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Axiomatic characterisations:
from sets to compact Hausdorff spaces



A common approach in mathematics:
• characterise a category of structures (e.g., Set or Ab) by isolating its key properties;
• relax these properties to include other categories that behave in a similar way.

• Set and (elementary) toposes: up to equivalence, Set is the unique complete
well-pointed topos with a natural number object satisfying AC (Lawvere’s ETCS, 1964).

• Ab and abelian categories (Buchsbaum, Grothendieck 1955–1957).

In a similar spirit, the category KH of compact Hausdorff spaces and continuous maps can
be characterised among pretoposes (=extensive and Barr-exact categories).

While Set is infinitary extensive, to form infinite coproducts in KH we need to compactify.
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Filtrality

For a bounded distributive lattice L, let C(L) be the Boolean center of L, and F(C(L)) the
filter completion of C(L). There is a monotone map

φ : L → F(C(L)), x 7→ ↑x ∩ C(L).
L is a filtral lattice if φ is an isomorphism.

An object X of a pretopos is filtral if SubX is a filtral lattice.

• The filtral objects in Set are the finite sets.
• The filtral objects in KH are the Stone spaces (cf. the characterisation of Stone locales

as the ideal completions of Boolean algebras).

Each X ∈ KH is covered by a filtral object, i.e. there exist a Stone space Y and a (regular)
epi Y ↠ X . So, KH has enough filtral objects. On the other hand, Set does not.
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Characterising KH

In the same way that Set can be characterised among toposes, KH can be characterised
among pretoposes.

Theorem (Marra & LR, 2020)
Up to equivalence, KH is the unique non-trivial pretopos such that:

1. the terminal object 1 is a generator (and set-indexed copowers of 1 exist);
2. every object is covered by a filtral object.
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Nachbin’s compact ordered spaces



Compact ordered spaces

A compact ordered space is a pair (X ,≤) where X is compact and ≤ ⊆ X × X is a partial
order that is closed in the product topology (Nachbin, 1965).

Note: ≤ ∩≥ = ∆X is closed, hence X is Hausdorff.

Let KOrd be the category of compact ordered spaces and continuous monotone maps.

KOrd is not a pretopos: it is extensive but not exact.

In a pretopos, (f epi & f mono ⇒ f iso). This fails in KOrd, cf. id : (X ,=) → (X ,≤).
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KOrd as a Pos-enriched category

Hom-sets in KOrd are naturally ordered: for all f , g : (X ,≤X ) ⇒ (Y ,≤Y ),

f ≤ g ⇐⇒ ∀x ∈ X f (x) ≤Y g(x).

KOrd is enriched in the category Pos of posets and monotone maps.

Most good properties of KH extend to KOrd if we are mindful of the order-enrichment.

Theorem (Aravantinos-Sotiropoulos, 2022)
The category KOrd is Pos-exact.

This suggests attempting to characterise KOrd among Pos-pretoposes (=(1, 2)-pretoposes).
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Pos-pretoposes



Epi-diagonals

Let C be an ordinary category with finite limits, and let X ∈ C.
• ∆X : X ↪→ X × X represents the sub-presheaf of those pairs (f , g) such that f = g.

Suppose now that C is a poset-enriched category with finite limits.

C has epi-diagonals if, for every X ∈ C, the poset-enriched presheaf

FX : Cop → Pos, Z 7→ {f , g : Z ⇒ X | f ≤ g}

is representable. If this is the case, we denote the representing object by [≤X ] ↪→ X × X .

Observation. The following are equivalent for every poset-enriched category C:
1. C has finite limits and epi-diagonals.
2. C has finite weighted limits.
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The internal language

Let C be a poset-enriched category with finite weighted limits. The underlying ordinary
category C0 has finite limits, and its internal language is enriched with an order relation
≤X for each object X .

Every morphism f : X → Y in C is monotone: x ≤ x′ ⊢ f (x) ≤ f (x′).

