The higher algebra of monoidal bicategories

Raffael Stenzel

University of Leeds Leeds, UK

July 16th, 2025

CT 2025 Masaryk University, Brno, CZ

Point of departure

Problem

- ▶ Weak (n, k)-categories are complicated objects.
- In particular, so are objects in higher categorified algebra.
- There are different ways to formalize and manage them.

Classical approach in low dimensions

- Define fully weak structures "by hand".
- Establish a set of coherence theorems to replace fully weak structures by semi-strict ones.

Point of departure

Problem

- \blacktriangleright Weak (n, k)-categories are complicated objects.
- In particular, so are objects in higher categorified algebra.
- There are different ways to formalize and manage them.

Classical approach in low dimensions

- Define fully weak structures "by hand".
- Establish a set of coherence theorems to replace fully weak structures by semi-strict ones.

Low dimensional coherence theorems

Examples

- 1. Monoidal categories \simeq strict monoidal categories (Mac Lane).
- 2. Bicategories \simeq 2-categories (Street, Lack).
- 3. Monoidal bicategories \simeq Gray monoids (Gordon-Power-Street).

Application 1: A classic theorem

Theorem (Joyal-Street)

Let C be a monoidal category.

- 1. C braided \Rightarrow Mon(C) monoidal.
- 2. C symmetric \Rightarrow Mon(C) symmetric.

The forgetful functor

$$Mon(\mathcal{C}) \rightarrow \mathcal{C}$$

is as monoidal as Mon(C) is.

Application 2: A 2-dimensional generalization

Main Theorem 1

Let C be a monoidal bicategory.

- 1. \mathcal{C} braided \Rightarrow PsMon(\mathcal{C}) monoidal.
- 2. C sylleptic \Rightarrow PsMon(C) braided.
- 3. C symmetric \Rightarrow PsMon(C) symmetric.

The forgetful functor

$$\mathsf{PsMon}(\mathcal{C}) \to \mathcal{C}$$

is as monoidal as PsMon(C) is.

Application 2: A 2-dimensional generalization

Main Theorem 1

Let $\mathcal C$ be a Gray monoid.

- 1. \mathcal{C} braided \Rightarrow PsMon(\mathcal{C}) monoidal.
- 2. C sylleptic \Rightarrow PsMon(C) braided.
- 3. C symmetric \Rightarrow PsMon(C) symmetric.

The forgetful functor

$$\mathsf{PsMon}(\mathcal{C}) \to \mathcal{C}$$

is as monoidal as PsMon(C) is.

ightsquigarrow Lengthy computations

Application 2: A 2-dimensional generalization

Main Theorem 1

Let C be a Gray monoid.

- 1. \mathcal{C} braided \Rightarrow PsMon(\mathcal{C}) monoidal.
- 2. C sylleptic \Rightarrow PsMon(C) braided.
- 3. C symmetric \Rightarrow PsMon(C) symmetric.

The forgetful functor

$$\mathsf{PsMon}(\mathcal{C}) \to \mathcal{C}$$

is as monoidal as PsMon(C) is.

→ Lengthy computations.

Point of departure II

"Orthogonal" idea in low dimensions

- Embed low dimensional category theory in ∞-category theory.
- ightharpoonup Use the ∞ -categorical machinery.

Story of the talk

- 1. Some tools of higher algebra.
- 2. The higher algebra of bicategories.
- 3. An ∞-categorical proof of Main Theorem 1

Point of departure II

"Orthogonal" idea in low dimensions

- lacktriangle Embed low dimensional category theory in ∞ -category theory.
- ightharpoonup Use the ∞ -categorical machinery.

Story of the talk

- 1. Some tools of higher algebra.
- 2. The higher algebra of bicategories.
- 3. An ∞ -categorical proof of Main Theorem 1.

