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Classical hyperdoctrines

Start with
1. a category C of “things you want to talk about";
2. associate to each object X ∈ C a collection of “facts" that might be true of

elements of type X ;
3. explain how you do logical operations.

Lawvere’s perspective on logic: quantifiers are adjoints.



Classical hyperdoctrines

Definition
A regular hyperdoctrine is a functor Cop → Pos such that:

1. Each poset PX is ∧-semilattice;
2. For each morphism f : X → Y in C, the functor Pf : PY → PX has a left adjoint

∃f ;
3. These adjoints satisfy the Beck-Chevalley condition: for any pullback square
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, the canonical map ∃h ◦ Pk ⇒ Pg ◦ ∃f is invertible;

4. These adjoints satisfy Frobenius reciprocity: for each f : X → Y , the canonical map
∃f (Pf ∧ idPX ) ⇒ idPY ∧ ∃f is invertible.



Hyperdoctrines as double pseudofunctors

Theorem: generalised regular hyperdoctrines correspond to those lax symmetric monoidal
double pseudofunctors from spans to quintet for which the laxators are companion
commuter cells.
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The control panel
Translating classical hyperdoctrines to double categorical language provides a piece for a
much grander puzzle.



The big picture: functorial semantics for double categories

You can capture the full syntactic picture in a double category:

context context
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abstract operations on predicates
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abstract operations on predicates
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compatibility constraints

Meaning can be added by a semantics map.
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Regular double hyperdoctrines

Definition: Let Ctx be a cartesian Beck-Chevalley double category and D be a symmetric
monoidal double category. A regular double hyperdoctrine over Ctx with predicates in D
is a lax symmetric monoidal double pseudofunctor Q : Ctxop → D such that:

• For each pair of objects A,B ∈ Ctx , the tight component
µA,B : QA⊗ QB → Q(A× B) of the monoidal laxator of Q has a companion in D;
• For each pair of loose arrows X ,Y ∈ Ctx , the cell component

QX1 ⊗ QY1 QX2 ⊗ QY2

Q(X1 × Y1) Q(X2 × Y2)

QX⊗QYp

µX1,Y1 µX2,Y2

Q(X×Y )
p

µX ,Y is a companion commuter cell.
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