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An overview

How to categorify topological spaces?

lattice of opens · interior comonad · relational β-modules
topoi · ionads (Garner) · virtual ultracategories

Relational β-modules = notion equivalent to topological spaces
axiomatizing the convergence of ultrafilters instead of opens subsets.

An ultrafilter µ converges to a point a if all neighborhoods of a are µ-large
we write µ ≽ a.

For µ = δb principal, we recover the specialization order: δb ≽ a iff b ≥ a

.

The ultraconvergence relation is an extension of the specialization order,
that is strong enough to recover the topology.
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An overview

A topological space is compact Hausdorff iff all ultrafilters have exactly
one limit point ⇝ compact Hausdorff spaces = β-algebras.

Lurie 2018: β-algebras categorify into ultracategories.

Compact Hausdorff = β-alg · rel β-mod = Topological spaces
ultracategories · virtual ultracategories

Makkai 1987: conceptual completeness

A coherent topos (= coherent FO-theory)
can be recovered from its ultracategory of points (= models).

We extend this result: a topos with enough points can be recovered
from its virtual ultracategory of points.
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1) Ultracategories

2) Virtual ultracategories

3) The proof
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The usual Stone duality

Classical propositional theories = Boolean Algebras.

Mod(A) := BoolAlg(A, 2) has a topology: the Stone topology.

A can be recovered as the clopen subsets of its space of models:

A ∼= TopSp(Mod(A), 2).

In particular, Mod : BoolAlgop ↪→ TopSp is fully faithful.

The Stone topology on Mod(A) arises from the µ ∈ BoolAlg(2S , 2)

2S

A

2

µ

(vs )

lims:µ vs

Mod(A)S −→ Mod(A)
(vs)s:S 7−→ lims:µ vs

β(S) := BoolAlg(2S , 2) = {ultrafilters on S}

The lims:µ(−) determine the topology on Mod(A) by ultraconvergence.
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Categorifying to ultracategories

Ultracategories arise by categorifying:

propositional logic 2 boolean algebras⇝ ⇝ ⇝

coherent first-order logic Set small pretopoi

We want some “categorified Stone topology” to make

Mod : Pretopop −→ CAT + ??
T 7−→ Pretop(T,Set) with the ??-structure

fully faithful.

⇝ the ultrastructure on Mod(T) will play the role of the categorified
Stone topology.

The Stone topology on Mod(A) comes from β(S) = BoolAlg(2S , 2)
⇝ we should look at Pretop(SetS ,Set).
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Ultraproducts

 Loś’s theorem: the ultraproduct functor∫
µ

: SetS −→ Set

(As)s:S 7−→
∫
s:µ

As := colimµ(S0)=1

∏
s:S0

As

is a functor of pretopoi, i.e.,
∫
µ
∈ Pretop(SetS ,Set).

SetS

T

Set

∫
µ

(Ms )

∫
s:µ

Ms

induces an operation
∫
µ

: Mod(T)S −→ Mod(T).

ultraproducts = “categorified ultraconverge” on Mod(T).

Actually, ultraproducts are enough!

Pretop(SetS ,Set) ≃ Ind(UFop

SetS
) Joyal 1971

i.e. a pretopos functor SetS → Set is a filtered colimit of ultraproducts.
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Ultracategories

Mod(A) ∈ β-algebras = compact Hausdorff spaces

Mod(T) ∈ β-pseudoalgebras = ultracategories

An ultracategory is a category M together with:

- ultraproduct functors
∫
µ
: M µ → M (M µ := colimµ(S0)=1 M S0)

- functorial reindexing
f # :

∫
s:µ

As →
∫
t:ν

Af (t), for f : ν → µ

M µ M ν

M

f ∗

∫
µ

∫
ν

f#

- coherent unitor and associators

commuting with the reindexings
∫
⋆

∼→ Id ,
∫∑

s:µ νs

∼→
∫
s:µ

∫
t:νs

e.g. Set, Mod(T), Compact Hausdorff spaces (= β-algebras).
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Conceptual completeness

Makkai 1987: T can be recovered from its ultracategory of models:

ev : T
∼−→ Ult(Mod(T),Set) is an equivalence.

⇝ conceptual completeness for coherent logic:

Mod : Pretopop ↪→ Ult is fully faithful.

Whereas the category Mod(T) ∈ CAT is not enough to recover T,
the ultracategory of models Mod(T) ∈ Ult is enough to recover T!