Core notions

- 1. ∞ -operads = symmetric ∞ -multicategories.
- Symmetric monoidal ∞-categories = "representable" ∞-operads.
- 3. For $\mathsf{O},\ \mathcal{V}\in\mathsf{Op}_\infty$ get $\mathsf{Alg}_\mathcal{O}(\mathcal{V})\in\mathsf{Cat}_\infty$
- 4. For $\mathcal{O}\in\mathsf{Op}_{\infty}$, $\mathcal{C}\in\mathsf{SMonCat}_{\infty}$ get $\mathsf{Alg}_{\mathcal{O}}(\mathcal{C})\in\mathsf{SMonCat}_{\infty}$
- 5. For $\mathcal{V} \in \mathsf{Op}_{\infty}$, get

$$\mathsf{Alg}_{\mathcal{V}}(\mathsf{Alg}_{\mathcal{O}}(\mathcal{C})) \simeq \mathsf{Alg}_{\mathcal{V} \otimes_{\mathsf{BV}} \mathcal{O}}(\mathcal{C})$$

Core notions

- 1. ∞ -operads = symmetric ∞ -multicategories.
- 2. Symmetric monoidal ∞ -categories = "representable" ∞ -operads.
- 3. For $\mathsf{O},\ \mathcal{V}\in\mathsf{Op}_\infty$ get $\mathsf{Alg}_\mathcal{O}(\mathcal{V})\in\mathsf{Cat}_\infty$.
- 4. For $\mathcal{O}\in\mathsf{Op}_{\infty}$, $\mathcal{C}\in\mathsf{SMonCat}_{\infty}$ get $\mathsf{Alg}_{\mathcal{O}}(\mathcal{C})\in\mathsf{SMonCat}_{\infty}$
- 5. For $\mathcal{V} \in \mathsf{Op}_{\infty}$, get

$$\mathsf{Alg}_{\mathcal{V}}(\mathsf{Alg}_{\mathcal{O}}(\mathcal{C})) \simeq \mathsf{Alg}_{\mathcal{V} \otimes_{\mathsf{BV}} \mathcal{O}}(\mathcal{C})$$

Core notions

- 1. ∞ -operads = symmetric ∞ -multicategories.
- 2. Symmetric monoidal ∞ -categories = "representable" ∞ -operads.
- 3. For O, $V \in \mathsf{Op}_{\infty}$ get $\mathsf{Alg}_{\mathcal{O}}(V) \in \mathsf{Cat}_{\infty}$.
- 4. For $\mathcal{O}\in\mathsf{Op}_\infty$, $\mathcal{C}\in\mathsf{SMonCat}_\infty$ get $\mathsf{Alg}_\mathcal{O}(\mathcal{C})\in\mathsf{SMonCat}_\infty$.
- 5. For $\mathcal{V} \in \mathsf{Op}_{\infty}$, get

$$\mathsf{Alg}_{\mathcal{V}}(\mathsf{Alg}_{\mathcal{O}}(\mathcal{C})) \simeq \mathsf{Alg}_{\mathcal{V} \otimes_{\mathsf{BV}} \mathcal{O}}(\mathcal{C})$$

Core notions

- 1. ∞ -operads = symmetric ∞ -multicategories.
- 2. Symmetric monoidal ∞ -categories = "representable" ∞ -operads.
- 3. For $O, V \in \mathsf{Op}_{\infty}$ get $\mathsf{Alg}_{\mathcal{O}}(V) \in \mathsf{Cat}_{\infty}$.
- 4. For $\mathcal{O} \in \mathsf{Op}_{\infty}$, $\mathcal{C} \in \mathsf{SMonCat}_{\infty}$ get $\mathsf{Alg}_{\mathcal{O}}(\mathcal{C}) \in \mathsf{SMonCat}_{\infty}$.
- 5. For $\mathcal{V} \in \mathsf{Op}_{\infty}$, get

$$\mathsf{Alg}_{\mathcal{V}}(\mathsf{Alg}_{\mathcal{O}}(\mathcal{C})) \simeq \mathsf{Alg}_{\mathcal{V} \otimes_{\mathsf{BV}} \mathcal{O}}(\mathcal{C})$$

