.

$$\mathsf{d}(x,x')$$
 is $x=x'$ $(r;s)(x,z)=\exists_y\left[r(x,y)\wedge s(y,z)\right]$ $r^\perp(y,x)=r(x,y)$

Proposition. A rel. doc. is an eed if and only if it is cartesian and modular R is **Cartesian**: $1 \leftarrow \stackrel{!}{\longleftarrow} R \stackrel{\Delta}{\longrightarrow} R \times R$ have a right adjoint in **RD**

R is **Modular**: the (Freyd's) modular laws holds: α ; $\beta \wedge \gamma \leq \alpha$; $(\beta \wedge \alpha^{\perp}; \gamma)$

ullet An oci is ${\it Pos}$ -enriched category ${\it C}$ with an involution ullet: ${\it C}^{op}
ightarrow {\it C}$

$$\mathsf{hom}_\mathcal{C} : (\mathcal{C} \times \mathcal{C})^{\mathit{op}} o \mathit{Pos}$$

• An eed $P: \mathcal{C}^{op} \longrightarrow \mathcal{P}os$ models the $(\exists, =, \land, \top)$ -fragment of FOL. $d(x, x') \text{ is } x = x' \quad (r; s)(x, z) = \exists_{v} [r(x, v) \land s(v, z)] \quad r^{\perp}(v, x) = r(x, v)$

Proposition. A rel. doc. is an eed if and only if it is cartesian and modular R is **Cartesian**: $1 \xleftarrow{!} R \xrightarrow{\Delta} R \times R$ have a right adjoint in **RD** R is **Modular**: the (Freyd's) modular laws holds: α ; $\beta \wedge \gamma \leq \alpha$; $(\beta \wedge \alpha^{\perp}; \gamma)$

ullet An oci is ${\it Pos}$ -enriched category ${\it C}$ with an involution ullet: ${\it C^{op}}
ightarrow {\it C}$

$$\mathsf{hom}_\mathcal{C} : (\mathcal{C} \times \mathcal{C})^\mathit{op} o \mathit{Pos}$$

Proposition. A rel. doc. is a oci if and only if it satisfies RUC and Ex.

R satisfies **RUC** if the graph functor $\hom_{\mathcal{C}}(X,Y) \to \operatorname{Map}(X,Y)$ is surjective R satisfies **Ex** if the graph functor $\hom_{\mathcal{C}}(X,Y) \to \operatorname{Map}(X,Y)$ is injective

Quotients in relational doctrines

$$(\mathcal{C} \times \mathcal{C})^{op} \xrightarrow{R} \mathcal{P}os$$

 $r \in R(X,X)$ is an R-equivalence relation over X if r is

reflexive: $d_X \le r$ symmetric: $r^{\perp} \le r$ transitive: $r; r \le r$

Quotients in relational doctrines

$$(\mathcal{C} \times \mathcal{C})^{op} \xrightarrow{R} \mathcal{P}os$$

 $r \in R(X,X)$ is an R-equivalence relation over X if r is

reflexive: $d_X \le r$ symmetric: $r^{\perp} \le r$ transitive: $r; r \le r$

R has quotients if for every equiv. relation $r \in R(X,X)$ there is

$$X \xrightarrow{q} X/r$$

such that $r = R_{q,q}(\mathsf{d}_{X/r})$ and for every $X \xrightarrow{f} Y$ with $r \leq R_{f,f}(\mathsf{d}_{X/r})$

$$X \xrightarrow{q} X/r$$

$$\downarrow \exists !$$

$$(\mathcal{C} \times \mathcal{C})^{op} \xrightarrow{R} \mathcal{P}os \longmapsto (Q_R \times Q_R)^{op} \xrightarrow{R_q} \mathcal{P}os$$

$$(\mathcal{C} \times \mathcal{C})^{op} \xrightarrow{R} \mathcal{P}os \longmapsto (Q_{\mathbb{R}} \times Q_{\mathbb{R}})^{op} \xrightarrow{R_q} \mathcal{P}os$$

The category Q_R :

Objects:
$$(X, r)$$
 r is an R -equivalence relation on X

Arrows:
$$(X,r) \xrightarrow{[f]} (Y,s)$$
 $r \leq R_{f,f}(s)$ $[f] = [g]$ when $r \leq R_{f,g}(s)$

$$(\mathcal{C} \times \mathcal{C})^{op} \xrightarrow{R} \mathcal{P}os \longmapsto (Q_{\mathbb{R}} \times Q_{\mathbb{R}})^{op} \xrightarrow{R_q} \mathcal{P}os$$

