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Section 1

Locales
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Locales (point-free spaces)

Locales

A poset (L,4) is a frame or locale, if thas finite meets and arbitrary joins
with the infinite joins distributing over the finite meets:

x f
j

i

yi =
j

i

(x f yi ).

Let us call a monotone map f : (L,4)→ (M,4) which preserves finite
meets and arbitrary joins geometric. The frames with the geometric
morphisms yield a category Frmgeom. The category Locgeom of locales is
defined as Frmop

geom.

There is a functor
Ω : Top→ Locgeom

which sends a space to its poset of opens. This functor has a right adjoint
and this adjunction restricts to an equivalence between sober spaces and
locales with enough points.
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Other notions of morphism

Let us make some categorical observations:

Let us call a monotone map f : (L,4)→ (M,4) cartesian if it
preserves finite meets. This gives rise to other categories Frmcart and
Loccart.

If f , g : (L,4)→ (M,4) are cartesian morphisms, we can write
f 4 g if f (x) 4 g(x) holds for all x ∈ X . This turns Frmcart and
Loccart into order-enriched categories.

Note that a cartesian map f : L→ M is geometric if and only if it has
a right adjoint in Frmcart; that is, there is a cartesian morphism
g : M → L such that 1L 4 gf and fg 4 1M .
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Triposes
Every locale gives rise to a localic topos, the topos of sheaves over that
locale. We can build this topos is two steps, by first building the localic
tripos.

Tripos (Hyland, Johnstone, Pitts)

Write PreHey for the category of preHeyting algebras. A tripos is a
pseudofunctor P : Sets→ PreHeyop such that:

for each function f : Y → X , the operation Pf : PX → PY has both
adjoints satisfying the Beck-Chevally condition.

There is a set Prop and an element > ∈ P(Prop) such that for any
A ∈ P(X ) there is some map a : X → Prop such that P(a)(>) ∼= A.

Think: model of higher-order intuitionistic logic with an impredicative and
intensional Prop.

Example: localic tripos

From any locale (L,4) we obtain a tripos PL with PL(X ) := X → L with
the pointwise ordering.
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Beyond locales?

Tripos-to-topos construction

If P is a tripos, then we can construct a topos out of it by looking at
PERs and functional relations between those (in the sense of the tripos).

There are many interesting of non-localic triposes.

Effective tripos

For any set X , define PE (X ) as the set of functions X → Pow(N). If
ϕ,ψ : X → Pow(N) are two such functions, we will write ϕ 4 ψ if there is
a partial recursive function f such that for any x ∈ X and n ∈ ϕ(x) we
have that f (n) is defined and belongs to ψ(x).

Motivating question

Can we generalise the theory of locales in such a way that other toposes
like the effective topos can also be understood as “sheaves over a
generalised locale”?

6 / 23



Beyond locales?

Tripos-to-topos construction

If P is a tripos, then we can construct a topos out of it by looking at
PERs and functional relations between those (in the sense of the tripos).

There are many interesting of non-localic triposes.

Effective tripos

For any set X , define PE (X ) as the set of functions X → Pow(N). If
ϕ,ψ : X → Pow(N) are two such functions, we will write ϕ 4 ψ if there is
a partial recursive function f such that for any x ∈ X and n ∈ ϕ(x) we
have that f (n) is defined and belongs to ψ(x).

Motivating question

Can we generalise the theory of locales in such a way that other toposes
like the effective topos can also be understood as “sheaves over a
generalised locale”?

6 / 23



Beyond locales?

Tripos-to-topos construction

If P is a tripos, then we can construct a topos out of it by looking at
PERs and functional relations between those (in the sense of the tripos).

There are many interesting of non-localic triposes.

Effective tripos

For any set X , define PE (X ) as the set of functions X → Pow(N). If
ϕ,ψ : X → Pow(N) are two such functions, we will write ϕ 4 ψ if there is
a partial recursive function f such that for any x ∈ X and n ∈ ϕ(x) we
have that f (n) is defined and belongs to ψ(x).

Motivating question

Can we generalise the theory of locales in such a way that other toposes
like the effective topos can also be understood as “sheaves over a
generalised locale”?

