#### Double functorial representation of indexed monoidal structures

José Siqueira https://forest.topos.site/public/jvs-0006-paper/



### Classical hyperdoctrines

#### Start with

- 1. a category C of "things you want to talk about";
- 2. associate to each object  $X \in \mathcal{C}$  a collection of "facts" that might be true of elements of type X;
- 3. explain how you do logical operations.

Lawvere's perspective on logic: quantifiers are adjoints.

## Classical hyperdoctrines

#### Definition

A regular hyperdoctrine is a functor  $\mathcal{C}^{^{\mathrm{op}}} \to \mathbf{Pos}$  such that:

- 1. Each poset PX is  $\land$ -semilattice;
- 2. For each morphism  $f: X \to Y$  in C, the functor  $Pf: PY \to PX$  has a left adjoint  $\exists f$ ;
- 3. These adjoints satisfy the Beck-Chevalley condition: for any pullback square

$$A \xrightarrow{h} I$$
 $\downarrow_{g}$ , the canonical map  $\exists h \circ Pk \Rightarrow Pg \circ \exists f$  is invertible;
 $B \xrightarrow{f} J$ 

4. These adjoints satisfy Frobenius reciprocity: for each  $f: X \to Y$ , the canonical map  $\exists f(Pf \wedge \mathrm{id}_{PX}) \Rightarrow \mathrm{id}_{PY} \wedge \exists f$  is invertible.

### Hyperdoctrines as double pseudofunctors

Theorem: generalised regular hyperdoctrines correspond to those lax symmetric monoidal double pseudofunctors from spans to quintet for which the laxators are companion commuter cells.



#### The control panel

Translating classical hyperdoctrines to double categorical language provides a piece for a much grander puzzle.



You can capture the full syntactic picture in a double category:



You can capture the full syntactic picture in a double category:



Meaning can be added by a semantics map.

#### At a minimum, it should:

- Associate each context to a collection of predicates;
- Turn abstract operations on contexts and predicates into concrete operations on predicates;
- Turn the compatibility constraint into a comparison map of operations.

#### At a minimum, it should:

- Associate each context to a collection of predicates;
- Turn abstract operations on contexts and predicates into concrete operations on predicates;
- Turn the compatibility constraint into a comparison map of operations.

This much is achieved by semantics being a double (pseudo)functor.

But predicates should have operations of their own (e.g., connectives)!

But predicates should have operations of their own (e.g., connectives)!

This is accomplished by specifying a monoidal structure on the semantics double pseudofunctor.

But predicates should have operations of their own (e.g., connectives)!

This is accomplished by specifying a monoidal structure on the semantics double pseudofunctor.

This ought to be compatible with the abstract operations on contexts and predicates (Frobenius).

New result: Frobenius corresponds to the monoidal laxators for the lax symmetric monoidal structure on the double pseudofunctor being companion commuter transformations.

### Regular double hyperdoctrines

Definition: Let  $\mathbb{C}tx$  be a cartesian Beck-Chevalley double category and  $\mathbb{D}$  be a symmetric monoidal double category. A regular double hyperdoctrine over  $\mathbb{C}tx$  with predicates in  $\mathbb{D}$  is a lax symmetric monoidal double pseudofunctor  $Q: \mathbb{C}tx^{^{\mathrm{op}}} \to \mathbb{D}$  such that:

- For each pair of objects  $A, B \in \mathbb{C}tx$ , the tight component  $\mu_{A,B} \colon QA \otimes QB \to Q(A \times B)$  of the monoidal laxator of Q has a companion in  $\mathbb{D}$ ;
- ullet For each pair of loose arrows  $X,Y\in\mathbb{C}$ tx, the cell component



#### References

- 1. Paré, R. (2024). Retrocells. Theory and Applications of Categories, 40(5), 130-179.
- 2. Bacci, G., Mardare, R., Panangaden, P., Plotkin, G. (2023). Propositional Logics for the Lawvere Quantale. Electronic Notes in Theoretical Informatics and Computer Science, Volume 3-Proceedings of MFPS 2023.
- 3. Haugseng, R., Hebestreit, F., Linskens, S., Nuiten, J. (2020). Two-variable fibrations, factorisation systems and ∞-categories of spans. arXiv:2011.11042.
- 4. Dawson, R., Pare, R., Pronk, D. (2010). the span construction. Theory and Applications of Categories, 24(13), 302–377.
- 5. Grandis, M., Pare, R. (1999). Limits in double categories. In Cahiers de topologie et géométrie différentielle catégoriques (Vol. 40, pp. 162–220).
- 6. Shulman, M. (2008). Framed bicategories and monoidal fibrations. Theory and Applications of Categories, 20(18), 650–738.
- 7. Moeller, V. (2020). Monoidal Grothendieck Construction. Theory and Applications of Categories, 35(31), 1159–1207.