

Partializations of Markov categories

A framework for partial stochastic maps

Areeb Shah Mohammed

Nondeterminism

Consider (finite) sets and relations: A point of the domain can have many "possible images" in the codomain — possibly even none!

Standard approach to compose relations $X \xrightarrow{R_1} Y \xrightarrow{R_2} Z$ is "go big": $x \sim z$ if for some y, $x \sim_1 y \sim_2 z$.

Consider a process that may produce one of many possible outputs, can be seen as a multivalued map defined on the points which have at least one output.

Question

What happens when it doesn't shutdown "gracefully"?

"Risk averse" composition: add condition that if $x \sim_1 y$, then $y \sim_2 z'$ for some z'.

An illustration

Play it safe

Expectations

Expectations on a compact interval $[a,b] \subseteq \mathbb{R}$ define an algebra for the distribution monad $\mathbf{E}[_] \colon P[a,b] \to [a,b]$.

This can be extended to compact convex sets [Świrszcz].

However, expectations do not form an algebra $P\mathbb{R} \to \mathbb{R}$ on \mathbb{R} , as they are not defined over all distributions on \mathbb{R} .

They do define a partial map $P\mathbb{R} \to \mathbb{R}$ on the measurable subset $D \subset \mathbb{R}$ where defined, suggesting a "partial algebra" $P\mathbb{R} \to \mathbb{R}$.

This would even be "deterministic"!

Why not "failure" values?

Failed processes often represented by a "null" output \perp .

In a probabilistic setting, this has been successfully emulated using sub-stochastic distributions [Di Lavore–Román(–Sobociński), Lorenz–Tull].

However these follow the "go big" style of composition — the "possibilistic" analogue of sub-stochastic distributions is the category of relations Rel.

Involve a "probability of definition" for each point, not just a domain.

Also awkward to preserve useful properties like linearity of expectation.

Categories of stochastic maps

Definition (*Cho-Jacobs*)

CD categories: Symmetric monoidal categories with "copy and delete" commutative comonoid structures on each object that are compatible with tensoring.

$$\mathsf{copy}_X \quad = \quad \begin{array}{c} X & X \\ \\ X \end{array} \qquad \mathsf{del}_X \quad = \quad \begin{array}{c} \\ \\ X \end{array} \qquad \qquad \begin{array}{c} \\ \\ \end{array} \qquad \qquad = \quad \begin{array}{c} \\ \\ \end{array}$$

Definition (Cho-Jacobs, Fritz)

Total maps: commute with deletion.

Markov categories: all maps are total.

Recurring Examples

Examples (Fritz)

Various notions of "measurable spaces and stochastic maps".

- (i) FinStoch: finite sets and stochastic maps here stochastic matrices;
- (ii) Dist: sets and finitely supported distributions;
- (iii) SetMulti: sets and multi-valued maps possibilities rather than probabilities;
- (iv) BorelStoch: standard Borel spaces and stochastic maps Markov kernels.

Determinism

Definition (*Carboni–Walters*)

Copyable maps: commute with copying.

$$f$$
 f f

Wide subcategory C_{cop} of copyable maps.

Deterministic maps: copyable and total.

Warning

A CD category is Cartesian monoidal if and only if every map is deterministic [Fox].

Domains

Definition

Domain dom(f) of a map $f: X \to Y$: the endomorphism on X.

In the case of relations, the domain is the set of points that have at least one image.

$$\{(x,x) : \exists y \in Y, f(x,y)\}$$

Quasi-total maps: absorb domain, f dom(f) = f [Di Lavore-Román].

Quasi-Markov categories: all maps quasi-total.

Theorem (Di Lavore-Román)

Given positivity, quasi-totality is equivalent to dom(f) being copyable.

Poset enrichment

Theorem

The domain idempotents dom(f) turn a positive quasi-Markov category into a restriction category.

Corollary (Cockett-Lack)

Restriction category poset enrichment: $f \leq g \iff f = g \operatorname{dom}(f)$.

Partializable Markov categories

Definition

Partializable Markov categories:

- (i) Positive;
- (ii) Deterministic monomorphisms closed under:
 - (a) pullback;
 - (b) tensor.