Core notions

- 1. ∞ -operads = symmetric ∞ -multicategories.
- 2. Symmetric monoidal ∞ -categories = "representable" ∞ -operads.
- 3. For O, $V \in \mathsf{Op}_{\infty}$ get $\mathsf{Alg}_{\mathcal{O}}(V) \in \mathsf{Cat}_{\infty}$.
- 4. For $\mathcal{O} \in \mathsf{Op}_{\infty}$, $\mathcal{C} \in \mathsf{SMonCat}_{\infty}$ get $\mathsf{Alg}_{\mathcal{O}}(\mathcal{C}) \in \mathsf{SMonCat}_{\infty}$.
- 5. For $\mathcal{V} \in \mathsf{Op}_{\infty}$, get

$$\mathsf{Alg}_{\mathcal{V}}(\mathsf{Alg}_{\mathcal{O}}(\mathcal{C})) \simeq \mathsf{Alg}_{\mathcal{V} \otimes_{\mathsf{BV}} \mathcal{O}}(\mathcal{C})$$

- 1. Any $C \in \mathsf{Cat}^\Pi_\infty$ gives $C^\times \in \mathsf{SMonCat}_\infty$. E.g. $\mathsf{Cat}^\times_\infty$ itself.
- 2. May's little cubes ∞-operads

$$E_0 \to E_1 \to \cdots \to E_n \to \cdots \to E_{\infty}$$

- 2.1 $\mathsf{MonCat}_\infty \simeq \mathsf{Alg}_{E_1}(\mathsf{Cat}_\infty^\times)$.
- 2.2 $\mathsf{SMonCat}_\infty \simeq \mathsf{Alg}_{E_\infty}(\mathsf{Cat}_\infty^\times).$

$$E_n \otimes_{BV} E_m \simeq E_{n+m}$$

- 1. Any $C \in \mathsf{Cat}^\Pi_\infty$ gives $C^\times \in \mathsf{SMonCat}_\infty$. E.g. $\mathsf{Cat}^\times_\infty$ itself.
- 2. May's little cubes ∞-operads:

$$E_0 \to E_1 \to \cdots \to E_n \to \cdots \to E_{\infty}$$
.

- 2.1 $\mathsf{MonCat}_\infty \simeq \mathsf{Alg}_{E_1}(\mathsf{Cat}_\infty^\times)$.
- 2.2 $\mathsf{SMonCat}_\infty \simeq \mathsf{Alg}_{E_\infty}(\mathsf{Cat}_\infty^\times).$

$$E_n \otimes_{BV} E_m \simeq E_{n+m}$$

- 1. Any $C \in \mathsf{Cat}^{\Pi}_{\infty}$ gives $C^{\times} \in \mathsf{SMonCat}_{\infty}$. E.g. $\mathsf{Cat}^{\times}_{\infty}$ itself.
- 2. May's little cubes ∞-operads:

$$E_0 \to E_1 \to \cdots \to E_n \to \cdots \to E_{\infty}.$$

- 2.1 $\mathsf{MonCat}_{\infty} \simeq \mathsf{Alg}_{E_1}(\mathsf{Cat}_{\infty}^{\times}).$
- $2.2 \; \mathsf{SMonCat}_{\infty} \simeq \mathsf{Alg}_{E_{\infty}}(\mathsf{Cat}_{\infty}^{\times}).$

$$E_n \otimes_{BV} E_m \simeq E_{n+m}$$

- 1. Any $C \in \mathsf{Cat}^{\Pi}_{\infty}$ gives $C^{\times} \in \mathsf{SMonCat}_{\infty}$. E.g. $\mathsf{Cat}^{\times}_{\infty}$ itself.
- 2. May's little cubes ∞-operads:

$$E_0 \to E_1 \to \cdots \to E_n \to \cdots \to E_{\infty}.$$

- 2.1 $\mathsf{MonCat}_{\infty} \simeq \mathsf{Alg}_{E_1}(\mathsf{Cat}_{\infty}^{\times}).$
- $2.2 \; \mathsf{SMonCat}_{\infty} \simeq \mathsf{Alg}_{E_{\infty}}(\mathsf{Cat}_{\infty}^{\times}).$

$$E_n \otimes_{BV} E_m \simeq E_{n+m}$$
.

