

Constructive Small Object Argument

Paul Seip

Introduction

The Main

Theorem

Proof Strategy

Conclusion

A Constructive Small Object Argument

Paul Seip

Joint work with: Benno van den Berg, John Bourke

International Category Theory Conference CT2025

18 July 2025

Weak Factorisation Systems

Constructive Small Object Argument

Paul Seip

Introduction

The Main Theorem

Proof

Conclusion

 $(\mathcal{L},\mathcal{R})$ is a weak factorisation system on a category $\mathcal C$ if

ullet Every map $f \in \mathcal{C}$ factors as

$$X \xrightarrow{Lf} Ef \xrightarrow{Rf} Y,$$

• (...)

Examples

A Constructive Small Object Argument

Paul Seip

Introduction

The Main

Proof Strategy

Conclusio

- (surjections, injections) is a WFS on the category of sets,
- (injections, surjections) is also a WFS on the category of sets,

Equivalent to the axiom of choice!

- (cofibrations, homotopy equivalences) is a WFS on the category of topological spaces,
- (surjections, injections) is a WFS on the category of groups.

And many more!

Algebraic Weak Factorisation Systems

Constructive Small Object Argument

Paul Seip

Introduction

The Mair

Theorem

Strategy

Conclusio

We can make the notion of a weak factorisation system more 'algebraic', the result is called an *algebraic weak factorisation* system.

It consists of a pair of a comonad and a monad (L,R), its left class is L-**Coalg** and its right class is R-**Alg**.

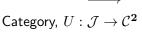
This gives: explicit lifts, explicit factorisations, ...

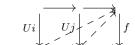
Lifting Structures

Constructive Small Object Argument Paul Seip

Introduction

• Set, $\mathcal{J} \subseteq \mathcal{C}^2$





Double category, $U: \mathbb{J} \to \mathbb{S}\mathbf{q}(\mathcal{C})$

(horizontal condition)

(vertical condition)

Small Object Argument

A Constructive Small Object Argument

Paul Seip

Introduction

The Mair

Proof Strategy

Conclusio

- [Quillen (1967)], small object argument for sets;
- [Garner (2009)], algebraic small object argument for cofibrant generation by a small category;
- [Bourke & Garner (2016)], algebraic small object argument for cofibrant generation by a small double category.

A constructive small object argument . . . ?

Constructive Models of Homotopy Type Theory

A Constructive Small Object Argument

Paul Seip

Introductio

Motivation

The Mair

Proof

- Voevodsky's construction of a model of homotopy type theory in simplicial sets.
- Problem: BCP-obstruction (Bezem, Coquand & Parmann), constructively unprovable that this is a model of HoTT.
- Solution 1: definition of a *uniform Kan fibration* in cubical sets [Coquand et al. (2015)].
- Solution 2: definition of an *effective Kan fibration* in simplicial sets [van den Berg & Faber (2022)].
- Important step: a proof that these are the right class in an algebraic weak factorisation system.
- We need a constructive small object argument!

Finitary Small Object Argument

Constructive Small Object Argument

Paul Seip

Introduction

......

The Main

Proof Strategy

_ . .

Theorem 1 ([Seip (2024), Theorem 6])

Let $\mathcal C$ be a locally small, cocomplete category, and let $U:\mathbb J\to \mathbb S\mathbf q(\mathcal C)$ be a double functor subject to the following conditions

- J is small,
- **2** the object Uj is ω -compact for every object $j \in \mathcal{J}_0$.

Then the AWFS cofibrantly generated by U exists and is finitary.

Constructing a Left Adjoint

Constructive Small Object Argument

Paul Seip

Introduction

The Main Theorem

Proof Strategy

Conclusion

Proposition ([Bourke (2023), Proposition 13])

 $U: \mathbb{J} \to \mathbb{S}\mathbf{q}(\mathcal{C})$ cofibrantly generates an AWFS (L,R) if and only if $V_1: \mathbb{J}_1^{\pitchfork} \to \mathcal{C}^2$ has a left adjoint.