The category Q_R :

Objects:
$$(X, r)$$
 r is an R -equivalence relation on X

Arrows:
$$(X,r) \xrightarrow{[f]} (Y,s)$$
 $r \leq R_{f,f}(s)$ $[f] = [g] \text{ when } r \leq R_{f,g}(s)$

The functor R^q :

$$R^q((X,r),(Y,s)) = \{ \varphi \in R(X,Y) \mid r; \varphi; s \leq \varphi \} \qquad R^q_{[f],[g]}(\varphi) = R_{f,g}(\varphi)$$

$$(\mathcal{C} \times \mathcal{C})^{op} \xrightarrow{R} \mathcal{P}os \longmapsto (Q_{\mathbb{R}} \times Q_{\mathbb{R}})^{op} \xrightarrow{R_q} \mathcal{P}os$$

The category Q_R :

Objects:
$$(X, r)$$
 r is an R -equivalence relation on X

Arrows:
$$(X,r) \xrightarrow{[f]} (Y,s)$$
 $r \leq R_{f,f}(s)$ $[f] = [g] \text{ when } r \leq R_{f,g}(s)$

The functor R^q :

$$R^q((X,r),(Y,s)) = \{ \varphi \in R(X,Y) \mid r; \varphi; s \leq \varphi \} \qquad R^q_{[f],[g]}(\varphi) = R_{f,g}(\varphi)$$

$$QRD \stackrel{\longleftarrow}{\longleftarrow} RD$$

 $\bullet \quad (\mathcal{S}et \times \mathcal{S}et)^{op} \xrightarrow{\mathcal{L}_{[0,\infty]}} \mathcal{P}os \ . \ \mathsf{A} \ \mathcal{L}_{[0,\infty]}\text{-equiv. rel. on } X \text{ is a distance on } X$ $(\mathcal{L}_{[0,\infty]})_q \text{ is } \quad (\mathcal{M}et \times \mathcal{M}et)^{op} \xrightarrow{\mathsf{BiMod}} \mathcal{P}os$

- $(Set \times Set)^{op} \xrightarrow{\mathcal{L}_{[0,\infty]}} \mathcal{P}os$. A $\mathcal{L}_{[0,\infty]}$ -equiv. rel. on X is a distance on X $(\mathcal{L}_{[0,\infty]})_q \text{ is } (\mathcal{M}et \times \mathcal{M}et)^{op} \xrightarrow{\mathsf{BiMod}} \mathcal{P}os$
- $P: \mathcal{C}^{op} \to \mathcal{P}os$ is a eed. A P-equiv. rel. ρ over X is such that $\vdash \rho(x,x) \qquad \qquad \rho(x,y) \vdash \rho(y,x) \qquad \qquad \rho(x,y) \land \rho(y,z) \vdash \rho(x,z)$

 P_q is Maietti-Rosolini elementary quotient completion.

($\mathcal{E}qu$, $\mathcal{A}sm$, setoids, pers, ex/wlex completion of cartesian categories)

- $(Set \times Set)^{op} \xrightarrow{\mathcal{L}_{[0,\infty]}} \mathcal{P}os$. A $\mathcal{L}_{[0,\infty]}$ -equiv. rel. on X is a distance on X $(\mathcal{L}_{[0,\infty]})_q \text{ is } (\mathcal{M}et \times \mathcal{M}et)^{op} \xrightarrow{\mathsf{BiMod}} \mathcal{P}os$
- $P: \mathcal{C}^{op} \to \mathcal{P}os$ is a eed. A P-equiv. rel. ρ over X is such that $\vdash \rho(x,x) \qquad \qquad \rho(x,y) \vdash \rho(y,x) \qquad \qquad \rho(x,y) \land \rho(y,z) \vdash \rho(x,z)$ P_q is Maietti-Rosolini elementary quotient completion.
 - ($\mathcal{E}qu$, $\mathcal{A}sm$, setoids, pers, ex/wlex completion of cartesian categories)
- $\mathcal C$ is weakly lex. $(\mathcal C \times \mathcal C)^{op} \xrightarrow{Spn} \mathcal Pos$. Spn-equivalence relations are pseudo equivalence relations

$$Spn_q$$
 is $(C_{\text{ex/wlex}} \times C_{\text{ex/wlex}})^{op} \xrightarrow{Spn_{jm}} \mathcal{P}os$

OCI is **RD** such that $hom_{\mathcal{C}}(X, Y) \equiv Map(X, Y)$. **RD** \longrightarrow **OCI**

OCI is **RD** such that
$$hom_{\mathcal{C}}(X, Y) \equiv Map(X, Y)$$
. **RD** \longrightarrow **OCI**

Strong relations over a q-topos
$$\ \mapsto \ \ \mbox{Relations}$$
 over the topos of coarse objects.

