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A monoid acting on sets

Let M be a monoid. A right M-set is a set X equipped with a function
α : X ×M → X compatible with multiplication, meaning

α(x ,mn) = α(α(x ,m), n), also written x ·mn = (x ·m) · n.

The class of M-sets forms a category, with morphisms the M-equivariant maps.

Lemma

The category of right M-sets is equivalent to the category PSh(M) of presheaves
on M, where M is viewed as a one-object category.

In particular, it is a (Grothendieck) topos.
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Continuous actions

For a topology τ on M, we can consider the subcategory Cont(M, τ) of PSh(M)
on those actions (X , α) such that α is continuous.

Proposition [Rog]

Cont(M, τ) is a (full, lex) coreflective subcategory of PSh(M).
It is a Grothendieck topos.
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Subtoposes

Usually one is interested in (full, lex) reflective subcategories of toposes:
subtoposes.

These correspond to (Grothendieck) coverages on M. Hence we ask...

Q: What are the coverages on M and the corresponding subtoposes of PSh(M)?

In particular, how precisely can we understand the lattice of coverages?

This is particularly interesting to contrast with subtoposes of localic toposes,
which are extensively studied. (More on those later!)
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A sieve is a right ideal

Definition
Let C be a small category and c an object of C. A sieve over c is a collection of
morphisms with codomain c closed under precomposition.

When C is a monoid M (viewed as a one-object category), all morphisms are
composable, so a sieve is a right ideal in M: a collection I ⊆ M such that m ∈ I
and n ∈ M implies mn ∈ I .1

1Note that we allow the empty set and M as ideals!
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A coverage is a collection of right ideals

Definition

A coverage J on a small category C consists of a collection J(c) of sieves over
each object c satisfying:

(M) The maximal sieve of all morphisms with codomain c belongs to J(c).

(S) If S ∈ J(c) and f : d → c then f ∗(S) ∈ J(d).

(T) If f ∗(S ′) ∈ J(df ) for each f : df → c in S ∈ J(c), then S ′ ∈ J(c).

Here f ∗(S) := {g : e → d | f ◦ g ∈ I}.

Thus a coverage on M consists of a collection J of ideals satisfying:

(M) The ideal of all elements of M belongs to J.

(S) If I ∈ J then m∗(I ) := {n | mn ∈ I} ∈ J for each m ∈ M.

(T) If m∗(I ′) ∈ J for each m in some fixed I ∈ J, then I ′ ∈ J.

The collection of covering ideals is upward-closed.
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Extremal examples

Some examples valid for all toposes are the following.

• The trivial coverage Jtriv has only M covering.

• The degenerate coverage Jdeg has all ideals covering.

• The double-negation coverage J¬¬ has an ideal I covering if and only if for
all m ∈ M there exists n with mn ∈ I .

Lemma*
For any monoid M there is a unique maximal ideal I ∗ that does not contain the
identity.

I ∗ consists of all elements which do not have a right inverse. Thus we have a
coverage Jmin generated by M and I ∗. I is covering for Jmin iff for every sequence
m0,m1, . . . of elements of I ∗, there exists n ∈ N such that m0m1 · · ·mn ∈ I .
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Arranging the extremal examples

Lemma

Any subtopos of PSh(M) is either degenerate or dense, so contains Sh(M, J¬¬).
In the latter case, it is two-valued (equivalently, hyperconnected over Set).

M is a group if and only if J¬¬ coincides with the trivial topology. In this case,
I ∗ = ∅, so there are only two coverages:

Jtriv = J¬¬ ⊊ Jmin = Jdeg .

Otherwise, I ∗ is non-empty and Jmin ⊆ J¬¬, so the lattice of coverages looks like:

Jtriv Jmin J¬¬ Jdeg
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Little free monoids

From now on, we let M = Σ∗ for some alphabet Σ.
Small Σ are easy!

When Σ = ∅, Σ∗ is the trivial monoid (indeed, the trivial group):

PSh(∗) ≃ Set ⊋ Sh(∗, Jdeg ) ≃ 1

When Σ = {∗}, Σ∗ ∼= N, and we have Jmin = J¬¬:

PSh(N) ⊋ Sh(N, J¬¬) ≃ PSh(Z) ⊋ Sh(N, Jdeg ) ≃ 1
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Greater freedom

For Σ having at least two elements, things are more interesting.