How to understand this result?

a model theoritical answer:
ultraproducts are fundamental in the model theory of FO-logic.

a categorical answer: Pretop(SetS ,Set) ≃ Ind(UFop

SetS
)

ultraproducts are “all” the set operations that preserve FO-logic.

a topological answer:
ultraproducts ∼ categorified ultraconvergence.
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Reconstruction theorem

Lurie 2018: extends this result to coherent topoi.

The functor

Pretopop Sh−→ CohTop

is faithful and conservative, but not full.

coherent morphisms ⊂ geometric morphisms

Accordingly, Lurie introduces a more flexible notion of ultrafunctors.

ultrafunctors (Ult) ⊂ left-ultrafunctors (UltL)

Lurie’s reconstruction theorem:

A coherent topos E can be recovered from its ultracategory of points

ev : E
∼−→ UltL(pt(E ),Set) is an equivalence

⇝ reconstruction theorem for coherent topoi:

pt : CohTop ↪→ UltL is fully faithful.
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Towards virtual ultracategories

Lurie 2018:

ev : E
∼→ UltL(pt(E ),Set) is an equivalence for E coherent topos.

He also shows:
ev : E

∼→ UltL(pt(E ),Set) is an equivalence for E = Sh(compact Hausdorff).

None of these results contain the other!

We will generalize these both results even further.

We can recover a topos with enough points (= theory)
from the virtual ultracategory structure over its points (= models).

⇝ this is a reconstruction theorem for topoi with enough points:

pt : GTopwep ↪→ vUlt is fully faithful.
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E = sheaves over a compact Hausdorff space

X compact Hausdorff ⇝ pt(X ) the ultracategory of its points.

Sh(X )
∼−→ UltL(pt(X ),Set)

E 7−→

{
x 7→ Ex

+ coherent maps σ : Ea →
∫
x :µ

Ex , for a = limµ.

A sheaf can be reconstructed from its stalks + some data (the σ’s).

We generalize from X compact Hausdorff to T topological space.

We still have the construction,

E ∈ Sh(T ) 7−→

{
x 7→ Ex

+ coherent maps σa,µ : Ea →
∫
x :µ

Ex , for a ≼ µ.

Can we reconstruct the sheaf E from this data?
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E = sheaves over a topological space

E ∈ Sh(T )
?∼7−→

{
x 7→ Ex

+ coherent maps σa,µ : Ea →
∫
x :µ

Ex , for a ≼ µ.

For the reverse construction, the étale space is given by:

E :=
⊔

x :T Ex , opens := subsets stable by the σ’s.

To show it is étale, we use the following characterization.

Lemma (S.) : For p : E → T continuous,

p is étale iff
∀ µ ≽ p(e), ∃! ν ≽ e, p∗(ν) = µ

and this ν is isomorphic to µ via p.
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Categorifying ultraconvergence

a ≼ (bs)s:µ means ∀U open , U ∋ a → (∀s : µ, U ∋ bs)

For a, (bs)s:µ points of E topos, we denote by α : a (bs)s:µ for

SetS

E

Set

∫
µ

(b∗
s )

a∗

α
α ∈ NatE :E (Ea,

∫
s:µ

Ebs )

it is a proof-relevant version of “a ≼ (bs)s:µ”.

a (bs)s:µ is an ultraarrow wih codomain an ultrafamily of objects,

these ultraarrows form a generalized multicategorical structure on the
points of E that we denote pt(E ) ∈ vUlt.

⇝ the notion of virtual ultracategory.

(generalized multicategories are introduced in Cruttwell and Shulman 2010)
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Virtual ultracategories

A virtual ultracategory is a generalized multicategory with arrows
having the shape a (bs)s:µ.

Explicitly:

- a class of objects X ,

- a functor Hom : X × β(X ) → Set (+ identity, composition...)

where β(X ) := UF
op

SetX
is the category of ultrafamilies in X .

(in particular ida : a (a)⋆ induces an arrow a (a)µ)

The virtual ultracategory of points of a topos is defined as above

pt : GTop −→ vUlt

with Ob(pt(E )) := pt(E ) and Hom(a, (bs)s:µ) := NatE :E (Ea,
∫
s:µ

Ebs ).

Ultracategories are recovered as the representable virtual ultracategories.
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Statement of the theorem

Theorem (S.): Let E be a topos with enough points, the functor

ev : E
∼−→ vUlt(pt(E ),Set) is an equivalence.

