2-dimensional commutativity and Fox's theorem: sketchy approach

(work in progress)

Tomáš Perutka

15. 7. 2025

Prelude: commutative 1-theories

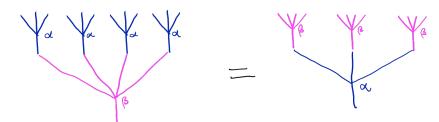
Definition (not the best one)

A Lawvere theory $\mathbb T$ is commutative if for each model $X\colon \mathbb T\to \mathcal C$ and for each $\alpha\colon n\to 1$ in $\mathbb T$, the n-ary operation $X(\alpha)\colon X(1)^n\to X(1)$ is a homomorphism of models.

Example (justifying the name): if G is a group, then the multiplication $m \colon G \times G \to G$ is a group homomorphism if and only if G is commutative.

 \Rightarrow theory of groups is not commutative, theory of commutative groups is commutative.

Better (syntactic) definition [Linton '66]



Why go 2-dimensional? Fox's Theorem

Special case: Tensor product of commutative rings is their coproduct.

Thm. (Fox '76)

- For any two commutative monoids M, N in a symmetric monoidal category $(\mathcal{V}, \otimes, I), M \otimes N$ is also a commutative monoid.
- **②** The 2-functor CMon(-): $SMCat \rightarrow SMCat$ is a comonad.
- This comonad is colax idempotent, and the 2-category of coalgebras identified with Cat[□].

Rethinking Fox's Theorem

Thm. (Fox)

- For any two commutative monoids M,N in a symmetric monoidal category $(\mathcal{V},\otimes,I),M\otimes N$ is also a commutative monoid.
 - Let \mathbb{T} be a Lawvere 2-theory for pseudocommutative pseudomonoids.
 - Models in Cat = symmetric monoidal categories.
 - (Same phenomenon as before: V × V → V is a homomorphism of models only for symmetric monoidal categories.)
 - Pseudo / lax / colax homomorphisms of models = strong / lax / colax symmetric monoidal functors.
 - $\mathsf{CMon}(\mathcal{V}) = \mathsf{Lax}(1, \mathcal{V}).$

Rethinking Fox's Theorem

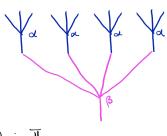
Thm. (Fox)

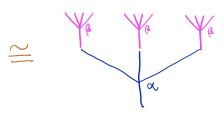
- For any two commutative monoids M,N in a symmetric monoidal category $(\mathcal{V},\otimes,I),M\otimes N$ is also a commutative monoid.
 - Let \mathbb{T} by a Lawvere 2-theory for pseudocommutative pseudomonoids.
 - Models in Cat = symmetric monoidal categories.
 - Pseudo / lax / colax homomorphisms of models = strong / lax / colax symmetric monoidal functors.
 - $\mathsf{CMon}(\mathcal{V}) = \mathsf{Lax}(1, \mathcal{V}).$

Thm. (P.)

• For any pseudocommutative Lawvere 2-theory \mathbb{T} , there is a natural closed symmetric 2-multicategory structure on $\mathsf{Mod}(\mathbb{T},\mathbf{Cat})_{lax}$ with internal hom being $\mathsf{Lax}(X,Y)$.

Pseudocommutativity





Recall: Gray tensor product

For any $w \in \{\text{strict}, \text{pseudo}, \text{lax}, \text{colax}\}$, let $[\mathcal{D}, \mathcal{E}]_w$ be a category of 2-functors and w-natural transformations.

$$[\mathcal{C} \otimes_{w\text{-Gray}} \mathcal{D}, \mathcal{E}] \cong [\mathcal{C}, [\mathcal{D}, \mathcal{E}]_w]$$

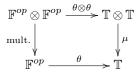
Added 2-cells in $\mathbb{T} \otimes_{ps\text{-Gray}} \mathbb{T}$:

$$\begin{array}{c|c} (m,k) \xrightarrow{(1,\beta)} (m,l) \\ (\alpha,1) & \swarrow & \downarrow (\alpha,1) \\ (n,l) \xrightarrow{(1,\beta)} (n,l) \end{array}$$

Pseudocommutativity: First try

Let $\theta : \mathbb{F}^{op} \to \mathbb{T}$ be a Lawvere 2-theory. A w-commutativity on \mathbb{T} consists of a stucture (\mathbb{T}, μ, u) of a monoid in $(\mathbf{Cat}, \otimes_{w\text{-Gray}}, 1)$ on \mathbb{T} such that

- \bullet μ preserves products in each variable,
- gugly condition,
 - \bullet is a homomorphism of Gray monoids, i.e. $\mu(m,n)=m\cdot n$ and u(*)=1.



Going sketchy

Recall¹:

- V-sketch is a V-category S equipped with a set of weighted cones in S.
- \bullet \mathcal{F} -category is 2-category with tight and loose 1-cells.

```
(Lawvere \ 2\text{-theories}) {\ \longrightarrow\ } (\mathcal{F}\text{-sketches}) {\ \lessdot\ } (2\text{-cats with fin. powers})
```

Here:

- Lawvere theory $\theta \colon \mathbb{F}^{op} \to \mathbb{T}$ is an \mathcal{F} -sketch with loose cells those of \mathbb{T} , tight cells those in the image of θ , weighted cones those for finite powers.
- 2-category C with finite powers is an F-sketch with loose cells those of C, tight cells of the form Xⁿ → X, weighted cones those for finite powers.

