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Point of departure

Problem
» Weak (n, k)-categories are complicated objects.
> In particular, so are objects in higher categorified algebra.

» There are different ways to formalize and manage them.

Classical approach in low dimensions

» Define fully weak structures “by hand”.

» Establish a set of coherence theorems to replace fully weak
structures by semi-strict ones.



L Motivation

Low dimensional coherence theorems

Examples
1. Monoidal categories ~ strict monoidal categories (Mac Lane).
2. Bicategories ~ 2-categories (Street, Lack).

3. Monoidal bicategories ~ Gray monoids
(Gordon—Power—Street).



L Motivation

Application 1: A classic theorem

Theorem (Joyal-Street)
Let C be a monoidal category.
1. C braided = Mon(C) monoidal.
2. C symmetric = Mon(C) symmetric.
The forgetful functor
Mon(C) — C

is as monoidal as Mon(C) is.



L Motivation

Application 2: A 2-dimensional generalization

Main Theorem 1
Let C be a monoidal bicategory.

1. C braided = PsMon(C) monoidal.
2. C sylleptic = PsMon(C) braided.
3. C symmetric = PsMon(C) symmetric.
The forgetful functor
PsMon(C) — C

is as monoidal as PsMon(C) is.



L Motivation

Application 2: A 2-dimensional generalization

Main Theorem 1
Let C be a Gray monoid.

1. C braided = PsMon(C) monoidal.
2. C sylleptic = PsMon(C) braided.
3. C symmetric = PsMon(C) symmetric.
The forgetful functor
PsMon(C) — C

is as monoidal as PsMon(C) is.



L Motivation

Application 2: A 2-dimensional generalization

Main Theorem 1
Let C be a Gray monoid.

1. C braided = PsMon(C) monoidal.
2. C sylleptic = PsMon(C) braided.
3. C symmetric = PsMon(C) symmetric.
The forgetful functor
PsMon(C) — C

is as monoidal as PsMon(C) is.

~» Lengthy computations.
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Point of departure |l

“Orthogonal” idea in low dimensions

» Embed low dimensional category theory in co-category theory.

» Use the oo-categorical machinery.

Story of the talk

1. Some tools of higher algebra.
2. The higher algebra of bicategories.
3. An oo-categorical proof of Main Theorem 1.
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Higher algebra

Core notions
1. oo-operads = symmetric co-multicategories.

2. Symmetric monoidal co-categories = “representable”
oo-operads.

3. For O, V € Op, get Algp(V) € Catw.
4. For O € Op,, C € SMonCat get Algn(C) € SMonCate.
5. For V € Op,, get

Algy(Algo(C)) = Algygg,o(C)

where V ®@gy O is the Boardman-Vogt tensor product.
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Examples

1. Any C € Cat'l gives C* € SMonCat,,. E.g. CatX itself.

2. May's little cubes oco-operads:

Eob—-E—- —E, — - — Ex.

2.1 MonCats ~ Algg, (Catl).
2.2 SMonCaty, ~ Alge_(Cat}).

Theorem (Dunn’s Additivity Theorem)

E,®BvEm ~ Enym.
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Monoidal bicategories

Opening observation
Although BiCat ¢ Cato., we can use BiCat € Caty!

And we can reduce the higher algebra of bicategories to the higher
algebra of 2-categories as well:

Theorem (Lack)

Hooo (2-Cat) ~ Houo(BiCat).

What are the monoids in Hos(2-Cat)*?

Definition

A Gray monoid is a strict monoid in Gray = (2-Cat, ®g).
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Corollary
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U

allows to transfer the canonical model structure on 2-Cat to a
model structure on GrMon such that a morphism f in GrMon is a
(trivial) fibration if and only if U(f) is so in 2-Cat.
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The homotopy theory of Gray monoids
Theorem (Lack)

Gray is a nice monoidal model category.

Corollary
The adjunction

F
GrMon ——= 2-Cat
U

allows to transfer the canonical model structure on 2-Cat to a
model structure on GrMon such that a morphism f in GrMon is a
(trivial) fibration if and only if U(f) is so in 2-Cat.

Furthermore,

Hooo(GrMon) ~ Algg, (Hos(2-Cat)™).