Opening observation

Although $\mathsf{BiCat} \nsubseteq \mathsf{Cat}_\infty,$ we can use $\mathsf{BiCat} \in \mathsf{Cat}_\infty!$

And we can reduce the higher algebra of bicategories to the higher algebra of 2-categories as well:

Theorem (Lack)

 $Ho_{\infty}(2\text{-}Cat) \simeq Ho_{\infty}(BiCat).$

What are the monoids in $Ho_{\infty}(2-Cat)^{\times}$?

Definition

Opening observation

Although $BiCat \nsubseteq Cat_{\infty}$, we can use $BiCat \in Cat_{\infty}$!

And we can reduce the higher algebra of bicategories to the higher algebra of 2-categories as well:

Theorem (Lack)

 $Ho_{\infty}(2\text{-}Cat) \simeq Ho_{\infty}(BiCat).$

What are the monoids in $Ho_{\infty}(2-Cat)^{\times}$?

Definition

Opening observation

Although $BiCat \nsubseteq Cat_{\infty}$, we can use $BiCat \in Cat_{\infty}$!

And we can reduce the higher algebra of bicategories to the higher algebra of 2-categories as well:

Theorem (Lack)

 $Ho_{\infty}(2\text{-}Cat) \simeq Ho_{\infty}(BiCat).$

What are the monoids in $Ho_{\infty}(2-Cat)^{\times}$?

Definition

Opening observation

Although $BiCat \nsubseteq Cat_{\infty}$, we can use $BiCat \in Cat_{\infty}$!

And we can reduce the higher algebra of bicategories to the higher algebra of 2-categories as well:

Theorem (Lack)

 $Ho_{\infty}(2\text{-}Cat) \simeq Ho_{\infty}(BiCat).$

What are the monoids in $Ho_{\infty}(2-Cat)^{\times}$?

Definition

Opening observation

Although $BiCat \nsubseteq Cat_{\infty}$, we can use $BiCat \in Cat_{\infty}$!

And we can reduce the higher algebra of bicategories to the higher algebra of 2-categories as well:

Theorem (Lack)

 $Ho_{\infty}(2\text{-}Cat) \simeq Ho_{\infty}(BiCat).$

What are the monoids in $Ho_{\infty}(2-Cat)^{\times}$?

Definition

The homotopy theory of Gray monoids

Theorem (Lack)

Gray is a nice monoidal model category.

Corollary

The adjunction

$$GrMon \xrightarrow{F} 2-Cat$$

allows to transfer the canonical model structure on 2-Cat to a model structure on GrMon such that a morphism f in GrMon is a (trivial) fibration if and only if U(f) is so in 2-Cat. Furthermore,

$$Ho_{\infty}(GrMon) \simeq Alg_{F_1}(Ho_{\infty}(2-Cat)^{\times})$$

The homotopy theory of Gray monoids

Theorem (Lack)

Gray is a nice monoidal model category.

Corollary

The adjunction

$$GrMon \xrightarrow{F} 2-Cat$$

allows to transfer the canonical model structure on 2-Cat to a model structure on GrMon such that a morphism f in GrMon is a (trivial) fibration if and only if U(f) is so in 2-Cat.

Furthermore

$$Ho_{\infty}(GrMon) \simeq Alg_{E_1}(Ho_{\infty}(2-Cat)^{\times})$$

The homotopy theory of Gray monoids

Theorem (Lack)

Gray is a nice monoidal model category.