Bimod. over
$$V$$
-cats \mapsto Bimod. over the Cauchy-complete V -cats

$$(\operatorname{Top} \times \operatorname{Top})^{\operatorname{op}} \xrightarrow{\operatorname{cl}_{\beta}} \operatorname{Pos} \quad \mapsto \quad (\operatorname{KH} \times \operatorname{KH})^{\operatorname{op}} \xrightarrow{\operatorname{cl}} \operatorname{Pos}$$

OCI is **RD** such that
$$hom_{\mathcal{C}}(X, Y) \equiv Map(X, Y)$$
. **RD** \longrightarrow **OCI**

Strong relations over a q-topos
$$\ \mapsto \ \ \mbox{Relations over the topos of coarse objects.}$$

Bimod. over
$$V$$
-cats \mapsto Bimod. over the Cauchy-complete V -cats

$$(\mathit{Top} \times \mathit{Top})^{op} \xrightarrow{\mathit{cl}_{\beta}} \mathit{Pos} \quad \mapsto \quad (\mathit{KH} \times \mathit{KH})^{op} \xrightarrow{\mathit{cl}} \mathit{Pos}$$

$$RD \xrightarrow{quot.} QRD \subseteq RD \xrightarrow{ruc.} OCI$$

OCI is **RD** such that
$$hom_{\mathcal{C}}(X, Y) \equiv Map(X, Y)$$
. **RD** \longrightarrow **OCI**

Strong relations over a q-topos \mapsto Relations over the topos of coarse objects.

Bimod. over V-cats \mapsto Bimod. over the Cauchy-complete V-cats

$$(\operatorname{Top} \times \operatorname{Top})^{\operatorname{op}} \xrightarrow{\operatorname{cl}_{\beta}} \operatorname{Pos} \quad \mapsto \quad (\operatorname{KH} \times \operatorname{KH})^{\operatorname{op}} \xrightarrow{\operatorname{cl}} \operatorname{Pos}$$

$$RD \xrightarrow{quot.} QRD \subseteq RD \xrightarrow{ruc.} OCI$$

$$(\mathcal{C} \times \mathcal{C})^{op} \xrightarrow{Spn_{jm}} \mathcal{P}os \quad \mapsto \quad (\mathcal{C}_{\mathsf{ex/reg}} \times \mathcal{C}_{\mathsf{ex/reg}})^{op} \xrightarrow{Spn_{jm}} \mathcal{P}os$$

Maietti, Rosolini. Unifying exact completions. 2013

$$(\mathcal{S}et \times \mathcal{S}et)^{op} \xrightarrow{\mathcal{L}_{[0,\infty]}} \mathcal{P}os \quad \mapsto \quad (\mathcal{C}Met \times \mathcal{C}Met)^{op} \xrightarrow{\mathsf{BiMod}} \mathcal{P}os$$
$$(\mathcal{V}ec \times \mathcal{V}ec)^{op} \xrightarrow{\mathsf{SN}} \mathcal{P}os \quad \mapsto \quad (\mathcal{B}an \times \mathcal{B}an)^{op} \xrightarrow{\mathsf{SN}_b} \mathcal{P}os$$

The graph of $f\colon X\to Y$ is $\Gamma_f=R_{f,\mathrm{id}_Y}(\mathsf{d}_Y).$ We say that f is surjective if $\mathsf{d}_Y\le \Gamma_f^\perp;\Gamma_f$

The graph of $f: X \to Y$ is $\Gamma_f = R_{f, \mathrm{id}_Y}(\mathsf{d}_Y)$. We say that f is surjective if $\mathsf{d}_Y \le \Gamma_f^\perp$; Γ_f