Lemma (spoiler)

When |Σ| ≥ 2, PSh(Σ∗) has uncountably many subtoposes.

Jtriv Jmin J¬¬ Jdeg!

What tools can we use to understand the intermediate coverages?
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A fateful slice

Σ∗ acts on itself by right multiplication; this is the canonical action.
We can consider it as an object of PSh(Σ∗).

Lemma

We have PSh(Σ∗)/Σ∗ ≃ PSh(G∗
Σ), where G∗

Σ is the category of elements of the
canonical action.

G∗
Σ is also the free category on the Cayley graph for Σ∗. For Σ = {a, b}:

...
...

...
...

aaa aab aba abb baa bab bba bbb

aa ab ba bb

a b

ϵ
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L’étendue très attendue

Does this actually make the problem easier?

Definition

A topos E is an étendue if there is some X ↠ 1 with E/X localic: equivalent to
sheaves on some locale.

These were studied extensively by Rosenthal, [Ros81].

Proposition

PSh(G∗
Σ) is localic: it is equivalent to Sh(Σ≤ω), for Σ≤ω the space of finite and

infinite sequences with the pointwise convergence topology, having basic opens,

Û(v) := {w ∈ Σ≤ω | v ⊴ w}

for v ∈ Σ∗, where ⊴ means ‘is a prefix of’.

That is, PSh(Σ∗) is an étendue.

Morgan Rogers (LIPN) Grothendieck coverages on free monoids 13 / 26



Toposes of monoid actions Coverages Free monoids Étendues The lattice Fin

L’étendue très attendue

Does this actually make the problem easier?

Definition

A topos E is an étendue if there is some X ↠ 1 with E/X localic: equivalent to
sheaves on some locale.

These were studied extensively by Rosenthal, [Ros81].

Proposition

PSh(G∗
Σ) is localic: it is equivalent to Sh(Σ≤ω), for Σ≤ω the space of finite and

infinite sequences with the pointwise convergence topology, having basic opens,
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Slicing for subtoposes

Why does that matter?

Lemma
For X ↠ 1 in a topos E , pulling back induces an injective map from the
subtoposes of E to those of E/X :

F/i∗(X ) E/X

F E

π∗(i)

⌟
π

i

For any locale L, subtoposes of Sh(L) correspond to sublocales of L, so we can
leverage locale theory!
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Self-similar subtoposes

It remains to identify which sublocales of Σ≤ω are relevant.
An endomorphism m : X → X induces one of E/X , which we also call m.

Lemma
Suppose that the joint coequalizer of endomorphisms of X is 1. Then the
subtoposes of E/X of the form π∗(i) are the self-similar ones, meaning that for
each m : X → X , we have a pullback square:

F E/X

F E/X

⌟
m
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Toposes of monoid actions Coverages Free monoids Étendues The lattice Fin

Self-similar sublocales

When E/X ≃ Sh(L), m corresponds to a unique endomorphism L → L.

Theorem

Subtoposes of PSh(Σ∗) correspond to self-similar sublocales of Σ≤ω, meaning
sublocales L′ such that for each word w ∈ Σ∗, the inclusion fits into a pullback
square:

L′ Σ≤ω

L′ Σ≤ω

⌟
w ·
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Extremal cases again

It is convenient to first consider the subtoposes established earlier.

Sh(Σ≤ω) Sh(Σω) Sh(Σω)¬¬ 1

Sh(Σ∗, Jtriv ) Sh(Σ∗, Jmin) Sh(Σ∗, J¬¬) 1

PSh(Σ∗) J T |Σ|

⌟ ⌟

≃ ≃

Morgan Rogers (LIPN) Grothendieck coverages on free monoids 17 / 26
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Example: the Jónsson-Tarski topos

The minimal coverage yields ‘the’ Jonsson-Tarski topos described by Johnstone
[Joh85] (attributed to Freyd), a well-known étendue.

A right Σ∗-act X is a sheaf for Jmin if and only if the canonical map,

X →
∏
a∈Σ

X , x 7→ (x · a)a∈Σ

is an isomorphism.

