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· Looking at DblCat = Cat (Cat

could ask thatF gives equivalences of categories
Fo : /o -> /Bo

,
Fi : /A -+ IB

,

· Recall : A 2Cat no there is a model str
. on Ut with

weak equins = equirs in A [Lack].

Apply to A = DbICate (double cats/double functors/hor · nat . tr)

F : /A+ 1B weak equiv)JG : /B-A + hor
, nat .

iss

FGEid
,
GFEid .
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· Recall : T : A+A 2-monad we there is a model str .

on T-algebras with weak equirs = underlying
morphism is an equir . in A [Lack].

Apply to DbICat = alg's for a 2-monad over Cat (Grayh

All these studied by Firre = Paoli-Pronk [FPP)
·

Super interesting-but not quite what we're looking for
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VISHOT : new there is a lot more structure

We can use.
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ASSUMPTION1 Any good notion of equivalence
will be part of a model structure.

ASUMPTION2 These should be the

"canonical trivial fibrations",

i

. e. the canonical equivalences should be

weak equivalences in a model structure

with this class of trivial fibrations .
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Now we can use homological tools to study all model
structures on DbICat w/ these canonical trivial fibrations !

NOTE : they all have the same cofibrations - easy to

find a generating set :

in iz
0-... -> 1 - a

· .
Is

, i

T i

Thm[MSVS Every model structure on MbICat with
-

the canonical trivial fibrations is left proper.
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A B A = A
such ↓IMA=u that

f

De A gregarious equivalence in /A is a companion
pair (f, u ,

4
,
4) such that :

· f is a horizontal equir
· u is a vertical equiv
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T
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Mm [Campbell ,
MSVS There is a model str

.
en DbICat with :

· weak equivalences = gregarious doble equins
· trivial fibrations = canonical trivial fibrations .
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the gregarious model structure.

In other words ... the gregarious doble equivalences are the
minimal class of equivalences compatible w/ the canonical
trivial fibration

,
and any others are obtained by localizing

these
.

COINSV) Any other such model structure has the gregarious
double equins as the weak equins between fibrant objects.
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,

Borsfield localizations can be tricky to understand.

FACT
· trivialfibrations completely determinere
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1. Pick your desired fibrant objects.
2. Find a set J of cofibrations w/cofibrant domain s

.

t.

* filrant> X- * has RLP with respect to J

3. Check : every gregarious fibration between fibrant obj.
has RLP with respect to J.

Thm[MSvS Any J as above gives a model str .
on DblCat

w/ your fibrant obj ,
and with

weak equivs . between fibrant obj = gregarious double equirs.

ThmIMSuS Any combinatorial model str . on Dblcat w/ the
canonical trivial fibrations arises from this recipe.
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has a equivalence invariance of
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companion & a conjoint formal category theory

DbICatwhi every hor . equir .

has right Quillen nerve [Moser]
,

[MSV2]a companion N : DblCatwhi -> Dbl (0
,
1)Cat

Db/Cattrigad
double gropoids + homology theory of
every her .

& ver . mer.

2-gropeds
has a companion



-
->
-

- I↓ &
4- 41-

2

↑ right Quillen embedding
->

left Quillen embedding

↑ left & right Quillen equivalence
- right Quillen equivalence

↑
-
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