Arrow algebras (jww Marcus Briët and Umberto Tarantino)

Benno van den Berg ILLC, University of Amsterdam

Category Theory 2025 Brno, 14 July 2025

Section 1

Locales

Locales (point-free spaces)

Locales

A poset (L, \leq) is a *frame* or *locale*, if thas finite meets and arbitrary joins with the infinite joins distributing over the finite meets:

$$x \curlywedge \bigvee_{i} y_{i} = \bigvee_{i} (x \curlywedge y_{i}).$$

Let us call a monotone map $f:(L, \preccurlyeq) \to (M, \preccurlyeq)$ which preserves finite meets and arbitrary joins *geometric*. The frames with the geometric morphisms yield a category $\mathsf{Frm}_{\mathsf{geom}}$. The category $\mathsf{Loc}_{\mathsf{geom}}$ of locales is defined as $\mathsf{Frm}_{\mathsf{geom}}^{\mathsf{op}}$.

There is a functor

$$\Omega: \mathsf{Top} \to \mathsf{Loc}_{\mathrm{geom}}$$

which sends a space to its poset of opens. This functor has a right adjoint and this adjunction restricts to an equivalence between *sober spaces* and *locales with enough points*.

Other notions of morphism

Let us make some categorical observations:

• Let us call a monotone map $f:(L, \preccurlyeq) \to (M, \preccurlyeq)$ cartesian if it preserves finite meets. This gives rise to other categories $\operatorname{Frm}_{\operatorname{cart}}$ and $\operatorname{Loc}_{\operatorname{cart}}$.

Other notions of morphism

Let us make some categorical observations:

- Let us call a monotone map $f:(L, \preccurlyeq) \to (M, \preccurlyeq)$ cartesian if it preserves finite meets. This gives rise to other categories $\operatorname{Frm}_{\operatorname{cart}}$ and $\operatorname{Loc}_{\operatorname{cart}}$.
- If $f,g:(L,\preccurlyeq)\to (M,\preccurlyeq)$ are cartesian morphisms, we can write $f\preccurlyeq g$ if $f(x)\preccurlyeq g(x)$ holds for all $x\in X$. This turns $\mathsf{Frm}_{\mathsf{cart}}$ and $\mathsf{Loc}_{\mathsf{cart}}$ into order-enriched categories.

Other notions of morphism

Let us make some categorical observations:

- Let us call a monotone map $f:(L, \preccurlyeq) \to (M, \preccurlyeq)$ cartesian if it preserves finite meets. This gives rise to other categories $\operatorname{Frm}_{\operatorname{cart}}$ and $\operatorname{Loc}_{\operatorname{cart}}$.
- If $f,g:(L,\preccurlyeq)\to (M,\preccurlyeq)$ are cartesian morphisms, we can write $f\preccurlyeq g$ if $f(x)\preccurlyeq g(x)$ holds for all $x\in X$. This turns $\mathsf{Frm}_{\mathsf{cart}}$ and $\mathsf{Loc}_{\mathsf{cart}}$ into order-enriched categories.
- Note that a cartesian map $f:L\to M$ is geometric if and only if it has a right adjoint in $\operatorname{Frm}_{\operatorname{cart}}$; that is, there is a cartesian morphism $g:M\to L$ such that $1_L\preccurlyeq gf$ and $fg\preccurlyeq 1_M$.

Triposes

Every locale gives rise to a *localic topos*, the topos of sheaves over that locale. We can build this topos is two steps, by first building the *localic tripos*.

Triposes

Every locale gives rise to a *localic topos*, the topos of sheaves over that locale. We can build this topos is two steps, by first building the *localic tripos*.

Tripos (Hyland, Johnstone, Pitts)

Write PreHey for the category of *preHeyting algebras*. A *tripos* is a pseudofunctor $P : Sets \rightarrow PreHey^{op}$ such that:

- for each function $f: Y \to X$, the operation $Pf: PX \to PY$ has both adjoints satisfying the Beck-Chevally condition.
- There is a set Prop and an element $\top \in P(\operatorname{Prop})$ such that for any $A \in P(X)$ there is some map $a : X \to \operatorname{Prop}$ such that $P(a)(\top) \cong A$.

