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Exponentiables, Cartesian closedness
Let C be a category with finite products.

An object A ∈ C is exponentiable when

−×A : C → C

has a right adjoint, usually written (on objects) as B 7→ BA.

This means: for any B ∈ C there exists an object BA and a morphism eB : BA ×A → B in C

inducing, for any X ∈ C, a (natural) bijection

C(X ×A,B) ∼= C(X,BA)

X ×A B

BA ×A

∀g

∃! g′ ×A eB

The category C is Cartesian closed when every A ∈ C is exponentiable.
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Two examples suggesting a question
For any (A,≤) and (B,≤) in the category Ord of ordered sets and order-preserving maps, the
powerobject (BA,≤) exists: it is BA = Ord((A,≤), (B,≤)) with pointwise order.

So Ord is cartesian closed.

As for the category Met of generalized metric spaces and non-expansive maps:

Theorem (Clementino and Hofmann, 2006). (A, d) is exponentiable in Met if and only if, for
every a, b ∈ A, whenever d(a, b) = r + s in [0,∞] then, for every ε > 0, there exists m ∈ A
such that d(a,m) < r + ε and d(m, b) < s+ ε.

So Met is not cartesian closed.

(Lawvere, 1973) Both ordered sets and generalized metric
spaces can (should!) be regarded as enriched categories.

More specifically, both Ord and Met are of the form
Cat(Q), the category of Q-enriched categories and func-
tors, each for a suitable quantale Q.

Which property of Q makes Cat(Q) Cartesian closed?
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Quantale-enriched categories
A quantale Q = (Q,

∨
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for all elements a, b, (ai)i, (bi)i in Q. (So Q is a very particular monoidal category.)
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such that, for any x, y, z ∈ A0,
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Q-categories and Q-functors form a category Cat(Q) in the obvious way.

For Q = ({0, 1},∨,∧, 1) : A(x, y) = Jx ≤ yK and Cat(Q) = Ord.

For Q = ([0,∞],
∧
,+, 0) : A(x, y) = d(x, y) and Cat(Q) = Met.

But also t-norms and “fuzzy orders”, probabilistic metric spaces, monoidal topology, ...
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A quantale is exactly a one-object quantaloid, so we recover all previous examples.

Performing universal constructions on a quantale very often produces a quantaloid. These are
used in many new examples: partial (probabilistic) metric spaces, sheaves, ...



Exponentiability in Cat(Q)

The product A× B of two Q-categories A and B exists in Cat(Q):

objects: (A× B)X = AX × BX (for all X ∈ Q0),
homs: (A× B)((x, y), (x′, y′)) = A(x, x′) ∧ B(y, y′).

Also the terminal Q-category is easy to describe. So Cat(Q) has finite products.

Theorem (Clementino, Hofmann and Stubbe, 2009). A Q-category A is exponentiable in
Cat(Q) if and only if, for all x, y ∈ A0,

1. for all tx ty

A(x, y)

(fi)i
:
(∨

i fi

)
∧ A(x, y) =

∨
i

(
fi ∧ A(x, y)

)
,

2. for all tx ty
Z

A(x, y)

g f

: (g ◦ f) ∧ A(x, y) =
∨

z ∈ AZ

(
g ∧ A(x, z)

)
◦
(
f ∧ A(z, y)

)
.

These conditions are always satisfied for ordered sets, and reduce to the “approximate
intermediate points” for generalized metric spaces.

(Actually, CHS09 has a characterisation of exponentiable Q-functors—think “Conduché”.)
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Cartesian closedness of Cat(Q)
By definition, Cat(Q) is Cartesian closed when all Q-categories are exponentiable.

So we can find necessary conditions for Cartesian closedness of Cat(Q) by requiring
exponentiability of some Q-categories.

For any h : X → Y in Q, let Ah be the Q-category defined as:

objects: (Ah)0 = {∗1, ∗2} with types t∗1 = Y and t∗2 = X,
homs: Ah(∗1, ∗2) = h, Ah(∗2, ∗1) = 0Y,X , Ah(∗1, ∗1) = 1Y and Ah(∗2, ∗2) = 1X

Y X

∗1 ∗2

h

0

1X1Y in Q

AhAh(∗1, ∗2)

(It is the collage (universal cotabulation) of the image of h under the inclusion Q → Dist(Q).)
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More examples
For a quantale Q = (Q, ◦, 1), Cat(Q) is Cartesian closed if and only if the underlying
suplattice of Q is a locale and

for all a, b, c ∈ Q: (a ◦ b) ∧ c =
(
(a ∧ c) ◦ (b ∧ 1)

)
∨
(
(1 ∧ a) ◦ (b ∧ c)

)
,

because the other conditions in the Theorem are void;

if Q is an integral quantale (meaning
that 1 = ⊤), the latter further simplifies to

for all a, b, c ∈ Q: (a ◦ b) ∧ c = ((a ∧ c) ◦ b) ∨ (a ◦ (b ∧ c)).

Some quantale examples:

1. whenever a ◦ b = a ∧ b in Q (i.e. Q is a locale),
2. Q = {0, 12 , 1} with natural order and multiplication x ◦ y = max{x+ y − 1, 0} (also in

[Lai and Zhang, 2016] but with an ad hoc proof),
3. the left-continuous t-norm

[0, 1]× [0, 1] → [0, 1] : (x, y) 7→ x ◦ y =

{
0 if x, y ≤ 1

2
x ∧ y otherwise

4. the only continuous t-norm satisfying the above condition is the Gödel t-norm
[0, 1]× [0, 1] → [0, 1] : (x, y) 7→ x ◦ y = x ∧ y (see [Lai and Zhang, 2016]),

5. the latter condition was observed in [Lai and Luo, 2025], but only for so-called complete
subquantales of continuous t-norms (and with a different proof).
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More examples
Some quantaloidal examples:

1. The conditions in the Theorem are stable under coproducts (but not under splitting of
idempotents nor the construction of diagonals), so any coproduct of quantales satisfying
the conditions is a quantaloid satisfying the conditions.

2. There are quantaloids that satisfy the conditions that are not a coproduct of quantales.
For example, let L = (L,

∨
,∧,⊤) be a locale, take u, v ∈ L and define Q as follows:

X Y

0

g

f h

all f ≤ u

all g ≤ u ∧ v

all h ≤ v

3. The free quantaloid PC on a (small) category C is given by:
(PC)0 = C0,
PC(X,Y ) = P(C(X,Y )) with

⋃
as suprema,

1X = {1X} and G ◦ F = {g ◦ f | g ∈ G, f ∈ F}.
PC is always locally localic, and satisfies the conditions in the Theorem if and only if

when two morphisms compose in C, then at least one of them is an identity.

In particular, the only free quantale PM (on a monoid (M, ◦, 1)) satisfying this condition
is when M = {∗} (and so PM = ({0, 1},∨,∧, 1)).

(This corrects a mistake in an example in [Clementino, Hofmann and Stubbe, 2009].)
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