6 / 23



Section 2

Arrow algebras
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Arrow structure

Arrow structure

An arrow structure is a complete poset (A,4) together with a binary
operation →: A× A→ A satisfying the following condition:

If a′ 4 a and b 4 b′ then a→ b 4 a′ → b′.

Examples

Every locale is a complete Heyting algebra with implication given by:

x → y :=
j
{z : x f z 4 y}.

We also have (Pow(N),⊆) with

X → Y = {e : (∀x ∈ X ) e · x ↓ and e · x ∈ Y }.

Intuition

We think of the elements of A as truth values or bits of evidence, and we
refer to 4 as the “evidential ordering” (“subtyping ordering”).
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Separator
Within the set of truth values we select the designated ones: those that we
hold to be true. Or those bits of evidence we find conclusive.

Separators

Let A = (A,4,→) be an arrow structure. A separator on A is a subset
S ⊆ A such that the following are satisfied:

(1) If a ∈ S and a 4 b, then b ∈ S .

(2) If a→ b ∈ S and a ∈ S , then b ∈ S .

(3) S contains the combinators (“tautologies”) k, s and a.

Here k, s and a are defined as follows:

k :=
k

a,b

a→ b → a

s :=
k

a,b,c

(a→ b → c)→ (a→ b)→ (a→ c)

a :=
k

a∈A,B⊆Im(→)

(
k

b∈B
a→ b)→ a→

k

b∈B
b.
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Arrow algebras

Arrow algebra

A quadruple (A,4,→,S) consisting of an arrow structure (A,4,→)
together with a separator S is called an arrow algebra.

Examples

1 A frame (L,4) with S = {>}.
2 A frame (L,4) with S an arbitrary filter.

3 The effective arrow algebra (Pow(N),⊆,→,Powi (N)).

We will now explain how any arrow algebra gives rise to a tripos (and
hence a topos).
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Arrow tripos

Proposition

Let A = (A,4,→,S) be an arrow algebra. If we preorder A as follows:

a ` b :⇐⇒ a→ b ∈ S ,

then A carries the structure of a preHeyting algebra.

In this preHeyting algebra the implication is given by →. We think of ` as
giving us the logical ordering.

If A = (A,4,→, S) is an arrow algebra and X is a set, then AX is an arrow
algebra as well: implication and the order can be defined pointwise, while

ϕ : X → A ∈ SX :⇐⇒
k

x∈X
ϕ(x) ∈ S .

If we put PX = (AX ,`SX ), then this defines a tripos: we write AT(A) for
the arrow tripos associated to A. This recovers both localic triposes as
well as the effective tripos.
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Section 3

More examples: pcas
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Pcas

Partial combinatory algebra (pca)

P = (P, ·,≤,P#) is a partial combinatory algebra (pca) if:

(P,≤) is a poset.

· is a partial binary operation, such that if a′b′ is defined and a ≤ a′

and b ≤ b′, then ab is also defined and ab ≤ a′b′.

P# is a filter, that is, a subset P# ⊆ P such that for all a, b, c ∈ P:

(i) if a, b ∈ P# and ab is defined, then ab ∈ P#.
(ii) if a ≤ b and a ∈ P#, then b ∈ P#.
(iii) there are elements k, s ∈ P# satisfying:

(1) kab ↓ and kab ≤ a;
(2) sab ↓;
(3) if ac(bc) ↓, then sabc ↓ and sabc ≤ ac(bc).

Remark

The usual notion of a pca is more restrictive. For our purposes, the
definition above, which is also the one used in Jetze Zoethout’s PhD
thesis, is quite convenient.
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Tripos from a pca

Examples

1 K1: the set of natural numbers with Kleene application (n ·m is the
outcome of the n-th Turing machine on input m, whenever defined)
and the discrete order. All elements belong to the filter.

2 Terms in the untyped λ-calculus and M ≤ N if M �β N. All
elements belong to the filter.

3 Write P = P(N) and fix a computable bijection
[−] : Pfin(N)× N→ N. Then
X · Y = {z ∈ N : (∃γ ∈ Pfin(Y )) [γ, z ] ∈ X } defines a total binary
application on P and P# = {X ∈ P : X is recursively enumerable}
defines a filter.