Think: model of higher-order intuitionistic logic with an impredicative and intensional Prop.

Triposes

Every locale gives rise to a *localic topos*, the topos of sheaves over that locale. We can build this topos is two steps, by first building the *localic tripos*.

Tripos (Hyland, Johnstone, Pitts)

Write PreHey for the category of *preHeyting algebras*. A *tripos* is a pseudofunctor $P: Sets \rightarrow PreHey^{op}$ such that:

- for each function $f: Y \to X$, the operation $Pf: PX \to PY$ has both adjoints satisfying the Beck-Chevally condition.
- There is a set Prop and an element $\top \in P(\operatorname{Prop})$ such that for any $A \in P(X)$ there is some map $a : X \to \operatorname{Prop}$ such that $P(a)(\top) \cong A$.

Think: model of higher-order intuitionistic logic with an impredicative and intensional Prop.

Example: localic tripos

From any locale (L, \preceq) we obtain a tripos P_L with $P_L(X) := X \to L$ with the pointwise ordering.

5 / 23

Beyond locales?

Tripos-to-topos construction

If P is a tripos, then we can construct a topos out of it by looking at PERs and functional relations between those (in the sense of the tripos).

Beyond locales?

Tripos-to-topos construction

If P is a tripos, then we can construct a topos out of it by looking at PERs and functional relations between those (in the sense of the tripos).

There are many interesting of non-localic triposes.

Effective tripos

For any set X, define $P_E(X)$ as the set of functions $X \to \operatorname{Pow}(\mathbb{N})$. If $\varphi, \psi: X \to \operatorname{Pow}(\mathbb{N})$ are two such functions, we will write $\varphi \preccurlyeq \psi$ if there is a partial recursive function f such that for any $x \in X$ and $n \in \varphi(x)$ we have that f(n) is defined and belongs to $\psi(x)$.

Beyond locales?

Tripos-to-topos construction

If P is a tripos, then we can construct a topos out of it by looking at PERs and functional relations between those (in the sense of the tripos).

There are many interesting of non-localic triposes.

Effective tripos

For any set X, define $P_E(X)$ as the set of functions $X \to \operatorname{Pow}(\mathbb{N})$. If $\varphi, \psi: X \to \operatorname{Pow}(\mathbb{N})$ are two such functions, we will write $\varphi \preccurlyeq \psi$ if there is a partial recursive function f such that for any $x \in X$ and $n \in \varphi(x)$ we have that f(n) is defined and belongs to $\psi(x)$.

Motivating question

Can we generalise the theory of locales in such a way that other toposes like the effective topos can also be understood as "sheaves over a generalised locale"?

Section 2

Arrow algebras

Arrow structure

Arrow structure

An arrow structure is a complete poset (A, \preccurlyeq) together with a binary operation $\rightarrow: A \times A \rightarrow A$ satisfying the following condition:

If $a' \preccurlyeq a$ and $b \preccurlyeq b'$ then $a \rightarrow b \preccurlyeq a' \rightarrow b'$.

Arrow structure

Arrow structure

An arrow structure is a complete poset (A, \leq) together with a binary operation $\rightarrow: A \times A \rightarrow A$ satisfying the following condition:

If $a' \preccurlyeq a$ and $b \preccurlyeq b'$ then $a \rightarrow b \preccurlyeq a' \rightarrow b'$.

Examples

• Every locale is a complete Heyting algebra with implication given by:

$$x \to y := \bigvee \{z : x \curlywedge z \leqslant y\}.$$

• We also have $(Pow(\mathbb{N}), \subseteq)$ with

$$X \to Y = \{e : (\forall x \in X) e \cdot x \downarrow \text{ and } e \cdot x \in Y\}.$$

Arrow structure

Arrow structure

An arrow structure is a complete poset (A, \preccurlyeq) together with a binary operation $\to: A \times A \to A$ satisfying the following condition:

If $a' \preccurlyeq a$ and $b \preccurlyeq b'$ then $a \rightarrow b \preccurlyeq a' \rightarrow b'$.