Corollary

The adjunction

$$GrMon \xrightarrow{F} 2-Cat$$

allows to transfer the canonical model structure on 2-Cat to a model structure on GrMon such that a morphism f in GrMon is a (trivial) fibration if and only if U(f) is so in 2-Cat. Furthermore.

$$Ho_{\infty}(GrMon) \simeq Alg_{E_1}(Ho_{\infty}(2-Cat)^{\times}).$$

Main Theorem 2

For all $\mathcal{C}\in$ 2-Cat there is a bijection between equivalence classes of

- 1. braided monoidal structures and E_2 -algebra structures,
- 2. sylleptic monoidal structures and E_3 -algebra structures,
- 3. symmetric monoidal structures and E_{∞} -algebra structures

on \mathcal{C} .

The same applies to the corresponding structures on 2-functors.

Related to work by Gurski and Gurski-Osorno

Main Theorem 2

For all $\mathcal{C} \in$ 2-Cat there is a bijection between equivalence classes of

- 1. braided monoidal structures and E_2 -algebra structures,
- 2. sylleptic monoidal structures and E_3 -algebra structures,
- 3. symmetric monoidal structures and E_{∞} -algebra structures

on \mathcal{C} .

The same applies to the corresponding structures on 2-functors.

Related to work by Gurski and Gurski-Osorno.

A proof of Main Theorem 1

Proposition A

The functor

$$\mathsf{PsMon}(-)\colon\mathsf{GrMon} o 2 ext{-}\mathsf{Cat}$$

preserves trivial fibrations and finite products. It hence induces a cartesian monoidal functor

$$\mathsf{Alg}_{E_1}(-)\colon \mathsf{Alg}_{E_1}(\mathsf{Ho}_\infty(2\operatorname{\mathsf{-Cat}})^\times) o \mathsf{Ho}_\infty(2\operatorname{\mathsf{-Cat}})^\times$$

on underlying ∞ -categories.

A proof of Main Theorem 1

Proposition A

The functor

$$PsMon(-)$$
: $GrMon \rightarrow 2$ -Cat

preserves trivial fibrations and finite products. It hence induces a cartesian monoidal functor

$$\mathsf{Alg}_{E_1}(-) \colon \mathsf{Alg}_{E_1}(\mathsf{Ho}_{\infty}(2\text{-}\mathsf{Cat})^{\times}) \to \mathsf{Ho}_{\infty}(2\text{-}\mathsf{Cat})^{\times}$$

on underlying ∞ -categories.

Proposition B

Let $C \in Alg_{E_n}(\mathsf{Ho}_{\infty}(2\text{-Cat})^{\times})$. Let $0 \leq m \leq n$. Then

$$\mathsf{Alg}_{E_m}(\mathcal{C}) := \mathsf{Alg}_{E_1}^{(m)}(\mathcal{C})$$

is an E_{n-m} -algebra. The forgetful 2-functor

$$\mathsf{Alg}_{E_m}(\mathcal{C}) o \mathcal{C}$$

is E_{n-m} -monoidal.

- 1. If C^{\times} is cartesian monoidal, then so is $Alg_{E_n}(C^{\times})$. In particular, so is $Alg_{E_1}(Ho_{\infty}(2-Cat)^{\times})$.
- The functor

$$\mathsf{Alg}_{E_1}(-) \colon \mathsf{Alg}_{E_1}(\mathsf{Ho}_\infty(2\operatorname{\mathsf{-Cat}})^\times)^\times \to \mathsf{Ho}_\infty(2\operatorname{\mathsf{-Cat}})^\times$$

- 3. All symmetric monoidal functors $F\colon \mathcal{C}^\otimes \to \mathcal{D}^\otimes$ lift to a symmetric monoidal functor $F\colon \mathsf{Alg}_\mathcal{O}(\mathcal{C}^\otimes) \to \mathsf{Alg}_\mathcal{O}(\mathcal{D}^\otimes)$ for any $\mathcal{O} \in \mathsf{Op}_\infty$.
- 4. This proves the case for n=1 by the Additivity Theorem Then simply iterate.

