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In model theory, a type in x is a maximal consistent set of
formulas in a variable x . Given a model N, a submodel M ⊆ N
and an element a ∈ N then the set of all formulas with parameters
from M satisfied by a is a type over M.

This concept is syntactic. In abstract elementary classes, types
over M are pairs (f , a) where f : M → N and a ∈ N. Two types
are equivalent if they can be amalgamated. Equivalence classes of
types over M are called Galois types because they correspond to
orbits of automorphisms of a monster model fixing M.

An abstract elementary class K is λ-stable if for every M of size λ
there is ≤ λ types over M.

The size |M| of M is the cardinality of the underlying set of M but
it can be characterized as the smallest cardinal λ such that M is
λ+-presentable.

Linearly ordered sets are not ω-stable because every real number
yields a type over rationals.
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λ-stability can be described without using underlying sets at all.

h : M → N makes N is universal over M if for every f : M → K
with |M| = |K | there is g : K → N such that gf = h.

K is λ-stable if it has a universal object of size λ over any object
of size λ.

Let L be a locally finitely presentable category andM a class of
monomorphisms in L such that

1. M closed under pushouts, compositions and contains all
isomorphisms,

2. coherent, i.e., gf ∈M and g ∈M then f ∈M,

3. continuous, i.e. closed under directed colimits in L2.

ThenM is cofibrantly closed, i.e., closed under pushouts,
transfinite compositions and retracts.

Let K = LM have the same objects as L whose morphisms are
precisely those ofM. It will be our typical example of an abstract
elementary class.
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There is a regular cardinal γ such that LM is λ-accessible and the
embedding LM → L preserves λ-presentable objects for every
regular cardinal λ ≥ γ.

Theorem 1. (Mazari-Armida, JR) Assume thatM is cofibrantly
generated by a set X . Let λ ≥ γ be an infinite cardinal such that

1. domains and codomains of morphisms from X are
λ-presentable,

2. for every object M of size λ, the number of morphisms from
domains of morphisms from X to M is ≤ λ.

Then LM is λ-stable.

Proof. The universal object N over M is given by a small object
argument. Our assumptions ensure that it does not increase sizes.
A morphism M → K from M is given by a transfinite composition
of pushouts of morphisms from X . The induced morphisms
Ki → Ni are given by pushouts, hence they are inM.
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IfM is cofibrantly generated then LM is stable in proper class of
cardinals.

An abstract elementary class K is superstable if it is stable on a
tail.

Consider L = SetC (C is small) andM = Mono. M is cofibrantly
generated by A→ B where B is a quotient of a hom-functor.

We say that C is weakly noetherian if every subfunctor of a
hom-functor is finitely generated.

Theorem 2. (Mazari-Armida,JR) SetCMono is superstable iff C is
weakly noetherian.

Proof. ⇐ follows from Theorem 1, ⇒ needs model theory.

It might be difficult to decide whetherM is cofibrantly generated.
In this case, one has enoughM-injectives, i.e., every object has an
M-morphism to anM-injective object. Moreover, the category of
M-injective objects is accessible. This excludes embeddings in
posets because injectives are complete lattices. On the other hand,
every poset is injective w.r.t. split monomorphisms but they are
not cofibrantly generated.
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A commuting square in LM isM-effective if the induced arrow
from the pushout in L is inM.

D

A //

33

P

??

C //

OO

B

OO

KK

This concept goes back to effective unions of subobjects (Barr
1987).

The independence category Idp(L,M) is a subcategory of (LM)2

whose objects areM-morphisms and whose morphisms are
M-effective squares.

Theorem 3. (Lieberman, JR, Vasey)M is cofibrantly generated
iff Idp(L,M) is accessible.

Moreover,M-effective squares form a stable independence in LM.
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We call a category C locally linearly preordered if for any span of

arrows Y
f←− X

g−→ Z in C there is either h : Y → Z such that
hf = g or there is h′ : Z → Y such that f = h′g .

Theorem 4. (Cox, Feigert, Kamsma, Mazari-Armida, JR) Pure
monomorphisms in SetC are cofibrantly generated iff C is locally
linearly preordered.

Our proof is based on Theorem 3 and heavily uses techniques of
Mustafin (1988) dealing with stability of acts over a monoid, i.e.,
of SetC where C has a single object.

For instance, the additive monoid N is locally linearly preordered
while the multiplicative monoid N is not. A poset P is locally
linearly preordered iff upper sets ↑ x are chains for every x ∈ P.

Corollary 1. If C is locally linearly preordered then SetC has
enough pure injectives.

Corollary 2. (Banaschewski 1974) The category G -Set of acts
over a group G has enough pure injectives.
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K is stable if it is λ-stable for some λ. Stability is implied by stable
independence and is equivalent to not having the order property.
For theories, the order property describes the existence of a
formula defining an infinite linear order on a subset of a model.

It yields another argument why embeddings in posets are not
cofibrantly generated.

It also implies that embeddings of commutative rings are not
cofibrantly generated. Indeed, real numbers form a linearly ordered
commutative ring and ≤ can be defined: for instance, 0 < r iff
r = s2 for some s.

The same argument works for fields but not for algebraically closed
ones. Here, algebraic independence is a stable independence.
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Recall that
A // D

C

OO

// B

OO

is algebraically independent if for every finite tuple ā in A, the
transcendence degree of ā over C is the same as the transcendence
degree of ā over B.

This is equivalent to embedding-effectivity in commutative rings:
the induced arrow P → D from the pushout P in commutative
rings is an embedding.

This indicates thatM-effectivity is important in a more general
situation where A is a finitely accessible full subcategory of a
locally finitely presentable category L and AM = LM ∩ A.



Recall that
A // D

C

OO

// B

OO

is algebraically independent if for every finite tuple ā in A, the
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M. Lieberman, J. Rosický and S. Vasey, Cellular categories and
stable independence, The Journal of Symbolic Logic 88,
(2023).


