EXTENSIVE MORPHISMS

Emma Theart

Stellenbosch University

Joint work with Michael Hoefnagel

Extensive Categories

DEFINITION (EXTENSIVE CATEGORY)

A category $\mathbb C$ with finite coproducts is *extensive* whenever the functor

$$+: (\mathbb{C} \downarrow X_1) \times (\mathbb{C} \downarrow X_2) \rightarrow (\mathbb{C} \downarrow (X_1 + X_2))$$

is an equivalence for all objects X_1 and X_2 in \mathbb{C} .

"Extensive categories are categories in which sums exist and are well-behaved".

Carboni, A., Lack, S. and Walters, R.F.C. (1993). Introduction to extensive and distributive categories. *Journal of Pure and Applied Algebra*, 84:145–158.

Examples: Set, Top, Pos, Grphs, GSet, Diff, CRingop.

DEFINITION (EXTENSIVE CATEGORY)

A category $\mathbb C$ with binary coproducts is extensive whenever the functor

$$+: (\mathbb{C}\downarrow X_1)\times (\mathbb{C}\downarrow X_2) \to (\mathbb{C}\downarrow (X_1+X_2))$$

is an equivalence for all objects X_1 and X_2 in \mathbb{C} .

We study two variants of extensivity:

- 1. Extensive morphisms: 1 restrict extensivity to morphisms in a category;
- 2. Near-sums: exchange + for another bifunctor \oplus .

Motivation: Often in categories which are not extensive, there are large classes of morphisms which exhibit extensive behaviour.

¹Hoefnagel, M., Theart, E. (2025). On extensivity of morphisms. *Theory and Applications of Categories* (accepted to appear).

A CHARACTERISATION OF EXTENSIVE CATEGORIES

Proposition

A category $\mathbb C$ with binary coproducts is extensive if and only if the following conditions hold:

- 1. each morphism in \mathbb{C} admits a pullback along any coproduct inclusion;
- 2. given a commutative diagram

where the bottom row is a coproduct diagram, the top row is a coproduct diagram if and only if the two squares are pullbacks.

Carboni, A., Lack, S. and Walters, R.F.C. (1993). Introduction to extensive and distributive categories. *Journal of Pure and Applied Algebra*, 84:145–158.

EXTENSIVE MORPHISMS

DEFINITION (EXTENSIVE MORPHISM)

Let $\mathbb C$ be a category with finite coproducts. A morphism $f:A\to X$ is extensive whenever the following conditions hold:

- 1. f admits a pullback along every coproduct inclusion;
- 2. given a commutative diagram

where the bottom row is a coproduct diagram, the top row is a coproduct diagram if and only if the two squares are pullbacks.

- A category is extensive if and only if each morphism is;
- ▶ The composite of two extensive morphisms is extensive.

EXTENSIVE MORPHISMS

DEFINITION (EXTENSIVE MORPHISM)

Let $\mathbb C$ be a category with finite coproducts. A morphism $f:A\to X$ is extensive whenever the following conditions hold:

- 1. f admits a pullback along every coproduct inclusion;
- 2. given a commutative diagram

where the bottom row is a coproduct diagram, the top row is a coproduct diagram if and only if the two squares are pullbacks.

▶ This definition shares similarities to that of *crisp morphisms* in:

Manes, E. (1992). Predicate Transformer Semantics. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press.

EXTENSIVE MORPHISMS IN POINTED CATEGORIES

- ▶ Note that extensivity trivialises pointed categories since initials must be strict.
- Any extensive morphism f in a pointed category must have trivial kernel by the following diagram:

EXTENSIVE MORPHISMS IN POINTED CATEGORIES

- Note that extensivity trivialises pointed categories since initials must be strict.
- Any extensive morphism f in a pointed category must have trivial kernel by the following diagram:

EXAMPLES

- ▶ A morphism f in Set_{*} is extensive if and only if ker $f \simeq 0$.
- If each split monomorphism $\mathbb C$ is a coproduct inclusion, then a morphism f in $\operatorname{Pt}_{\mathbb C}(A)$ is extensive if and only if $\ker f \simeq 0$.
- In the category of finitely generated abelian groups, a group is cyclic if and only if each monomorphism into it is extensive.

DEFINITION

A morphism $f: X \to Y$ is *coextensive* in $\mathbb C$ when it is extensive in $\mathbb C^{op}$.

COEXTENSIVITY WITHIN CERTAIN CLASSES OF MORPHISMS

▶ For ℂ finitely complete: Identity morphisms in ℂ are coextensive iff product projections are extremal epimorphisms.