- 1. If \mathcal{C}^{\times} is cartesian monoidal, then so is $\mathsf{Alg}_{E_n}(\mathcal{C}^{\times})$. In particular, so is $\mathsf{Alg}_{E_1}(\mathsf{Ho}_{\infty}(2\mathsf{-Cat})^{\times})$.
- The functor

$$\mathsf{Alg}_{E_1}(-) \colon \mathsf{Alg}_{E_1}(\mathsf{Ho}_\infty(2\operatorname{\mathsf{-Cat}})^\times)^\times \to \mathsf{Ho}_\infty(2\operatorname{\mathsf{-Cat}})^\times$$

- 3. All symmetric monoidal functors $F\colon \mathcal{C}^\otimes \to \mathcal{D}^\otimes$ lift to a symmetric monoidal functor $F\colon \mathsf{Alg}_\mathcal{O}(\mathcal{C}^\otimes) \to \mathsf{Alg}_\mathcal{O}(\mathcal{D}^\otimes)$ for any $\mathcal{O} \in \mathsf{Op}_\infty$.
- 4. This proves the case for n=1 by the Additivity Theorem Then simply iterate.

- 1. If \mathcal{C}^{\times} is cartesian monoidal, then so is $\mathsf{Alg}_{E_n}(\mathcal{C}^{\times})$. In particular, so is $\mathsf{Alg}_{E_1}(\mathsf{Ho}_{\infty}(2\mathsf{-Cat})^{\times})$.
- 2. The functor

$$\mathsf{Alg}_{E_1}(-) \colon \mathsf{Alg}_{E_1}(\mathsf{Ho}_\infty(2\operatorname{\mathsf{-Cat}})^\times)^\times \to \mathsf{Ho}_\infty(2\operatorname{\mathsf{-Cat}})^\times$$

- 3. All symmetric monoidal functors $F\colon \mathcal{C}^\otimes \to \mathcal{D}^\otimes$ lift to a symmetric monoidal functor $F\colon \mathsf{Alg}_\mathcal{O}(\mathcal{C}^\otimes) \to \mathsf{Alg}_\mathcal{O}(\mathcal{D}^\otimes)$ for any $\mathcal{O} \in \mathsf{Op}_\infty$.
- 4. This proves the case for n=1 by the Additivity Theorem Then simply iterate.

- 1. If \mathcal{C}^{\times} is cartesian monoidal, then so is $\mathsf{Alg}_{E_n}(\mathcal{C}^{\times})$. In particular, so is $\mathsf{Alg}_{E_1}(\mathsf{Ho}_{\infty}(2\mathsf{-Cat})^{\times})$.
- 2. The functor

$$\mathsf{Alg}_{E_1}(-) \colon \mathsf{Alg}_{E_1}(\mathsf{Ho}_\infty(2\operatorname{\mathsf{-Cat}})^\times)^\times \to \mathsf{Ho}_\infty(2\operatorname{\mathsf{-Cat}})^\times$$

- 3. All symmetric monoidal functors $F : \mathcal{C}^{\otimes} \to \mathcal{D}^{\otimes}$ lift to a symmetric monoidal functor $F : \mathsf{Alg}_{\mathcal{O}}(\mathcal{C}^{\otimes}) \to \mathsf{Alg}_{\mathcal{O}}(\mathcal{D}^{\otimes})$ for any $\mathcal{O} \in \mathsf{Op}_{\infty}$.
- 4. This proves the case for n=1 by the Additivity Theorem Then simply iterate.