Examples

Every locale is a complete Heyting algebra with implication given by:

$$x \to y := \bigvee \{z : x \curlywedge z \preccurlyeq y\}.$$

• We also have $(Pow(\mathbb{N}), \subseteq)$ with

$$X \to Y = \{e : (\forall x \in X) e \cdot x \downarrow \text{ and } e \cdot x \in Y \}.$$

Intuition

We think of the elements of A as truth values or bits of evidence, and we refer to \leq as the "evidential ordering" ("subtyping ordering").

Separator

Within the set of truth values we select the designated ones: those that we hold to be true. Or those bits of evidence we find conclusive.

Separator

Within the set of truth values we select the designated ones: those that we hold to be true. Or those bits of evidence we find conclusive.

Separators

Let $A = (A, \leq, \rightarrow)$ be an arrow structure. A *separator* on A is a subset $S \subseteq A$ such that the following are satisfied:

- (1) If $a \in S$ and $a \leq b$, then $b \in S$.
- (2) If $a \to b \in S$ and $a \in S$, then $b \in S$.
- (3) S contains the combinators ("tautologies") k, s and a.

Separator

Within the set of truth values we select the designated ones: those that we hold to be true. Or those bits of evidence we find conclusive.

Separators

Let $A = (A, \leq, \rightarrow)$ be an arrow structure. A *separator* on A is a subset $S \subseteq A$ such that the following are satisfied:

- (1) If $a \in S$ and $a \leq b$, then $b \in S$.
- (2) If $a \rightarrow b \in S$ and $a \in S$, then $b \in S$.
- (3) S contains the combinators ("tautologies") k, s and a.

 $a \in A, B \subseteq Im(\rightarrow) b \in B$

Here k,s and a are defined as follows:

$$\mathsf{k} := \bigwedge_{a,b} a \to b \to a$$

$$\mathsf{s} := \bigwedge_{a,b,c} (a \to b \to c) \to (a \to b) \to (a \to c)$$

$$\mathsf{a} := \bigwedge (\bigwedge a \to b) \to a \to \bigwedge b.$$

Arrow algebras

Arrow algebra

A quadruple $(A, \leq, \rightarrow, S)$ consisting of an arrow structure (A, \leq, \rightarrow) together with a separator S is called an *arrow algebra*.

Arrow algebras

Arrow algebra

A quadruple $(A, \preccurlyeq, \rightarrow, S)$ consisting of an arrow structure $(A, \preccurlyeq, \rightarrow)$ together with a separator S is called an *arrow algebra*.

Examples

- **1** A frame (L, \preccurlyeq) with $S = \{\top\}$.
- ② A frame (L, \leq) with S an arbitrary filter.
- **3** The effective arrow algebra $(Pow(\mathbb{N}), \subseteq, \rightarrow, Pow_i(\mathbb{N}))$.

Arrow algebras

Arrow algebra

A quadruple $(A, \preccurlyeq, \rightarrow, S)$ consisting of an arrow structure $(A, \preccurlyeq, \rightarrow)$ together with a separator S is called an *arrow algebra*.

Examples

- **1** A frame (L, \preccurlyeq) with $S = \{\top\}$.
- ② A frame (L, \leq) with S an arbitrary filter.
- **3** The effective arrow algebra $(Pow(\mathbb{N}), \subseteq, \rightarrow, Pow_i(\mathbb{N}))$.

We will now explain how any arrow algebra gives rise to a tripos (and hence a topos).

Proposition

Let $A = (A, \preccurlyeq, \rightarrow, S)$ be an arrow algebra. If we preorder A as follows:

$$a \vdash b : \iff a \rightarrow b \in S$$
,

then A carries the structure of a preHeyting algebra.

Proposition

Let $A = (A, \leq, \rightarrow, S)$ be an arrow algebra. If we preorder A as follows:

$$a \vdash b :\iff a \rightarrow b \in S$$
,

then A carries the structure of a preHeyting algebra.

In this preHeyting algebra the implication is given by \to . We think of \vdash as giving us the *logical ordering*.