L The higher algebra of bicategories

Main Theorem 2
For all C € 2-Cat there is a bijection between equivalence classes of

1. braided monoidal structures and E,-algebra structures,

2. sylleptic monoidal structures and Es-algebra structures,

3. symmetric monoidal structures and E..-algebra structures
on C.

The same applies to the corresponding structures on 2-functors.
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L The higher algebra of bicategories

Main Theorem 2
For all C € 2-Cat there is a bijection between equivalence classes of

1. braided monoidal structures and E,-algebra structures,
2. sylleptic monoidal structures and Es-algebra structures,

3. symmetric monoidal structures and E..-algebra structures

on C.

The same applies to the corresponding structures on 2-functors.

Related to work by Gurski and Gurski-Osorno.
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LAppIications

A proof of Main Theorem 1

Proposition A

The functor
PsMon(—): GrMon — 2-Cat

preserves trivial fibrations and finite products. It hence induces a
cartesian monoidal functor

Algg, (—): Algg, (Hoso(2-Cat)™) — Hoso(2-Cat)™

on underlying oco-categories.

11



LAppIications

Proposition B
Let C € Algg (Hooo(2-Cat)™). Let 0 < m < n. Then

— Alelm
Algg, (C) := Algg,”(C)
is an E,_p,-algebra. The forgetful 2-functor
Alge (C) = C

is E,_m-monoidal.
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Proof of Proposition B
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1. If C* is cartesian monoidal, then so is Algg (C*). In
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2. The functor
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Proof of Proposition B

1. If C* is cartesian monoidal, then so is Algg (C*). In
particular, so is Algg, (Hooso(2-Cat)™).

2. The functor
Algg, (—): Algg, (Hoos(2-Cat) ™)™ — Hoxo(2-Cat)™

is symmetric monoidal.

3. All symmetric monoidal functors F: C® — D® lift to a
symmetric monoidal functor F: Algn(C®) — Algy(D®) for
any O € Opg,.
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Proof of Proposition B

1.

If C* is cartesian monoidal, then so is Algg (C*). In
particular, so is Algg, (Hooso(2-Cat)™).

The functor
Algg, (—): Algg, (Hoos(2-Cat) ™)™ — Hoxo(2-Cat)™

is symmetric monoidal.

All symmetric monoidal functors F: C® — D lift to a
symmetric monoidal functor F: Algn(C®) — Algy(D®) for
any O € Opg,.

. This proves the case for n = 1 by the Additivity Theorem.

Then simply iterate.
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Main Theorem 1
Let C be a Gray monoid.

1. C braided = PsMon(C) monoidal.
2. C sylleptic = PsMon(C) braided.
3. C symmetric = PsMon(C) symmetric.

Furthermore, the forgetful functor
PsMon(C) — C

is as monoidal as PsMon(C) is.
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Main Theorem 1
Let C be a Gray monoid.

1. C braided = PsMon(C) monoidal.
2. C sylleptic = PsMon(C) braided.

3. C symmetric = PsMon(C) symmetric.

Furthermore, the forgetful functor
PsMon(C) — C

is as monoidal as PsMon(C) is.

Proof.
Proposition A + Proposition B.

O
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|—Applications

Conjecture

Let C be a Gray monoid.
1. C braided = Algg,(C) ~ BrMon(C).
2. C sylleptic = Algg,(C) ~ CMon(C).
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Conjecture

Let C be a Gray monoid.
1. C braided = Algg,(C) ~ BrMon(C).
2. C sylleptic = Algg,(C) ~ CMon(C).

Theorem

Assume the conjecture holds. Let C be a Gray monoid.
1. C sylleptic = BrMon(C) monoidal.
2. C symmetric

2.1 = BrMon(C) symmetric monoidal,
2.2 = CMon(C) symmetric monoidal.

The forgetful functors BrMon(C) — C and CMon(C) — C are as
monoidal as their domain is.
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LApplicaﬂ:ions

Summary

» The higher algebra of BiCat considered as an oco-category
captures the strong monoidal aspects of the bicategorical
algebra studied by Joyal-Street, Day—Street, and many others
(Main Theorem 2).

» This simplifies proofs and constructions in bicategorical algebra
(e.g. Main Theorem 1).
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