If P = (P, ·,≤,P#) is a pca, then (DP,⊆,→, S) is an arrow algebra,
where:

DP is the collection of downsets in P,
X → Y := { z ∈ P : (∀x ∈ X ) zx ↓ and zx ∈ Y },
S = {X ∈ DP : (∃x ∈ X ) x ∈ P#}.
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Section 4

Nuclei and morphisms
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Nuclei

Nucleus

Let A = (A,4,→,S) be an arrow algebra. A mapping j : A→ A will be
called a nucleus if the following three properties are satisfied:

(1) a 4 b implies ja 4 jb for all a, b ∈ A.

(2)
c

a∈A a→ ja ∈ S .

(3)
c

a,b∈A(a→ jb)→ (ja→ jb) ∈ S .

Examples

Let A = (A,4,→,S) be an arrow algebra and a ∈ A. Then the following
define nuclei:

jx = (x → a)→ a

jx = a→ x

jx = x ∨ a, where ∨ is the join in the logical ordering.
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Subalgebras from nuclei

Proposition

Let (A,4,→,S) be an arrow algebra and j : A→ A be a nucleus on it.
Then Aj = (A,4,→j , Sj) with

a→j b :≡ a→ jb

a ∈ Sj :⇔ ja ∈ S

is also an arrow algebra.

Theorem

The arrow tripos associated to Aj is a subtripos of the one associated to
A. Indeed, any subtripos of AT(A) is of this form.
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Cartesian morphism of arrow algebras

Cartesian morphisms of arrow algebras (Tarantino)

Let A = (A,4,→, SA) and B = (B,4,→,SB) be arrow algebras. Then a
cartesian morphism f : A → B is a function f : A→ B satisfying:

1 f (a) ∈ SB for all a ∈ SA.

2 there exists an element r ∈ SB such that for all a, a′ ∈ A we have

r 4 f (a→ a′)→ f (a)→ f (a′).

3 for any subset X ⊆ A× A,
if

c
(a,a′)∈X a→ a′ ∈ SA then

c
(a,a′)∈X f (a)→ f (a′) ∈ SB .

This leads to a category ArrAlgcart of arrow algebras and cartesian
morphisms between those. We will regard this category as pre-order
enriched with f 4 g : A → B if

c
a∈A fa→ ga ∈ SB .
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Correspondence to morphisms of triposes

Geometric morphisms of arrow algebras (Tarantino)

A cartesian morphism f : A → B is geometric if it has a right adjoint, that
is, there is a cartesian morphism g : B → A such that 1 4 gf and fg 4 1.

This leads to a subcategory ArrAlggeom of arrow algebras and (geometric)
morphisms between those.

As shown by Tarantino, these morphisms have the following properties:

Morphisms of arrow algebras between locales coincide with locale
morphisms.
Morphisms between arrow algebras deriving from pcas correspond to
computationally dense morphisms of pcas.
Morphisms of arrow algebras correspond to geometric morphisms
between the associated triposes.
Morphisms between arrow algebras can be factored as a surjection
followed by an embedding, where these surjections and embeddings
induce surjections and embeddings on the level of triposes. The
embeddings of arrow algebras are induced by (unique) nuclei.
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Section 5

Comparison to work of Miquel

20 / 23



Implicative algebras
Our work on arrow algebras is heavily inspired by the work of Alexandre
Miquel on implicative algebras.

Implicative algebra (Miquel)

An implicative algebra is an arrow algebra satisfying

a→
k

B =
k

b∈B
a→ b.

1 Miquel has shown that every tripos over Set is isomorphic to an
implicative tripos (an arrow tripos coming from an implicative
algebra).

2 Every arrow algebra is equivalent to an implicative algebra.
3 However, there are many naturaly occurring examples of arrow

algebras which are not implicative algebras. For instance, if P is a
pca, then DP is an implicative algebra iff the application in P is total.

4 Also, we have a notion of morphism of arrow algebras and a neat
factorisation of these morphisms into surjections and inclusions.
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THANK YOU!
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