Some particular cases:

- for E coherent:
amounts to Lurie’s reconstruction theorem.

- for E = Sh(topological space):
amounts to the above lemma characterizing étale maps.

- for E preasheaf topos:
follows from Yoneda.

This theorem generalizes, and gives a new proof, to Lurie’s result.
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Strategy

We already proved the case E = Sh(topological space); to extend from
the topological case to the general case, we use representation of topoi
by topological groupoids.

Butz and Moerdijk 1998: any topos with enough points E can be
represented by a topological groupoid (T•),

i.e. there is a is a universal descent cocone:

Sh(T1 ×T0 T1) Sh(T1) Sh(T0) Em

t

s

u

π

and so, E = Sheq(T•) the topos of equivarient sheaves over (T•).
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A problem!

Sh(T1 ×T0 T1) Sh(T1) Sh(T0) E GTop

π

⇝

pt

pt(T1) ×pt(T0) pt(T1) pt(T1) pt(T0) pt(E )↾X vUlt

pt(π)

(X is the image of the points of T0 by π)

E ≃ Coconedesc(Sh(T•); Set[O])

≃ Coconedesc(pt(T•); Set)
??≃ vUlt(pt(E )↾X , Set)

≃ Sheq(T•)

≃ Sheq(pt(T•))

E is the colimit of (Sh(T•)),

we want pt(E↾X ) to be colimit of (pt(T•))

.

i.e. we want pt(π) to be effective descent.

Problem: pt : GTop → vUlt does not preserve colimits (right adjoint!)
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A solution: ample indexings

Solution: it works for a well-chosen groupoid!

1) We prove a proposition ensuring a functor of virtual ultracategories to be
effective descent.

Proposition: A functor of v-ultracats F : X → Y surjective on objects and such

that any F (x) (bs)s:µ can be lift to some x (ys)s:µ is effective descent.

2) We consider the groupoid (T amp
• ) of small models with an ample

indexing, so that pt(π) satisfies the property of 1.

Definition: An indexing α : κ ⇀⇀ M is ample if |κ \ dom(α)| = |κ|.

κ

Mp

∫
s:µ

Mqs

α
(βs )(βs )

α amply ⇝ we can extend to surjective (βs).

3) A theorem of Wrigley 2023 ensures that the ample condition is not
too strong, i.e., that (T amp

• ) represents E .
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The duality

We have shown:

ev : E
∼→ vUlt(pt(E )↾X ,Set) is an equivalence for X ⊆ pt(E ) small separating.

We can generalize:

ev : E
∼→ vUlt(pt(E ),Set) is an equivalence for any E with enough points.

Proof: note that pt(E ) ≃ colimA pt(E )↾A, where A range over small separating

sets of points of E , to reduce to the above case.

We get a pseudoidempotent 2-adjunction

GTop vUltbounded

pt:=GTop(Set,−)

vUlt(−,Set)=:sh

⊢

inducing a fully faithful embedding pt : GTopwep ↪→ vUlt.
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Summary

We introduced the notion of virtual ultracategories that categorifies
relational β-modules.

We categorified the equivalence between topological spaces and relational
β-modules to a pseudoidempotent 2-adjunction.

GTop vUltbounded

pt:=GTop(Set,−)

vUlt(−,Set)=:sh

⊢

This adjunction induces a fully faithful embedding pt : GTopwep ↪→ vUlt
extending Lurie’s reconstruction theorem to all topoi with enough points.

Virtual ultracategories fit in the framework of generalized multicategories
of Cruttwell and Shulman 2010, and ultracategories are recovered as the
representable ones.
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Proof of the 0-dimensional case

We prove the non-trivial implication,

p is étale ⇐
∀ µ ≽ p(e), ∃! ν ≽ e, p∗(ν) = µ

and this ν is isomorphic to µ via p.

- p∗ is étale
- the hypothesis gives a lift σ
- the topological fact (⋆) gives V
- we pullback along δ

not continuous!
- δ∗T ⊆ T is not open

and ξ not continuous:
we restrict to W ⊆ V .

{ν|ν ∼= p∗(ν)}

{µ|µ ≽ p(e)} β(T ) E

V T

δ∗V

étp∗

σ

δ

⌟

open δ

⌟

ξ

δ

W := {w ∈ δ∗V | ∀µ ≽ w (ξ is defined on µ and ξ∗(µ) ≽ ξ(w))}

(⋆) a section on a compact of a Hausdorff space can be extended to an open.
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