Why sketches?

$$(Lawvere \ 2\text{-theories}) {\ \longrightarrow\ } (\mathcal{F}\text{-sketches}) {\ \lessdot\ } (2\text{-cats with fin. powers})$$

Reason 1

$$\mathsf{Mod}_w(\mathbb{T},\mathcal{C}) \cong \mathcal{F}\text{-}\mathbf{Sk}_{s,w}(\mathbb{T},\mathcal{C})$$

For any w, we have "enhanced Gray tensor product" $\otimes_{s,w}$ of \mathcal{F} -sketches: gives us exactly what we want!

Reason 2: Definition

A w-commutativity on a Lawvere theory $\theta \colon \mathbb{F}^{op} \to \mathbb{T}$ is a structure of monoid in $(\mathcal{F}\text{-}\mathbf{Sk}, \otimes_{s,w}, 1)$ on \mathbb{T} such that θ is a homomorphism of monoids.

Short exploration

Definition

A w-commutativity on a Lawvere theory $\theta \colon \mathbb{F}^{op} \to \mathbb{T}$ is a structure of monoid in $(\mathcal{F} - \mathbf{Sk}, \otimes_w, 1)$ on \mathbb{T} such that θ is a homomorphism of monoids.

Examples:

${\mathbb T}$	commutativity	meaning
pseudomonoids	none	$X \otimes Y \neq Y \otimes X$
braided	lax	$X \otimes Y \to Y \otimes X$
symmetric	pseudo	$X \otimes Y \cong Y \otimes X$

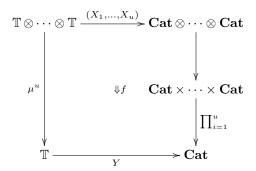
Thm. (P.)

There is a bijection between w-commutativity structures on \mathbb{T} and sections of a forgetful natural transformation $\mathsf{Mod}(\mathbb{T},\mathsf{Mod}(\mathbb{T},-)_w)_s \to \mathsf{Mod}(\mathbb{T},-)_s$.

In other words: operations are w-homomorphisms in a coherent way.

Lax multimorphisms

Let $\mathbb T$ be a pseudocommutative Lawvere 2-theory, X_1,\ldots,X_u,Y are $\mathbb T$ -models in $\mathbf Cat$. Then a lax $\mathbb T$ -multimap $X_1,\ldots,X_u\to Y$ is a lax natural transformation f



Closed multicategory structure

Let $\mathbb T$ be a pseudocommutative Lawvere 2-theory, X_1,\ldots,X_u,Y are $\mathbb T$ -models in $\mathbf C$ at. Then a lax $\mathbb T$ -multimap $X_1,\ldots,X_u\to Y$ is a lax natural transformation f which gives on components

$$f_{n_1,\dots,n_u}: \prod_i X_i(n_i) \to Y(n_1 \cdots n_u).$$

For the internal hom, define $[X,Y]_{lax}(n) := \mathsf{Mod}_{lax}(\mathbb{T})(X,Y^n)$ and use the fact that pseudcommutativity promotes $Y(\alpha)$ to a pseudohomomorphism of models, so we can put

$$[X,Y]_{lax}(\alpha) := \mathsf{Mod}_{lax}(\mathbb{T})(X,Y^n) \xrightarrow{-\circ Y(\alpha)} \mathsf{Mod}_{lax}(\mathbb{T})(X,Y).$$

Interesting phenomenon: bilax maps

Recall: for braided / symmetric monoidal categories, one can study bilax monoidal functors, which is a compatible pair of a lax and colax structure on a functor. We have $\mathsf{Bimon}(\mathcal{V}) \cong \mathsf{Bilax}(1,\mathcal{V})$.

Definition (bilax morphisms of T-models)

Let $\mathbb T$ be lax-commutative 2-theory, $X,Y\colon \mathbb T\to \mathbf C$ at models, $f\colon X(1)\to Y(1)$ a functor. Then a bilax structure on f is a structure of a lax homomorphism $\{\overline{f}_\alpha\}_{\alpha\in mor\,\mathbb T}$ and a colax homomorphism $\{\underline{f}_\alpha\}_{\alpha\in mor\,\mathbb T}$ such that each \overline{f}_α is a colax natural transformation – or, equivalently, each \underline{f}_α is a lax natural transformation.

$$(X^{m})^{n} \xrightarrow{\chi_{(a)}} X^{n} \xrightarrow{\xi^{n}} y^{n}$$

$$(X^{m})^{n} \xrightarrow{\chi_{(a)}} X^{n} \xrightarrow{\chi_{(a)}} y^{n}$$

$$(X^{m})^{n} \xrightarrow{\chi_{(a)}} X^{n} \xrightarrow{\chi_{(a$$

Thanks!

Connection to 2-monads

Corresponding notion of a pseudocommutativity for 2-monads², involving (co)strengths, 7 axioms, and the following invertible 2-cells:

$$\begin{array}{c|c} TA \times TB & \xrightarrow{t^*} & T(A \times TB) & \xrightarrow{Tt} & T^2(A \times B) \\ \downarrow^t & & & \downarrow^\mu \\ T(TA \times B) & \xrightarrow{Tt^*} & T^2(A \times B) & \xrightarrow{\mu} & T(A \times B) \end{array}$$

If $TX = \int^n X^m \mathbb{T} m$ corresponds to a Lawvere theory \mathbb{T} , we have an endofunctor $SX = \int^{m,n} X^{mn} \mathbb{T} m \times \mathbb{T} n$, γ_{XY} can be rewritten as

$$TX \times TY \xrightarrow{d_{XY}} S(X \times Y) \qquad \Downarrow \qquad T(X \times Y)$$

²M. Hyland, J. Power: *Pseudo-commutative monads and pseudo-closed 2-categories*, JPAA 175, p. 141-185, 2002.