In any variety of algebras this is equivalent to the variety admitting at least one constant, since $0\times 1=0\to 1$ must be surjective.

Coextensivity within certain classes of morphisms

▶ For C finitely complete: Identity morphisms in C are coextensive iff product projections are extremal epimorphisms.

In any variety of algebras this is equivalent to the variety admitting at least one constant, since $0 \times 1 = 0 \to 1$ must be surjective.

► For $\mathbb C$ Barr-exact: Regular epimorphisms are coextensive if and only if $\mathbb C$ has the *Fraser-Horn Property* (if θ is an equivalence relation on $X_1 \times X_2$, then $\theta = \theta_1 \times \theta_2$ for θ_i equivalence relations on X_i).

Coextensivity within certain classes of morphisms

For C finitely complete: Identity morphisms in C are coextensive iff product projections are extremal epimorphisms.

In any variety of algebras this is equivalent to the variety admitting at least one constant, since $0\times 1=0\to 1$ must be surjective.

- ► For $\mathbb C$ Barr-exact: Regular epimorphisms are coextensive if and only if $\mathbb C$ has the *Fraser-Horn Property* (if θ is an equivalence relation on $X_1 \times X_2$, then $\theta = \theta_1 \times \theta_2$ for θ_i equivalence relations on X_i).
- ► For ℂ (finitely) complete: Product projections being coextensive implies that ℂ satisfies the (finite) *strict refinement property.* (Converse holds when product projections are extremal epimorphisms).

A category $\mathbb C$ satisfies the *strict refinement property* if, for any two product diagrams

 $(X \xrightarrow{a_i} A_i)_{i \in I}$ and $(X \xrightarrow{b_j} B_j)_{j \in J}$, one can form a commutative square as below for each i and j

$$C_{ij} \overset{\beta_{i,j}}{\lessdot} B_{j}$$

$$\alpha_{i,j} \overset{\wedge}{\underset{\vdots}{\overset{\wedge}{\underset{a_{i}}{\longrightarrow}}}} b_{j}$$

$$A_{i} \overset{\wedge}{\underset{a_{i}}{\longleftarrow}} X$$

such that $(A_i \xrightarrow{\alpha_{i,s}} C_{i,s})_{s \in J}$ and $(B_j \xrightarrow{\beta_{t,j}} C_{t,j})_{t \in I}$ are product diagrams.

Coextensivity within certain classes of morphisms

► For ℂ finitely complete: Identity morphisms in ℂ are coextensive iff product projections are extremal epimorphisms.

In any variety of algebras this is equivalent to the variety admitting at least one constant, since $0\times 1=0\to 1$ must be surjective.

- For $\mathbb C$ Barr-exact: Regular epimorphisms are coextensive if and only if $\mathbb C$ has the Fraser-Horn Property (if θ is an equivalence relation on $X_1 \times X_2$, then $\theta = \theta_1 \times \theta_2$ for θ_i equivalence relations on X_i).
- ▶ For ℂ (finitely) complete: Product projections being coextensive implies that ℂ satisfies the (finite) *strict refinement property.* (Converse holds when product projections are extremal epimorphisms).
- ▶ For C Barr-exact: Split monomorphisms are coextensive iff C is coextensive.

CONCLUSION

Extensivity can be viewed both as a property of sums, i.e. of the functors

$$+: (\mathbb{C} \downarrow X_1) \times (\mathbb{C} \downarrow X_2) \rightarrow (\mathbb{C} \downarrow (X_1 + X_2)),$$

and as a property of morphisms in a category. Extensive morphisms embodies this second point of view.

Through coextensive morphisms, various algebraic properties enjoy the benefits of categorical generalisation.

References

- ▶ Hoefnagel, M. and Theart, E. (2025). On extensivity of morphisms. *Theory and Applications of Categories* (accepted to appear).
- Hoefnagel, M. (2020). M-coextensive objects and the strict refinement property. Journal of Pure and Applied Algebra, 224:106382.
- Carboni, A., Lack, S. and Walters, R. (1993). Introduction to extensive and distributive categories. *Journal of Pure and Applied Algebra*, 84:145–158.
- Manes, E. (1992). Predicate Transformer Semantics. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press.
- Chang, C., Jónsson, B. and Tarski, A. (1964). Refinement properties for relational structures, Fundamenta Mathematicae, 55:249-281.
- ▶ G. Fraser and A. Horn. (1997). Congruence relations in direct products, Proceedings of the American Mathematical Society, 26:390–394.