Goal: to give an explicit construction of this adjoint

Proof Strategy

Constructive Small Object Argument

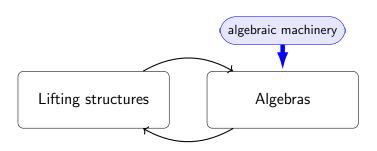
Paul Sein

Introduction

.....

The Main

Proof Strategy



Definition of T

Constructive Small Object Argument

Paul Seip

Introduction

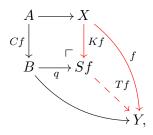
. . . .

The Main

Proof Strategy

Conclusion

Obtain a 'one-step factorisation' $f = Tf \circ Kf \colon X \to Sf \to Y$



with

$$Cf \cong \int_{-\infty}^{j \in \mathcal{J}} \mathcal{C}^2(Uj, f) \cdot Uj.$$

One-step Lifting Structures

Constructive Small Object Argument

Paul Seip

Introductio

.

The Main

Theorem

Proof Strategy

Conclusion

A one-step lifting structure from f to g consists of a square $(u,v):f\to g$ equipped with the following lifting operation

$$\begin{array}{ccc}
A_{j} \xrightarrow{\sigma_{0}} X \xrightarrow{u} C \\
U_{j} \downarrow & \phi_{j}(\sigma) \downarrow f & \downarrow g \\
B_{j} \xrightarrow{\sigma_{1}} Y \xrightarrow{\sigma_{1}} D
\end{array} \tag{1}$$

which moreover satisfies the horizontal condition.

Universal Property

Constructive Small Object Argument

Paul Seip

Introductio

.

The Main

Theorem

Proof Strategy

Conclusion

This induces a presheaf

$$J$$
-1-Step: $(\mathcal{C}^2)^{op} \times \mathcal{C}^2 \to \operatorname{Set}$

Theorem 2

We have an isomorphism $\phi_{f,g} \colon \mathcal{C}^{\mathbf{2}}(Tf,g) \cong J\text{-1-Step}(f,g)$ natural in each variable.

Universal Property

Constructive Small Object Argument

Paul Seip

Introduction

.....

The Main

Proof

Strategy

Conclusion

Corollary 1

The one-step lifting structure $(Kf,1):f\to Tf$ is initial in the category of one-step lifting structures for f against $\mathcal J$.

$$A_{j} \xrightarrow{X} X \xrightarrow{Kf} Sf \xrightarrow{\exists} E$$

$$U_{j} \downarrow \theta_{j}(\sigma) \downarrow f \xrightarrow{f} f \downarrow g$$

$$B_{j} \xrightarrow{=} Y \xrightarrow{f} Y \xrightarrow{\exists} F$$

Generation by a Category

Constructive Small Object Argument

Paul Seip

Introduction

.....

The Mair

Theorem

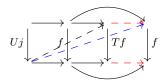
Proof Strategy

Conclusion

Proposition 1

We have an isomorphism T- $\mathbf{Alg} \cong \mathcal{J}^{\pitchfork}$ over \mathcal{C}^2 .

Use the universal property of T:

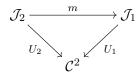


Generation by a Double Category

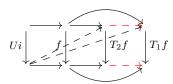
Constructive Small Object Argument

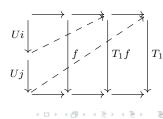
Paul Seip

Proof Strategy



 $\mathcal{J}_1^{\pitchfork} \cong T_1\text{-}\mathbf{Alg}$ and $\mathcal{J}_2^{\pitchfork} \cong T_2\text{-}\mathbf{Alg}$ by Proposition 1. Using the universal property of T, we have two induced natural transformation $\gamma: T_2 \Rightarrow T_1$ and $\lambda: T_2 \Rightarrow T_1T_1$.