Partialization

(finally!)

Definition

Partialization Partial(C)

- (i) Objects those of the original category C;
- (ii) Maps $X \rightarrow Y$ equivalence classes of spans

$$X \stackrel{i}{\longleftarrow} D \stackrel{f}{\longrightarrow} Y$$

with *i* a *deterministic* monomorphism;

Composition and tensor

Definition

(iii) Composition by pullback: For maps represented by spans $X \stackrel{i}{\hookleftarrow} D_f \stackrel{f}{\rightarrow} Y$ and $Y \stackrel{j}{\hookleftarrow} D_g \stackrel{g}{\rightarrow} Z$, the composite is represented by

$$X \stackrel{i}{\hookleftarrow} f^{-1}D_g \xrightarrow{gf} Z$$

(iv) Tensoring componentwise: for maps $X \stackrel{i}{\hookleftarrow} D_f \stackrel{f}{\rightarrow} Y$ and $X' \stackrel{J}{\hookleftarrow} D_g \stackrel{g}{\Rightarrow} Y'$,

$$X \otimes X' \stackrel{i \otimes j}{\longleftrightarrow} D_f \otimes D_g \xrightarrow{f \otimes g} Y \otimes Y'$$

(v) CD structure: inclusion of that of C.

Composition in practice

Consider the composite of two maps $X \stackrel{i}{\hookleftarrow} D_f \stackrel{f}{\rightarrow} Y$ and $Y \stackrel{f}{\hookleftarrow} D_g \stackrel{g}{\rightarrow} Z$ in Partial(C). The domain of the composite is the pullback

$$D \xrightarrow{f|_{\mathcal{T}}} D_g$$

$$\downarrow \qquad \qquad \downarrow$$

$$D_f \xrightarrow{f} Y$$

In SetMulti

D is the $x \in D_f$ such that all images f(x) belong to D_g .

Dist

BorelStoch

$$D = \{x \in D_f : \operatorname{Supp}(f(\lfloor |x)) \subseteq D_g\}$$

$$D = \{x \in D_f : f(D_g \mid x) = 1\}$$

Partializations are quasi-Markov

Theorem

- (i) C is the subcategory of total maps in Partial(C) ([Cockett-Lack] and a little work);
- (ii) Partial(C) is quasi-Markov;
- (iii) The copyable maps of Partial(C) are $X \stackrel{i}{\hookleftarrow} D \stackrel{f}{\rightarrow} Y$ with f deterministic;
- (iv) Partial(C) is positive;
- (v) Given Kolmogorov products in C, their inclusions into Partial(C) define Kolmogorov products.

Warning

The usual notion of Kolmogorov product is no longer functorial in general.

Domains

Theorem (Consequence of [Cockett-Lack])

- (i) Partial(C) is a split restriction category with the domain of a map $X \stackrel{i}{\hookleftarrow} D \stackrel{f}{\rightarrow} Y$ represented by the span $X \stackrel{i}{\hookleftarrow} D \stackrel{i}{\hookrightarrow} X$.
- (ii) The restriction partial order $(X \stackrel{i}{\hookleftarrow} D_f \stackrel{f}{\rightarrow} Y) \leq (X \stackrel{j}{\hookleftarrow} D_g \stackrel{g}{\rightarrow} Y)$ on the hom-sets of Partial(C) is equivalent to the existence of a factorization

$$X \int_{D_g}^{i} \int_{D_g}^{f} Y$$

Representability

Definition (extends [Fritz-Gonda-Perrone-Rischel])

Representable quasi-Markov category: the inclusion $C_{cop} \hookrightarrow C$ has a right adjoint $P \colon C \to C_{cop}$, called the **distribution functor**.

$$C(A, X) \cong C_{cop}(A, PX)$$

Denote

- (i) The counit by samp_Y: $PY \rightarrow Y$;
- (ii) The copyable counterpart of a $f: X \to Y$ by $f^{\sharp}: X \to PY$.

Then,

$$f = \operatorname{samp} f^{\sharp}$$

Partialization and representability

Theorem

Consider a representable partializable Markov category C. The sampling maps of C are also sampling maps for Partial(C)

$$Partial(C)_{cop}(_, PY) \xrightarrow{samp_*} Partial(C)(_, Y)$$

Consequently, Partial(C) is representable.