This characterization is the one generalized by Leinster [Lei07].

We will actually organize subtoposes of the Jónsson-Tarski topos and hence
sublocales of ‘sequence space’ Σω, using [PP12].

Morgan Rogers (LIPN) Grothendieck coverages on free monoids 18 / 26
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Sequence spaces

When Σ = {0, 1}, Σω is Cantor space.

Lemma

Σω is a (compact) Hausdorff locale with no isolated points.

These properties guarantee a particularly nice relationship between sublocales and
subspaces:

SubLoc(L) SubTop(pt(L))pt

Loc

Max

⊣
⊣

where
Max(S) :=

⋂
s∈pt(L)\S

L\{s}.
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Self-similarity

Lemma
Under an action by local homeomorphisms, the three adjoint functors preserve
self-similarity.

A subspace of pt(Σω) being self-similar means w ∈ pt(L′) if and only if
m · w ∈ pt(L′) for each finite word m and sequence w .

Lemma
Under an action by local homeomorphisms, if L has no isolated points, L¬¬ is
self-similar in L.

Thus we can upgrade the adjunction with self-similarity and denseness as follows:

dSubMLoc(L) SubMTop(pt(L))pt

Loc∨L¬¬

Max

⊣
⊣
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Countable and uncountable

We partition pt(Σω) into equivalence classes via w ∼ m · w for finite words m.

Each class is countable and dense in Σω, so there are uncountably many classes.
The Boolean algebra B of unions of equivalence classes coincides with that of
subspaces of pt(Σω).

Proposition [PP12, Chapter VII]

Suppose that L is a spatial locale such that pt(L) is a compact Hausdorff space.
Then a countable intersection of dense open sublocales of L is spatial.

In particular, Max(S) = Loc(S) whenever S ⊆ pt(L) has countable complement.

Corollary

For each element S of B, there is a bounded lattice of self-similar sublocales of
Σω having S as its set of points. When S has countable complement, this lattice
has a unique element.

Morgan Rogers (LIPN) Grothendieck coverages on free monoids 21 / 26
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In terms of coverings

Translating back to coverings, we arrive at the following sketch.

How do we actually know that the lattices get bigger as we reduce the size of S?

An ideal belongs to the coverage J⊤(S) corresponding to Loc(S) iff every finite
word is a prefix of an element of I and each infinite word w ∈ S has a prefix in I .

An ideal belongs to the coverage J⊥(S) corresponding to Max(S) iff it is in J⊤(S)
and the number of w (outside S) which do not have a prefix in I is at most |Σ∗|.
For S uncountable and Σ countable, this is clearly a non-trivial condition
distinguishing the coverages!
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For S uncountable and Σ countable, this is clearly a non-trivial condition
distinguishing the coverages!
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Continuum hypothesis implications

The gap between the extremes corresponds to the cardinality gap |Σ∗| < |Σω|.

Example

Consider the endomorphism Σω → Σω which duplicates every element of a
sequence, so 01001011 . . . 7→ 0011000011001111 . . .
The complement I of the image is a right ideal covering in J¬¬ such that there
are |Σω| words w with no prefix in I .

Let S ∈ B. For each cardinal |Σ∗| ≤ κ ≤ |Σω\S |, we have an intermediate
coverage Jκ(S) consisting of those J⊤(S)-covering sieves such that the number of
w which do not have a prefix in I is at most κ.

The non-existence of a κ strictly between these extremes is precisely the
continuum hypothesis (CH). But we don’t normally impose CH or its negation in
topos theory!

With or without the intermediate coverages Jκ(S), for each (uncountable)
S ′ ⊆ S , we have J⊥S ⊆ J⊤(S

′) ∨ J⊥(S) ⊆ J⊤(S) between the extremes.
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Fin

Thank you! Questions?
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Back to the general case

Whatever we understand about these lattices will de transferable to general
monoids as follows:

F ′′ F ′ F

PSh(Σ∗) PSh(M) Cont(M, τ)

⌟ ⌟

Example

Any monoid with a single generator has either exactly 2 or 3 subtoposes, the
former if and only if it is a group.
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