Special Algebras

Constructive Small Object Argument

Paul Seip

Introductio

The Mair

Proof

Strategy

Conclusion

Call a T_1 -algebra $\beta:Tf\to f$ special if the following diagram commutes

$$T_{2}f \xrightarrow{\gamma_{f}} T_{1}f$$

$$\downarrow_{\lambda_{f}} \downarrow_{\beta}$$

$$T_{1}T_{1}f \xrightarrow[T_{1}\beta]{} T_{1}f \xrightarrow{\beta} f.$$

This gives a full subcategory T_1 -Alg_s of T_1 -Alg.

Generation by a Double Category

Constructive Small Object Argument

Paul Seip

Introduction

.

The Main

Proof

Strategy

Conclusion

Proposition 2

We have an isomorphism T_1 -Alg_s $\cong (\mathbb{J}^{\pitchfork})_1$ over \mathcal{C}^2 .

We already know that T_1 - $\mathbf{Alg} \cong \mathcal{J}_1^{\pitchfork}$. Furthermore, the lifting structures satisfying the vertical condition are precisely the ones whose induced T_1 -algebra is special.

vertical condition

~~→

special algebra

Constructing the Left Adjoint

Constructive Small Object Argument

Paul Seip

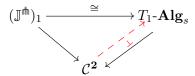
Introduction

.....

The Mair

Proof Strategy

Conclusio



Proposition 3

If T_1 preserves colimits of n-chains for some limit ordinal n, then the free special algebra exists.

The proof uses algebraic chains.

Small Object Argument for Double Categories

Constructive Small Object Argument

Paul Seip

Introduction

The Mair

Theorem

Strategy

Conclu

Theorem 3

Let $\mathcal C$ be a locally small, cocomplete category, and suppose we have a small double category $U: \mathbb J \to \mathbb S \mathbf q(\mathcal C)$ where Uj is λ -presentable for each $j \in \mathcal J_0$. Then the AWFS cofibrantly generated by $\mathbb J$ exists.

For the constructive case (Theorem 1), take $\lambda = \omega$.

Presheaf Categories

Constructive Small Object Argument

Paul Seip

Introduction

.....

The Mair

Theorem

Strategy

Conclusio

Corollary 2

Let $\mathbb C$ be a small category and let $U:\mathbb J\to \mathbb S\mathbf q(\widehat{\mathbb C})$ be a double functor subject to the following conditions

- J is small,
- **2** Uj is finitely generated for every object $j \in \mathcal{J}_0$.

Then the AWFS cofibrantly generated by U exists and is finitary.

Example: effective Kan fibrations.

Summary

Constructive Small Object Argument

Paul Seip

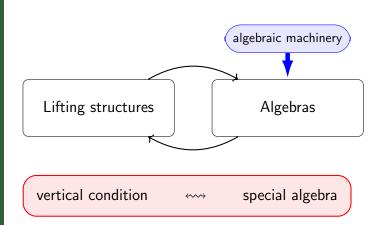
Introduction

.....

The Main

Theorem

Proof Strategy



Constructive Small Object Argument

Paul Seip

Introduction

The Mair

Proof

Strategy

- v/d Berg, B. and Faber, E. *Effective Kan Fibrations in Simplicial Sets*. Lecture Notes in Mathematics. Springer International Publishing, 2022.
- Bourke, J. *An orthogonal approach to algebraic weak* factorisation systems. Journal of Pure and Applied Algebra Volume 227, Issue 6, June 2023, p. 107294, issn: 0022-4049.
- Bourke, J. and Garner, R. Algebraic weak factorisation systems I: Accessible AWFS. Journal of Pure and Applied Algebra Volume 220, Issue 1, January 2016, Pages 108-147.
- Cohen et al. Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom. TYPES 2015.

Constructive Small Object Argument

Paul Seip

- Garner, R. Understanding the small object argument. Applied categorical structures, 17(3):247-285, 2009. arXiv:0712 0724
- Quillen, D.G. Homotopical Algebra. Lecture Notes in Mathematics, no. 43. Springer-Verlag, Berlin (1967)
- Seip, P. A Constructive Small Object Argument. MSc thesis. University of Amsterdam, 2024.