Theorem

The copyable counterpart of a map $X \stackrel{i}{\hookleftarrow} D \stackrel{f}{\rightarrow} Y$ of Partial(C) is $X \stackrel{i}{\hookleftarrow} D \stackrel{f^{\sharp}}{\rightarrow} PY$.

The "pushforward" of a map $X \stackrel{i}{\longleftrightarrow} D \stackrel{f}{\to} Y$ of Partial(C) is $PX \stackrel{Pi}{\longleftrightarrow} PD \stackrel{Pf}{\longrightarrow} PY$.

Partial algebras for the distribution monad

Consider a representable partializable Markov category C.

Definition

Partial algebra: an algebra for the induced distribution monad P on $Partial(C)_{cop}$.

A partial map $PA \to A$, represented in C_{det} by a span $PA \stackrel{i}{\hookleftarrow} D \stackrel{a}{\to} A$ such that

Expectation as a partial algebra

Theorem

In Partial(BorelStoch), the expectation map gives $\mathbb{R}_{\geq 0}$ the structure of a partial algebra $P\mathbb{R}_{\geq 0} \hookleftarrow D \xrightarrow{\mathsf{E}[_]} \mathbb{R}_{\geq 0}$

$$\mathbf{E}[p] \coloneqq \int_{\mathbb{R}_{\geq 0}} x \, p(dx)$$
 $D \coloneqq \{ p \in P\mathbb{R}_{\geq 0} : \mathbf{E}[p] < \infty \}$

Warning

The same expectation map does not make all of \mathbb{R} a partial algebra.

Conditioning partial maps

Theorem

Consider a partializable Markov category C with conditionals.

Given a map $\varphi \colon A \to X \otimes Y$ in Partial(C) represented by a span

$$A \stackrel{i}{\hookleftarrow} D \stackrel{f}{\rightarrow} X \otimes Y$$

the conditional $\varphi_{|X} \colon X \otimes A \to Y$ exists and is represented by the span

$$X \otimes A \stackrel{X \otimes i}{\longleftrightarrow} X \otimes D \stackrel{f|_X}{\longrightarrow} Y$$

In particular, Partial(C) has conditionals.

Idempotent partial maps

Theorem

The idempotent partial maps are those that act as idempotents on their domain.

Explicitly, $\varepsilon = X \stackrel{i}{\longleftrightarrow} D \stackrel{f}{\to} X$ is idempotent if and only if it is $X \stackrel{i}{\longleftrightarrow} D \stackrel{ie}{\to} X$ for an idempotent e of D in C.

Theorem

The idempotent ε splits if and only if e does.

For instance, every idempotent in Partial(BorelStoch) splits.

Theorem

The idempotent ε is static/strong/balanced if and only if e is.

Thank you for your attention!

Areeb Shah Mohammed

Subprobability measures

A notion of partiality — total probability intuitively the "probability of definition/existence".

Corresponding categories [Di Lavore-Román, Lorenz-Tull]

Rel: sets and relations — hom-sets same as Partial(SetMulti);

 $\mathrm{Kl}(D_{\leq 1})$: sets and subprobability measures — maps of Partial(Dist) are those that have probability 1 or 0;

 $BorelStoch_{\leq 1}$: standard Borel spaces and subprobability measures.

Problem

The sub-distribution composition law produces intermediate probabilities of definition. In particular quasi-totality is not preserved by sub-distribution composition.

Lax partial algebras

The analogous span $P\mathbb{R} \longleftrightarrow D \xrightarrow{\mathsf{E}[_]} \mathbb{R}$ defines a map of Partial(BorelMeas), and even satisfies the unit triangle condition.

But the multiplication square only commutes up to restriction of domain!

Defined on $\pi \in PD$ with

$$\int_{p}\int_{x}|x|\,p(dx)\pi(dp)<\infty$$

Defined on $\pi \in PD$ with

$$\int_{p} \left| \int_{x} x \, p(dx) \right| \pi(dp) < \infty$$

Positivity

Definition (extends [Fritz])

Positive CD categories: For every composable pair $X \xrightarrow{u} Y \xrightarrow{v} Z$ whose composite $v \ u \colon X \to Y$ is copyable,

Idempotents

Definition (Fritz-Gonda-Lorenzin-Perrone-Stein)

An idempotent $e: X \to X$ in a quasi-Markov category C is:

Copyable idempotents satisfy all three conditions.

