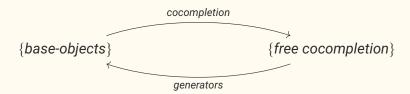
Mnemetic Lax Idempotent Monads and Compactness

Quentin Schroeder (joint work with Jonas Frey)

LIPN Sorbonne Paris Nord, France

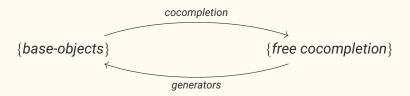
Motivation

We want to understand equivalences of the shape:



Motivation

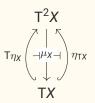
We want to understand equivalences of the shape:



This is for example the shape of Gabriel-Ulmer Duality

Basic Notions of Lax-Idempotent monads

Definition. A pseudo 2-monad $(T : \mathcal{K} \to \mathcal{K}, \mu, \eta)$ on a 2-category \mathcal{K} is lax-idempotent (or KZ) when we have that for every object $X \in \mathcal{K}$:



Volker Zöberlein. "Doctrines on 2-Categories.". In: Mathematische Zeitschrift 148 (1976), pp. 267–280. URL: http://eudml.org/doc/172368

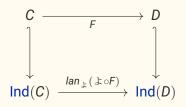
^oAnders Kock. **"Monads for which structures are adjoint to units".** In: J. Pure Appl. Algebra 104.1 (Oct. 1995), pp. 41–59

Examples of Lax-Idempotent Monads on Categories

Proposition. There is a l.i. monad on Cat (locally small) given by $C \mapsto \operatorname{Ind}(C) \subset \operatorname{Set}^{C^{op}}$ spanned by small filtered colimits of representables.

The unit is the Yoneda embedding $\&: C \to Ind(C)$.

On morphisms $F: C \rightarrow D$, Ind(F) is a left kan extension:



The multiplication $\mu_C : \operatorname{Ind}(\operatorname{Ind}(C)) \to \operatorname{Ind}(C)$ takes $P \in \operatorname{Ind}(\operatorname{Ind}(C))$ to:

$$colim(\int P \to Ind(C))$$

Examples of Lax-Idempotent Monads on Categories

The same recipe works for other classes of colimits on Cat:

- 1. Finite Colimits
- 2. Small Coproducts aka the Families Construction
- 3. Small Filtered Colimits aka Ind Completion Ind
- 4. Small Colimits aka Small Presheaf Construction P

And also on Pos:

- 1. Directed Joins aka Ideal Completion Idl
- 2. Arbitrary Joins aka Down-Set Monad \mathcal{D}

¹Anders Kock. **"Monads for which structures are adjoint to units".** In: *J. Pure Appl. Algebra* 104.1 (Oct. 1995), pp. 41–59, Volker Zöberlein. **"Doctrines on 2-Categories.".** In: *Mathematische Zeitschrift* 148 (1976), pp. 267–280. URL: http://eudml.org/doc/172368.

Proposition.¹ The (pseudo-)algebras of a lax-idempotent monad $(T: \mathcal{K} \to \mathcal{K}, \mu, \eta)$ are pairs $(X, \alpha: TX \to X)$ such that $\alpha \dashv \eta_X$ and $\alpha \eta_X \cong id$.

• For \mathcal{P} : cocomplete categories

¹Anders Kock. **"Monads for which structures are adjoint to units".** In: *J. Pure Appl. Algebra* 104.1 (Oct. 1995), pp. 41–59, Volker Zöberlein. **"Doctrines on 2-Categories.".** In: *Mathematische Zeitschrift* 148 (1976), pp. 267–280. URL: http://eudml.org/doc/172368.

- For \mathcal{P} : cocomplete categories
- For Ind: categories admitting all filtered colimits

¹Anders Kock. **"Monads for which structures are adjoint to units".** In: *J. Pure Appl. Algebra* 104.1 (Oct. 1995), pp. 41–59, Volker Zöberlein. **"Doctrines on 2-Categories.".** In: *Mathematische Zeitschrift* 148 (1976), pp. 267–280. URL: http://eudml.org/doc/172368.

- For \mathcal{P} : cocomplete categories
- For Ind: categories admitting all filtered colimits
- For D: complete join-semi lattices (Sup-Lattices)

¹Anders Kock. "Monads for which structures are adjoint to units". In: J. Pure Appl. Algebra 104.1 (Oct. 1995), pp. 41–59, Volker Zöberlein. "Doctrines on 2-Categories.". In: Mathematische Zeitschrift 148 (1976), pp. 267–280. URL: http://eudml.org/doc/172368.

