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Classical hyperdoctrines

Start with
1. a category C of “things you want to talk about";

2. associate to each object X € C a collection of “facts" that might be true of
elements of type X;

3. explain how you do logical operations.

Lawvere's perspective on logic: quantifiers are adjoints.



Classical hyperdoctrines

Definition
A regular hyperdoctrine is a functor C*” — Pos such that:

1.
2.

Each poset PX is A-semilattice;
For each morphism f: X — Y in C, the functor Pf: PY — PX has a left adjoint
af;

These adjoints satisfy the Beck-Chevalley condition: for any pullback square

Ay

kl lg , the canonical map 3h o Pk = Pg o 3f is invertible;

B — J
These adjoints satisfy Frobenius reciprocity: for each f: X — Y, the canonical map
If(Pf Aidpx) = idpy A 3f is invertible.



Hyperdoctrines as double pseudofunctors

Theorem: generalised regular hyperdoctrines correspond to those lax symmetric monoidal
double pseudofunctors from spans to quintet for which the laxators are companion
commuter cells.
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The control panel

Translating classical hyperdoctrines to double categorical language provides a piece for
much grander puzzle.
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double category codomain monoidal
double category structure on

semantics
double pseudofunctor



The big picture: functorial semantics for double categories

You can capture the full syntactic picture in a double category:

abstract operations on predicates

context t > context
abstract operations on contexts compatibility constraints abstract operations on contexts
context » context

t
abstract operations on predicates
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Meaning can be added by a semantics map.



The big picture: functorial semantics for double categories

At a minimum, it should:
e Associate each context to a collection of predicates;
e Turn abstract operations on contexts and predicates into concrete operations on

predicates;
e Turn the compatibility constraint into a comparison map of operations.



The big picture: functorial semantics for double categories

At a minimum, it should:
e Associate each context to a collection of predicates;
e Turn abstract operations on contexts and predicates into concrete operations on

predicates;
e Turn the compatibility constraint into a comparison map of operations.

This much is achieved by semantics being a double (pseudo)functor.
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The big picture: functorial semantics for double categories

But predicates should have operations of their own (e.g., connectives)!

This is accomplished by specifying a monoidal structure on the semantics double
pseudofunctor.

This ought to be compatible with the abstract operations on contexts and predicates
(Frobenius).

New result: Frobenius corresponds to the monoidal laxators for the lax symmetric
monoidal structure on the double pseudofunctor being companion commuter
transformations.



Regular double hyperdoctrines

Definition: Let Ctx be a cartesian Beck-Chevalley double category and ID be a symmetric
monoidal double category. A regular double hyperdoctrine over Ctx with predicates in D
is a lax symmetric monoidal double pseudofunctor Q: Ctx™ — D such that:

e for each pair of objects A, B € Ctx, the tight component
pap: QA® QB — Q(A x B) of the monoidal laxator of Q has a companion in ID;

e For each pair of loose arrows X, Y € Ctx, the cell component
XRQY
@1 ©Qv1 —ZFY s QY

B, v, HM‘Y Ixyv, IS a companion commuter cell.

Q(Xl X Y]_) W Q(Xz X Yz)
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