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Motivation

Point of departure

Problem

▶ Weak (n, k)-categories are complicated objects.

▶ In particular, so are objects in higher categori�ed algebra.

▶ There are di�erent ways to formalize and manage them.

Classical approach in low dimensions

▶ De�ne fully weak structures �by hand�.

▶ Establish a set of coherence theorems to replace fully weak

structures by semi-strict ones.
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Motivation

Low dimensional coherence theorems

Examples

1. Monoidal categories ≃ strict monoidal categories (Mac Lane).

2. Bicategories ≃ 2-categories (Street, Lack).

3. Monoidal bicategories ≃ Gray monoids

(Gordon�Power�Street).
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Motivation

Application 1: A classic theorem

Theorem (Joyal�Street)

Let C be a monoidal category.

1. C braided ⇒ Mon(C) monoidal.

2. C symmetric ⇒ Mon(C) symmetric.

The forgetful functor

Mon(C) −→ C

is as monoidal as Mon(C) is.
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Motivation

Application 2: A 2-dimensional generalization

Main Theorem 1
Let C be a monoidal bicategory.

1. C braided ⇒ PsMon(C) monoidal.

2. C sylleptic ⇒ PsMon(C) braided.
3. C symmetric ⇒ PsMon(C) symmetric.

The forgetful functor

PsMon(C) −→ C

is as monoidal as PsMon(C) is.
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Motivation

Application 2: A 2-dimensional generalization

Main Theorem 1
Let C be a Gray monoid.

1. C braided ⇒ PsMon(C) monoidal.

2. C sylleptic ⇒ PsMon(C) braided.
3. C symmetric ⇒ PsMon(C) symmetric.

The forgetful functor

PsMon(C) −→ C

is as monoidal as PsMon(C) is.

⇝ Lengthy computations.
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Motivation

Point of departure II

�Orthogonal� idea in low dimensions

▶ Embed low dimensional category theory in ∞-category theory.

▶ Use the ∞-categorical machinery.

Story of the talk

1. Some tools of higher algebra.

2. The higher algebra of bicategories.

3. An ∞-categorical proof of Main Theorem 1.
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Monoidal ∞-categories and monoids therein

Higher algebra

Core notions

1. ∞-operads = symmetric ∞-multicategories.

2. Symmetric monoidal ∞-categories = �representable�

∞-operads.

3. For O, V ∈ Op∞ get AlgO(V) ∈ Cat∞.

4. For O ∈ Op∞, C ∈ SMonCat∞ get AlgO(C) ∈ SMonCat∞.

5. For V ∈ Op∞, get

AlgV(AlgO(C)) ≃ AlgV⊗BVO(C)

where V ⊗BV O is the Boardman-Vogt tensor product.
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Monoidal ∞-categories and monoids therein

Examples

1. Any C ∈ CatΠ∞ gives C× ∈ SMonCat∞. E.g. Cat×∞ itself.

2. May's little cubes ∞-operads:

E0 → E1 → · · · → En → · · · → E∞.

2.1 MonCat∞ ≃ AlgE1(Cat
×
∞).

2.2 SMonCat∞ ≃ AlgE∞(Cat×∞).

Theorem (Dunn's Additivity Theorem)

En ⊗BV Em ≃ En+m.
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The higher algebra of bicategories

Monoidal bicategories

Opening observation

Although BiCat ⊈ Cat∞, we can use BiCat ∈ Cat∞!

And we can reduce the higher algebra of bicategories to the higher

algebra of 2-categories as well:

Theorem (Lack)

Ho∞(2-Cat) ≃ Ho∞(BiCat).

What are the monoids in Ho∞(2-Cat)×?

De�nition
A Gray monoid is a strict monoid in Gray = (2-Cat,⊗Gr).
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The higher algebra of bicategories

The homotopy theory of Gray monoids

Theorem (Lack)

Gray is a nice monoidal model category.

Corollary

The adjunction

GrMon
U
// 2-Cat

Foo

allows to transfer the canonical model structure on 2-Cat to a

model structure on GrMon such that a morphism f in GrMon is a

(trivial) �bration if and only if U(f ) is so in 2-Cat.

Furthermore,

Ho∞(GrMon) ≃ AlgE1(Ho∞(2-Cat)×).
9
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The higher algebra of bicategories

Main Theorem 2
For all C ∈ 2-Cat there is a bijection between equivalence classes of

1. braided monoidal structures and E2-algebra structures,

2. sylleptic monoidal structures and E3-algebra structures,

3. symmetric monoidal structures and E∞-algebra structures

on C.

The same applies to the corresponding structures on 2-functors.

Related to work by Gurski and Gurski�Osorno.
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Applications

A proof of Main Theorem 1

Proposition A

The functor

PsMon(−) : GrMon → 2-Cat

preserves trivial �brations and �nite products. It hence induces a

cartesian monoidal functor

AlgE1(−) : AlgE1(Ho∞(2-Cat)×) → Ho∞(2-Cat)×

on underlying ∞-categories.
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Applications

Proposition B

Let C ∈ AlgEn
(Ho∞(2-Cat)×). Let 0 ≤ m ≤ n. Then

AlgEm
(C) := Alg

(m)
E1

(C)

is an En−m-algebra. The forgetful 2-functor

AlgEm
(C) → C

is En−m-monoidal.
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Applications

Proof of Proposition B

1. If C× is cartesian monoidal, then so is AlgEn
(C×). In

particular, so is AlgE1(Ho∞(2-Cat)×).

2. The functor

AlgE1(−) : AlgE1(Ho∞(2-Cat)×)× → Ho∞(2-Cat)×

is symmetric monoidal.

3. All symmetric monoidal functors F : C⊗ → D⊗ lift to a

symmetric monoidal functor F : AlgO(C⊗) → AlgO(D⊗) for
any O ∈ Op∞.

4. This proves the case for n = 1 by the Additivity Theorem.

Then simply iterate.
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Applications

Main Theorem 1
Let C be a Gray monoid.

1. C braided ⇒ PsMon(C) monoidal.

2. C sylleptic ⇒ PsMon(C) braided.
3. C symmetric ⇒ PsMon(C) symmetric.

Furthermore, the forgetful functor

PsMon(C) −→ C

is as monoidal as PsMon(C) is.

Proof.
Proposition A + Proposition B.

14



Applications

Main Theorem 1
Let C be a Gray monoid.

1. C braided ⇒ PsMon(C) monoidal.

2. C sylleptic ⇒ PsMon(C) braided.
3. C symmetric ⇒ PsMon(C) symmetric.

Furthermore, the forgetful functor

PsMon(C) −→ C

is as monoidal as PsMon(C) is.

Proof.
Proposition A + Proposition B.

14



Applications

Conjecture

Let C be a Gray monoid.

1. C braided ⇒ AlgE2(C) ≃ BrMon(C).
2. C sylleptic ⇒ AlgE3(C) ≃ CMon(C).

Theorem
Assume the conjecture holds. Let C be a Gray monoid.

1. C sylleptic ⇒ BrMon(C) monoidal.

2. C symmetric

2.1 ⇒ BrMon(C) symmetric monoidal,

2.2 ⇒ CMon(C) symmetric monoidal.

The forgetful functors BrMon(C) → C and CMon(C) → C are as

monoidal as their domain is.
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Applications

Summary

▶ The higher algebra of BiCat considered as an ∞-category

captures the strong monoidal aspects of the bicategorical

algebra studied by Joyal�Street, Day�Street, and many others

(Main Theorem 2).

▶ This simpli�es proofs and constructions in bicategorical algebra

(e.g. Main Theorem 1).
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