- For \mathcal{P} : cocomplete categories
- For Ind: categories admitting all filtered colimits
- For D: complete join-semi lattices (Sup-Lattices)
- For Idl: posets admitting all directed joins (DCPOs)

¹Anders Kock. "Monads for which structures are adjoint to units". In: J. Pure Appl. Algebra 104.1 (Oct. 1995), pp. 41–59, Volker Zöberlein. "Doctrines on 2-Categories.". In: Mathematische Zeitschrift 148 (1976), pp. 267–280. URL: http://eudml.org/doc/172368.

Proposition.¹ The (pseudo-)algebras of a lax-idempotent monad $(T: \mathcal{K} \to \mathcal{K}, \mu, \eta)$ are pairs $(X, \alpha: TX \to X)$ such that $\alpha \dashv \eta_X$ and $\alpha \eta_X \cong id$.

- For \mathcal{P} : cocomplete categories
- For Ind: categories admitting all filtered colimits
- For D: complete join-semi lattices (Sup-Lattices)
- For Idl: posets admitting all directed joins (DCPOs)

For I.i. monads being an algebra is a property!

¹Anders Kock. "Monads for which structures are adjoint to units". In: J. Pure Appl. Algebra 104.1 (Oct. 1995), pp. 41–59, Volker Zöberlein. "Doctrines on 2-Categories.". In: Mathematische Zeitschrift 148 (1976), pp. 267–280. URL: http://eudml.org/doc/172368.

Forms of compactness

For a Sup-Lattice X, $x \in X$ is completely join prime if for any $S \subseteq X$:

$$x\leqslant\bigvee S\Leftrightarrow\exists s\in S:x\leqslant s$$

When S is downwards closed we can restate this as:

$$\mathit{X} \leqslant \bigvee \mathit{S} \Leftrightarrow \downarrow \mathit{X} \subseteq \mathit{S}$$

Forms of compactness

For a Sup-Lattice X, $x \in X$ is completely join prime if for any $S \subseteq X$:

$$x\leqslant\bigvee S\Leftrightarrow\exists s\in S:x\leqslant s$$

When S is downwards closed we can restate this as:

$$\mathbf{X} \leqslant \alpha \mathbf{S} \Leftrightarrow \eta_{\mathbf{X}} \mathbf{X} \subseteq \mathbf{S}$$

Forms of compactness

For a Sup-Lattice X, $x \in X$ is completely join prime if for any $S \subseteq X$:

$$x \leqslant \bigvee S \Leftrightarrow \exists s \in S : x \leqslant s$$

When S is downwards closed we can restate this as:

$$\mathbf{X} \leqslant \alpha \mathbf{S} \Leftrightarrow \eta_{\mathbf{X}} \mathbf{X} \subseteq \mathbf{S}$$

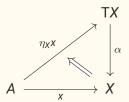
So the "compact" elements with respect to the down-set monad are the ones where the unit η_X behaves like a left adjoint to the algebra α .

General compactness

Definition. A generalized element $x : A \to X$ for an algebra (X, α) is T-compact if we have a natural bijection:

$$\frac{\eta_X X \Rightarrow U}{X \Rightarrow \alpha U}$$

stable under precomposition. Formally this means that:



is an absolute left lifting diagram, where the 2-cell is part of the iso $\alpha\eta_X \cong id$. Note, this is best stated via pointwise left lifts!

General compactness on Categories

• For $\mathfrak X$ cocomplete, $x:\mathbf 1\to\mathfrak X$ is $\mathcal P$ -compact iff it is atomic in the sense that

$$hom(x, -) : \mathfrak{X} \to Set$$

preserves small colimits.

• For \mathfrak{X} Ind-cocomplete, $x: \mathbf{1} \to \mathfrak{X}$ is Ind-compact when it is finitely presentable, i.e.

$$hom(x, -) : \mathfrak{X} \to Set$$

preserves all filtered colimits.

Continuous Algebras

A continuous algebra for a l.i. monad T is an algebra (X, α) with a further left adjoint:

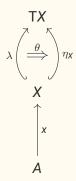
Morphisms are the algebra morphisms commuting with the left adjoint. Continuous algebras form a non-full sub-2-category T-*Cont* of T-*Alg*.

Examples.

- 1. For \mathcal{D} : completely distributive lattices
- 2. For Idl: continuous domains
- 3. For Ind: continuous categories

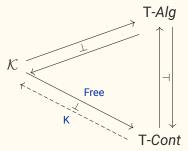
Continuous Algebras

Lemma. For a continuous algebra (X, α) , a generalized element $x : A \to X$ is compact iff we have that the following induced 2-cell $\theta x : \lambda x \Rightarrow \eta_X x$ is invertible.