Let
$$T: R \to R$$
 be a monad in **RD**: the rel. doc. $(\mathcal{C}^T \times \mathcal{C}^T)^{op} \xrightarrow{R^T} \mathcal{P}os$
 $(A, \alpha), (B, \beta) \mapsto \{r \in R(A, B) \mid \alpha^{\perp}; T(r); \beta \leq r\}$

The graph of $f: X \to Y$ is $\Gamma_f = R_{f, \mathrm{id}_Y}(\mathsf{d}_Y)$. We say that f is surjective if $\mathsf{d}_Y \le \Gamma_f^\perp$; Γ_f

Let $T: R \to R$ be a monad in **RD**: the rel. doc. $(\mathcal{C}^T \times \mathcal{C}^T)^{op} \xrightarrow{R^T} \mathcal{P}os$ $(A, \alpha), (B, \beta) \mapsto \{r \in R(A, B) \mid \alpha^{\perp}; T(r); \beta \leq r\}$

Propositions

Suppose $R: (\mathcal{C} \times \mathcal{C})^{op} \to \mathcal{P}os$ has quotients and $T: R \to R$ is a monad:

R^T has quotients

The graph of $f: X \to Y$ is $\Gamma_f = R_{f, \mathrm{id}_Y}(\mathsf{d}_Y)$. We say that f is surjective if $\mathsf{d}_Y \le \Gamma_f^\perp$; Γ_f

Let $T: R \to R$ be a monad in **RD**: the rel. doc. $(\mathcal{C}^T \times \mathcal{C}^T)^{op} \xrightarrow{R^T} \mathcal{P}os$ $(A, \alpha), (B, \beta) \mapsto \{r \in R(A, B) \mid \alpha^{\perp}; T(r); \beta \leq r\}$

Propositions

Suppose $R: (\mathcal{C} \times \mathcal{C})^{op} \to \mathcal{P}os$ has quotients and $T: R \to R$ is a monad:

- R^T has quotients
- ullet ${\mathbb P}$ is a projective cover of ${\mathcal C}$ iff $R\equiv (R_{|{\mathbb P}})_q$

The graph of $f: X \to Y$ is $\Gamma_f = R_{f, \mathrm{id}_Y}(\mathsf{d}_Y)$. We say that f is surjective if $\mathsf{d}_Y \le \Gamma_f^\perp$; Γ_f

Let $T: R \to R$ be a monad in **RD**: the rel. doc. $(\mathcal{C}^T \times \mathcal{C}^T)^{op} \xrightarrow{R^T} \mathcal{P}os$ $(A, \alpha), (B, \beta) \mapsto \{r \in R(A, B) \mid \alpha^{\perp}; T(r); \beta \leq r\}$

Propositions

Suppose $R: (\mathcal{C} \times \mathcal{C})^{op} \to \mathcal{P}os$ has quotients and $T: R \to R$ is a monad:

- R^T has quotients
- ullet ${\mathbb P}$ is a projective cover of ${\mathcal C}$ iff $R\equiv (R_{|{\mathbb P}})_q$
- ullet $\mathbb P$ is a projective cover of $\mathcal C$ iff $\mathbb P_{\mathcal T}$ is a projective cover of $\mathcal C^{\mathcal T}$

The graph of $f: X \to Y$ is $\Gamma_f = R_{f, \mathrm{id}_Y}(\mathsf{d}_Y)$. We say that f is surjective if $\mathsf{d}_Y \le \Gamma_f^\perp$; Γ_f

Let $T: R \to R$ be a monad in **RD**: the rel. doc. $(\mathcal{C}^T \times \mathcal{C}^T)^{op} \xrightarrow{R^T} \mathcal{P}os$ $(A, \alpha), (B, \beta) \mapsto \{r \in R(A, B) \mid \alpha^{\perp}; T(r); \beta \leq r\}$

Propositions

Suppose $R: (\mathcal{C} \times \mathcal{C})^{op} \to \mathcal{P}os$ has quotients and $T: R \to R$ is a monad:

- R^T has quotients
- ullet ${\mathbb P}$ is a projective cover of ${\mathcal C}$ iff $R\equiv (R_{|{\mathbb P}})_q$
- ullet $\mathbb P$ is a projective cover of $\mathcal C$ iff $\mathbb P_{\mathcal T}$ is a projective cover of $\mathcal C^{\mathcal T}$
- ullet if surjections in ${\mathcal C}$ split then ${\mathcal C}_{\mathcal T}$ is a prjojective cover

Thank you!