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Weak Factorisation Systems

(L,R) is a weak factorisation system on a category C if

• Every map f ∈ C factors as

X
Lf

∈L
// Ef

Rf

∈R
// Y,

• (. . . )
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Examples

• (surjections, injections) is a WFS on the category of sets,

• (injections, surjections) is also a WFS on the category of
sets,
Equivalent to the axiom of choice!

• (cofibrations, homotopy equivalences) is a WFS on the
category of topological spaces,

• (surjections, injections) is a WFS on the category of
groups.

And many more!
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Algebraic Weak Factorisation Systems

We can make the notion of a weak factorisation system more
‘algebraic’, the result is called an algebraic weak factorisation
system.
It consists of a pair of a comonad and a monad (L,R), its left
class is L-Coalg and its right class is R-Alg.

This gives: explicit lifts, explicit factorisations, . . .
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Lifting Structures

• Set, J ⊆ C2

//

j

��

f

��//

??

• Category, U : J → C2

//

Ui

��

//

Uj

��

f

��//

77

//

?? (horizontal condition)

• Double category, U : J → Sq(C)
//

Ui

�� f

��

Uj

��

??

//

GG (vertical condition)
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Small Object Argument

• [Quillen (1967)], small object argument for sets;

• [Garner (2009)], algebraic small object argument for
cofibrant generation by a small category;

• [Bourke & Garner (2016)], algebraic small object argument
for cofibrant generation by a small double category.

A constructive small object argument . . . ?

6 / 24



A
Constructive
Small Object
Argument

Paul Seip

Introduction

Motivation

The Main
Theorem

Proof
Strategy

Conclusion

Constructive Models of Homotopy Type Theory

• Voevodsky’s construction of a model of homotopy type
theory in simplicial sets.

• Problem: BCP-obstruction (Bezem, Coquand &
Parmann), constructively unprovable that this is a model
of HoTT.

• Solution 1: definition of a uniform Kan fibration in cubical
sets [Coquand et al. (2015)].

• Solution 2: definition of an effective Kan fibration in
simplicial sets [van den Berg & Faber (2022)].

• Important step: a proof that these are the right class in an
algebraic weak factorisation system.

• We need a constructive small object argument!
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Finitary Small Object Argument

Theorem 1 ([Seip (2024), Theorem 6])

Let C be a locally small, cocomplete category, and let
U : J → Sq(C) be a double functor subject to the following
conditions

1 J is small,

2 the object Uj is ω-compact for every object j ∈ J0.

Then the AWFS cofibrantly generated by U exists and is
finitary.
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Constructing a Left Adjoint

Proposition ([Bourke (2023), Proposition 13])

U : J → Sq(C) cofibrantly generates an AWFS (L,R) if and
only if V1 : J⋔⋔1 → C2 has a left adjoint.

Goal: to give an explicit construction of this adjoint
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Proof Strategy

Lifting structures Algebras

algebraic machinery
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Definition of T

Obtain a ‘one-step factorisation’ f = Tf ◦Kf : X → Sf → Y

A

Cf
��

// X

Kf
�� f

��

B

//

q
// Sf

Tf

  

Y,

with

Cf ∼=
∫ j∈J

C2(Uj, f) · Uj.
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One-step Lifting Structures

A one-step lifting structure from f to g consists of a square
(u, v) : f → g equipped with the following lifting operation

Aj

Uj

��

σ0 // X

f

��

u // C

g

��

Bj

ϕj(σ)

77

σ1

// Y v
// D

(1)

which moreover satisfies the horizontal condition.
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Universal Property

This induces a presheaf

J-1-Step : (C2)op × C2 → Set

Theorem 2

We have an isomorphism ϕf,g : C2(Tf, g) ∼= J-1-Step(f, g)
natural in each variable.
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Universal Property

Corollary 1

The one-step lifting structure (Kf, 1) : f → Tf is initial in the
category of one-step lifting structures for f against J .

Aj

Uj

��

// X
f

��

Kf
//

$$

Sf

Tf

��

∃ // E

g

��

Bj

θj(σ)

77

ϕj(σ)

44

// Y
1
//

::Y
∃
// F
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Generation by a Category

Proposition 1

We have an isomorphism T -Alg ∼= J ⋔ over C2.

Use the universal property of T :

//

Uj

��

f

��

##// //

Tf

��

f

��//

77 44

;;// //
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Generation by a Double Category

J2

U2   

m // J1

U1~~

C2

J ⋔
1
∼= T1-Alg and J ⋔

2
∼= T2-Alg by Proposition 1. Using the

universal property of T , we have two induced natural
transformation γ : T2 ⇒ T1 and λ : T2 ⇒ T1T1.

//

Ui

��

##

f

��

//

T2f

��

//

T1f

��//

77 44

;;// //

Ui

��

//

f

��

//

T1f

��

//

T1T1f

��

77

Uj

��

::

// // //
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Special Algebras

Call a T1-algebra β : Tf → f special if the following diagram
commutes

T2f

λf

��

γf
// T1f

β
��

T1T1f
T1β

// T1f
β
// f.

This gives a full subcategory T1-Algs of T1-Alg.
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Generation by a Double Category

Proposition 2

We have an isomorphism T1-Algs
∼= (J⋔⋔)1 over C2.

We already know that T1-Alg ∼= J ⋔
1 . Furthermore, the lifting

structures satisfying the vertical condition are precisely the ones
whose induced T1-algebra is special.

vertical condition ↭ special algebra
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Constructing the Left Adjoint

(J⋔⋔)1

""

∼= // T1-Algs

{{C2

⊢

;;

Proposition 3

If T1 preserves colimits of n-chains for some limit ordinal n,
then the free special algebra exists.

The proof uses algebraic chains.

19 / 24



A
Constructive
Small Object
Argument

Paul Seip

Introduction

Motivation

The Main
Theorem

Proof
Strategy

Conclusion

Small Object Argument for Double Categories

Theorem 3

Let C be a locally small, cocomplete category, and suppose we
have a small double category U : J → Sq(C) where Uj is
λ-presentable for each j ∈ J0. Then the AWFS cofibrantly
generated by J exists.

For the constructive case (Theorem 1), take λ = ω.
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Presheaf Categories

Corollary 2

Let C be a small category and let U : J → Sq(Ĉ) be a double
functor subject to the following conditions

1 J is small,

2 Uj is finitely generated for every object j ∈ J0.

Then the AWFS cofibrantly generated by U exists and is
finitary.

Example: effective Kan fibrations.
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Summary

Lifting structures Algebras

algebraic machinery

vertical condition ↭ special algebra
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