Conditionals

Definition (Cho-Jacobs, Fritz)

Conditional of $f: A \to X \otimes Y$ with respect to an output X is an $f_{|X}: X \otimes A \to Y$ such that

As an equation,

$$f(x,y \mid a) = f(x \mid a)f_{|X}(y \mid x,a)$$

Special case of a state $p: I \to X \otimes Y$,

$$p(x,y) = p(x)p_{|X}(y \mid x)$$

(Strict) Kolmogorov products

Kolmogorov's extension theorem

A joint distribution on a family of random variables is uniquely characterized by a compatible family of "finite marginals".

Definition (*Fritz–Rischel*)

For a family of objects $(X_k)_{k \in K}$ let FinSub(K) be the poset of finite subsets of K and inclusions. This defines a diagram

$$X^{(-)}$$
: FinSub $(K)^{op} \to C$ $F \mapsto X^F := \bigotimes_{i \in F} X_i$

Strict Kolmogorov product: A limit cone $(X^K \xrightarrow{\pi_F} X^F)_{F \subseteq K \text{ finite}}$ with deterministic legs preserved by tensoring with an arbitrary object Y.

Issues with strict Kolmogorov products

In the *Markov* case, a family $(X_k \xrightarrow{f_k} Y_k)_{k \in K}$ induces a universal $f: X^K \to Y^K$. This is induced by the cone $(X^K \xrightarrow{\pi_F} X^F \xrightarrow{f^F} Y^F)_{F \subseteq K \text{ finite}}$.

Warning

In a general quasi-Markov category, the above cone maps do *not* form a strict cone. only a *lax* one. For instance, when $K = \{1, 2\}$,

Defined on $dom(f_1) \otimes dom(f_2)$

Lax Kolmogorov products

Definition

(i) Lax cone over the diagram $X^{(-)}$: FinSub $(K)^{op} \to C$: an object A and arrows $(f_F: A \to X^F)_{F \subset K \text{ finite}}$ such that for all $G \subseteq F \subseteq K$

(ii) A **lax Kolmogorov product** is a terminal lax cone $(X^K \xrightarrow{\pi_F} X^F)_{F \subseteq K \text{finite}}$: for any other lax cone $(A \xrightarrow{f_F} X^F)_{F \subseteq K \text{finite}}$ there is a greatest $A \xrightarrow{g} X^K$ such that each $\pi_F g \leq f_F$. We require it to have deterministic legs and be preserved by tensoring by arbitrary objects.

Infinite tensors of partial maps

Theorem

- (i) Given Kolmogorov products in C, their inclusions into Partial(C) define both lax and strict Kolmogorov products.
- (ii) Given a family of maps $(X_k \stackrel{i_k}{\hookleftarrow} D_{f_k} \stackrel{f_k}{\hookrightarrow} Y_k)_{k \in K}$ of Partial(C), the map $X^K \to Y^K$ induced by the universal product of the lax Kolmogorov product is $(X^K \stackrel{i^K}{\hookleftarrow} \otimes_{k \in K} D_{f_k} \stackrel{f^K}{\longleftrightarrow} Y^K)$.

Infinite copies in quasi-Markov categories

Consider a quasi-Markov category C with K-sized strict Kolmogorov products and a map $g: X \to Y$.

Construction

One would define the **infinite copy** $g^{(K)}: X \to Y^K$ by universal property as the unique map whose finite projections onto Y^F are given by F-many copies of g.

In a quasi-Markov category, these finite projections define a strict cone!

Theorem

Assume that a partializable C has Kolmogorov products.

For a $X \stackrel{i}{\longleftrightarrow} D \stackrel{g}{\Longrightarrow} Y$ in Partial(C), the infinite copy is represented by $X \stackrel{i}{\longleftrightarrow} D \stackrel{g^{(K)}}{\longleftrightarrow} Y$.