• f is an embedding if f (x) ≤ f (x′) ⊢ x ≤ x′. (ff-morphism)
• f is injective if f (x) = f (x′) ⊢ x = x′. (monomorphism)

We restrict the internal language by only allowing predicates represented by embeddings.

(Since embeddings are stable under pullbacks, all formulas constructed using ∧,=,⊤ are
interpreted as embeddings.)

When X is an object of a poset-enriched category, by a subobject of X we mean an
embedding Y ↪→ X (modulo isomorphism).
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Regular and coherent categories

C a poset-enriched category with all finite weighted limits, f : A → B an arrow in C.

• If it exists, the image of f is the largest subobject im(f ) of B through which f factors.
• f is a surjection if im(f ) = B. (so-morphism)

C is regular if every morphism factors as a surjection followed by an embedding, and
surjections are stable under pullbacks.

If C is regular, its internal language interprets ∃. We get a (non-enriched) Lawvere doctrine

Sub : Cop → MSLat.

C is coherent if each Sub(X) has finite joins, and these are stable under pullbacks.
(Equivalently, if the latter functor factors through the inclusion DL ↪→ MSLat.)

The internal language of a coherent category is enriched further with ⊥ and ∨.

8 / 15



Regular and coherent categories

C a poset-enriched category with all finite weighted limits, f : A → B an arrow in C.

• If it exists, the image of f is the largest subobject im(f ) of B through which f factors.
• f is a surjection if im(f ) = B. (so-morphism)

C is regular if every morphism factors as a surjection followed by an embedding, and
surjections are stable under pullbacks.

If C is regular, its internal language interprets ∃. We get a (non-enriched) Lawvere doctrine

Sub : Cop → MSLat.

C is coherent if each Sub(X) has finite joins, and these are stable under pullbacks.
(Equivalently, if the latter functor factors through the inclusion DL ↪→ MSLat.)

The internal language of a coherent category is enriched further with ⊥ and ∨.

8 / 15



Regular and coherent categories

C a poset-enriched category with all finite weighted limits, f : A → B an arrow in C.

• If it exists, the image of f is the largest subobject im(f ) of B through which f factors.
• f is a surjection if im(f ) = B. (so-morphism)

C is regular if every morphism factors as a surjection followed by an embedding, and
surjections are stable under pullbacks.

If C is regular, its internal language interprets ∃. We get a (non-enriched) Lawvere doctrine

Sub : Cop → MSLat.

C is coherent if each Sub(X) has finite joins, and these are stable under pullbacks.
(Equivalently, if the latter functor factors through the inclusion DL ↪→ MSLat.)

The internal language of a coherent category is enriched further with ⊥ and ∨.
8 / 15



Exact categories and pretoposes
Let C be a poset-enriched regular category, and X ∈ C.

• A congruence on X is a relation R ⊆ X2 that is transitive and satisfies x ≤ y ⊢ R(x, y).
• A quotient of X by R is a surjection X ↠ X/R whose lax kernel is R.

C is exact if it is regular and every congruence has a quotient.

To define a pretopos, we consider disjoint unions in Pos-coherent categories.

The disjoint union of A and B is an object A + B, equipped with embeddings A ↪→ A + B
and B ↪→ A + B, s.t. A and B cover A + B and are incomparable:

⊢ A(x) ∨ B(x), A(x) ∧ B(y) ∧ (x ≤ y) ⊢ ⊥, A(x) ∧ B(y) ∧ (y ≤ x) ⊢ ⊥.

A poset-enriched category is a pretopos if it is coherent, exact, and has disjoint unions.

Examples: Pos and KOrd, but not Set nor KH.
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Projective covers and generators



Projective covers

Let C be a poset-enriched regular category.

• X ∈ C is projective if C(X ,−) : C → Pos preserves surjections.
• A full subcategory P ⊆ C is a projective cover of C if every object in P is projective

and each object of C is covered by an object in P.