Theorem

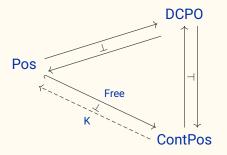
Theorem. (Frey, S.) If the 2-category $\mathcal K$ has inverters of adjoint cylinders, then we have the following adjunction with commuting left adjoints



where K takes any continuous algebra to the inverter of the induced cell $\theta: \lambda \Rightarrow \eta_{\Delta}$.

Example

In the case of IdI, we get:



Moreover Free : T-Cont $\rightarrow \mathcal{K}$ is full and faithful (local equivalence).

Example

Proposition. For T = OP, IdI, \mathcal{D} , the induced functor Free : T- $Cont \to \mathcal{K}$ is full and faithful.

Question. Is it always the case?

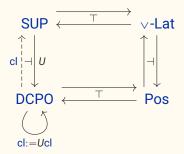
Partial Answer. No: the atomic objects of $\mathcal{P}(X)$ only recover the Cauchy completion of X.

Wish? Maybe the adjunction is always idempotent?

Counter Example

Counter-Example. The adjunction between Free \dashv K : T-Cont \rightarrow K need not be idempotent.

Consider the square of adjunctions:



Unlabeled = free-forgetful \rightarrow all monadic **Prop.** cl \dashv *U* exists and is lax idempotent.

Counter Example

Prop. (Frey) The lax-idempotent monad cl : DCPO \rightarrow DCPO induces a non-idempotent adjunction:

Free
$$\dashv$$
 K : cl-Cont \rightarrow DCPO

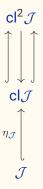
Consider the DCPO \mathcal{J}^2 with underlying set $\mathbb{N} \times \mathbb{N}^{\infty}$ such that:

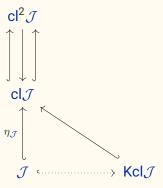
$$(m,n) \leqslant (m',n') \text{ iff } m = m' \text{ and } n \leqslant n' (\leqslant \infty)$$

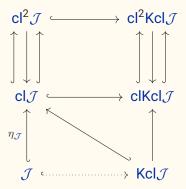
or $n' = \infty \text{ and } n \leqslant m'$

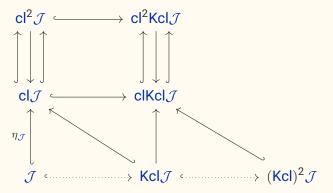
²Peter T. Johnstone. **"Scott is not always sober".** In: *Continuous Lattices*. Berlin, Germany, Oct. 2006, pp. 282–283. DOI: 10.1007/BFb0089911.

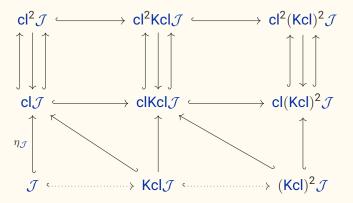
Prop. $\mathcal J$ is cl-compact in $\operatorname{cl} \mathcal J$, thus $\operatorname{clKcl} \mathcal J \neq \operatorname{cl} \mathcal J$, giving us an iteration:

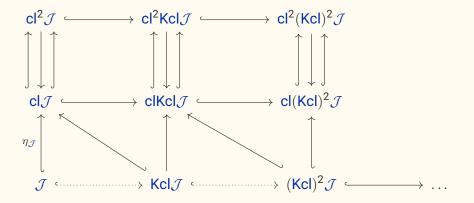












Mnemetic Monads

Definition. T is mnemetic iff the unit of the monad is the inverter of the 2-cell depicted:

$$\begin{array}{c}
\mathsf{T}^2 X \\
\mathsf{T}\eta_X \Big) & \xrightarrow{\theta} \Big) \eta_{\mathsf{T}X} \\
\mathsf{T}X \\
\eta_X \Big) \\
X
\end{array}$$

Idea. Thus Mnemetic Monads are those where the the unit of the monad already contains all the generators.

Mnemetic Monads

Prop. Given a 2-category \mathcal{K} with inverters of adjoint cylinders with a l.i. monad $T : \mathcal{K} \to \mathcal{K}$, we have that Free $\dashv K$ is:

- 1. a coreflection iff T is mnemetic
- 2. idempotent iff T is pre-mnemetic
- 3. non-idempotent otherwise

Conclusions

What we saw:

- · An abstract criterion for compactness
- A way of using it to extract theorems about free algebras

Ongoing work:

- Understand the free representable multicategory I.i. monad on multicategories through this lens
- Way-Below arrows and Continuous Algebras
- Absolute left lifts work best when viewed as pointwise left lifts:
 2-cat → equipments