- 1. If \mathcal{C}^{\times} is cartesian monoidal, then so is $\mathsf{Alg}_{E_n}(\mathcal{C}^{\times})$. In particular, so is $\mathsf{Alg}_{E_1}(\mathsf{Ho}_{\infty}(2\mathsf{-Cat})^{\times})$.
- 2. The functor

$$\mathsf{Alg}_{E_1}(-) \colon \mathsf{Alg}_{E_1}(\mathsf{Ho}_\infty(2\operatorname{\mathsf{-Cat}})^\times)^\times \to \mathsf{Ho}_\infty(2\operatorname{\mathsf{-Cat}})^\times$$

- 3. All symmetric monoidal functors $F : \mathcal{C}^{\otimes} \to \mathcal{D}^{\otimes}$ lift to a symmetric monoidal functor $F : \mathsf{Alg}_{\mathcal{O}}(\mathcal{C}^{\otimes}) \to \mathsf{Alg}_{\mathcal{O}}(\mathcal{D}^{\otimes})$ for any $\mathcal{O} \in \mathsf{Op}_{\infty}$.
- 4. This proves the case for n = 1 by the Additivity Theorem. Then simply iterate.

Main Theorem 1

Let $\mathcal C$ be a Gray monoid.

- 1. \mathcal{C} braided \Rightarrow PsMon(\mathcal{C}) monoidal.
- 2. C sylleptic \Rightarrow PsMon(C) braided.
- 3. C symmetric \Rightarrow PsMon(C) symmetric.

Furthermore, the forgetful functor

$$\mathsf{PsMon}(\mathcal{C}) \to \mathcal{C}$$

is as monoidal as PsMon(C) is.

Proof

Proposition A + Proposition B

Main Theorem 1

Let $\mathcal C$ be a Gray monoid.

- 1. \mathcal{C} braided \Rightarrow PsMon(\mathcal{C}) monoidal.
- 2. C sylleptic \Rightarrow PsMon(C) braided.
- 3. C symmetric \Rightarrow PsMon(C) symmetric.

Furthermore, the forgetful functor

$$\mathsf{PsMon}(\mathcal{C}) \to \mathcal{C}$$

is as monoidal as PsMon(C) is.

Proof.

Proposition A + Proposition B.

Conjecture

Let $\mathcal C$ be a Gray monoid.

- 1. \mathcal{C} braided $\Rightarrow \mathsf{Alg}_{E_2}(\mathcal{C}) \simeq \mathsf{BrMon}(\mathcal{C})$.
- 2. \mathcal{C} sylleptic $\Rightarrow \mathsf{Alg}_{E_3}(\mathcal{C}) \simeq \mathsf{CMon}(\mathcal{C})$.

Theorem

Assume the conjecture holds. Let ${\mathcal C}$ be a Gray monoid.

- 1. C sylleptic \Rightarrow BrMon(C) monoidal.
- 2. C symmetric
 - $2.1 \Rightarrow BrMon(C)$ symmetric monoidal,
 - $2.2 \Rightarrow CMon(C)$ symmetric monoidal.

The forgetful functors $BrMon(C) \to C$ and $CMon(C) \to C$ are as monoidal as their domain is.

Conjecture

Let $\mathcal C$ be a Gray monoid.

- 1. \mathcal{C} braided $\Rightarrow \mathsf{Alg}_{E_2}(\mathcal{C}) \simeq \mathsf{BrMon}(\mathcal{C})$.
- 2. \mathcal{C} sylleptic $\Rightarrow \mathsf{Alg}_{E_3}(\mathcal{C}) \simeq \mathsf{CMon}(\mathcal{C})$.

Theorem

Assume the conjecture holds. Let C be a Gray monoid.

- 1. C sylleptic \Rightarrow BrMon(C) monoidal.
- 2. C symmetric
 - $2.1 \Rightarrow BrMon(C)$ symmetric monoidal,
 - $2.2 \Rightarrow CMon(C)$ symmetric monoidal.

The forgetful functors $BrMon(C) \to C$ and $CMon(C) \to C$ are as monoidal as their domain is.

Summary

- The higher algebra of BiCat considered as an ∞-category captures the strong monoidal aspects of the bicategorical algebra studied by Joyal-Street, Day-Street, and many others (Main Theorem 2).
- ► This simplifies proofs and constructions in bicategorical algebra (e.g. Main Theorem 1).