The following is a variant, for poset-enriched regular categories with enough projectives, of
Barr’s embedding theorem for ordinary regular categories:

Theorem (Marquès, LR)
Let P ⊆ C be a projective cover. The nerve NP : C → [Pop,Pos] is regular and fully faithful.

If C is exact, the essential image of NP consists of the presheaves obtained as the quotient of a
representable presheaf by a congruence that is covered by another representable presheaf.
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Projective covers

By a result of Vitale, two ordinary exact categories are equivalent if they have equivalent
projective covers. The previous thm yields a similar result for poset-enriched categories:

Corollary
Let C,D be poset-enriched exact categories with equivalent projective covers. Then C ≃ D.

• In Pos, a projective cover is given by sets (i.e., the order-discrete posets).
• In KOrd, the full subcategory {βS | S a set} is a projective cover.

The two examples above are both instances of the same phenomenon. Start with a
projective generator — in this case, the terminal object — and close under copowers.
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Generators

An object G of a poset-enriched regular category C is a discrete generator if it satisfies:
1. for every set S, the copower S · G exists in C;
2. for every X ∈ C, the canonical arrow |C(G,X)| · G → X is a surjection.

There is a more standard notion of generator, defined in terms of tensors P · G rather than
copowers. Every generator is a discrete generator, and the converse holds if C is exact.

Lemma
If G is a projective discrete generator, {S · G | S a set} is a projective cover of C.

Theorem (Cf. also Kurz-Velebil 2017)
If C is exact and has a projective (discrete) generator G, then it is equivalent to EM(T),

where T is the monad on Pos induced by the adjunction Pos ⊤ C .
−·G

C(G,−)
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A characterisation of KOrd



Order-filtrality

An object X of a Pos-coherent category is order-filtral if the monotone map

Sub↑(X) → F(Sub↑¬(X)), U 7→ {V ∈ Sub↑¬(L) | U ⊆ V}
is an isomorphism.

• The order-filtral objects in Pos are the finite posets.
• The order-filtral objects in KOrd are the Priestley spaces.

Theorem (Marquès & LR)
Up to equivalence, KOrd is the unique non-trivial Pos-pretopos such that:

1. the terminal object 1 is a discrete generator;
2. every object is covered by an order-filtral object.
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A sketch of the proof

Let C be a non-trivial Pos-pretopos such that 1 is a discrete generator, and each object of
C is covered by an order-filtral object.

• 1 is projective, hence {S · 1 | S a set} is a projective cover of C.

• The (enriched) presheaf Sub↑¬ : Cop → DL is represented by 2 · 1, where 2 = {0 < 1}.
• Composing Sub↑¬ with DLop → KOrd, we get F : C → KOrd that sends S · 1 to βS.

• S · 1 covered by a filtral object ⇒ S · 1 compact and separated ⇒ C(1, S · 1) ∼= βS.

• C(S · 1,T · 1) ∼= KOrd(βS, βT) ⇒ F : {S · 1 | S a set} ≃ {βS | S a set}.

• Since C and KOrd have equivalent projective covers, they are equivalent.
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Epilogue: future directions



• Beyond KH and KOrd: Weaken these axiomatisations to capture categories that
“behave like compact ordered spaces” (e.g. sheaves of compact ordered spaces).

• Extensivity for Pos-categories as a two-dimensional exactness condition (cf. Bourke
and Garner, 2014)?

• Regular/coherent Pos-categories correspond to regular/coherent monotone theories:
for each sort X there is a binary relation ≤X : X × X such that T proves that

1. ≤X is a partial order;
2. every function symbol is monotone with respect to these orders.

• Strong Conceptual completeness for monotone coherent theories (generalising the
work of Makkai and Lurie to the poset-enriched setting)?

• Explore the use of Conceptual completeness to characterise pretoposes or coherent
categories (up to Morita equivalence).

Thank you!
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J. Rosický & G. Tendas (2023)
Towards enriched universal algebra
arXiv:2310.11972.
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