Proposition

Let $A = (A, \leq, \rightarrow, S)$ be an arrow algebra. If we preorder A as follows:

$$a \vdash b :\iff a \rightarrow b \in S$$
,

then A carries the structure of a preHeyting algebra.

In this preHeyting algebra the implication is given by \to . We think of \vdash as giving us the *logical ordering*.

If $A = (A, \leq, \rightarrow, S)$ is an arrow algebra and X is a set, then A^X is an arrow algebra as well: implication and the order can be defined pointwise, while

$$\varphi: X \to A \in S^X : \iff \int_{x \in X} \varphi(x) \in S.$$

Proposition

Let $A = (A, \leq, \rightarrow, S)$ be an arrow algebra. If we preorder A as follows:

$$a \vdash b : \iff a \rightarrow b \in S$$
,

then A carries the structure of a preHeyting algebra.

In this preHeyting algebra the implication is given by \to . We think of \vdash as giving us the *logical ordering*.

If $A = (A, \preccurlyeq, \rightarrow, S)$ is an arrow algebra and X is a set, then A^X is an arrow algebra as well: implication and the order can be defined pointwise, while

$$\varphi: X \to A \in S^X : \iff \int_{x \in X} \varphi(x) \in S.$$

If we put $PX = (A^X, \vdash_{S^X})$, then this defines a tripos: we write AT(A) for the *arrow tripos* associated to A. This recovers both localic triposes as well as the effective tripos.

Section 3

More examples: pcas

Pcas

Partial combinatory algebra (pca)

 $\mathbb{P} = (P, \cdot, \leq, P^{\#})$ is a partial combinatory algebra (pca) if:

- (P, \leq) is a poset.
- is a partial binary operation, such that if a'b' is defined and $a \leq a'$ and b < b', then ab is also defined and ab < a'b'.
- $P^{\#}$ is a *filter*, that is, a subset $P^{\#} \subseteq P$ such that for all $a, b, c \in P$:
 - (i) if $a, b \in P^{\#}$ and ab is defined, then $ab \in P^{\#}$. (ii) if a < b and $a \in P^{\#}$, then $b \in P^{\#}$.
 - (iii) there are elements $k, s \in P^{\#}$ satisfying:
 - (1) $kab \downarrow and kab < a$;

 - (2) sab ↓;
 - (3) if $ac(bc) \downarrow$, then $sabc \downarrow$ and $sabc \leq ac(bc)$.

Remark

The usual notion of a pca is more restrictive. For our purposes, the definition above, which is also the one used in Jetze Zoethout's PhD thesis, is quite convenient.

Tripos from a pca

Examples

- **1** K_1 : the set of natural numbers with Kleene application $(n \cdot m)$ is the outcome of the n-th Turing machine on input m, whenever defined) and the discrete order. All elements belong to the filter.
- ② Terms in the untyped λ -calculus and $M \leq N$ if $M \rightarrow_{\beta} N$. All elements belong to the filter.
- Write P = P(N) and fix a computable bijection
 [−]: P_{fin}(N) × N → N. Then
 X · Y = {z ∈ N : (∃γ ∈ P_{fin}(Y)) [γ, z] ∈ X} defines a total binary application on P and P[#] = {X ∈ P : X is recursively enumerable} defines a filter.

If $\mathbb{P}=(P,\cdot,\leq,P^{\#})$ is a pca, then $(DP,\subseteq,\rightarrow,S)$ is an arrow algebra, where:

- DP is the collection of downsets in P.
- $X \to Y := \{ z \in P : (\forall x \in X) zx \downarrow \text{ and } zx \in Y \},$
- $S = \{X \in DP : (\exists x \in X) x \in P^{\#}\}.$

Section 4

Nuclei and morphisms

Nuclei

Nucleus

Let $A = (A, \leq, \rightarrow, S)$ be an arrow algebra. A mapping $j : A \rightarrow A$ will be called a *nucleus* if the following three properties are satisfied:

- (1) $a \leq b$ implies $ja \leq jb$ for all $a, b \in A$.
- (2) $\downarrow_{a \in A} a \rightarrow ja \in S$.
- (3) $\bigwedge_{a,b\in A}(a\to jb)\to (ja\to jb)\in S$.

Nuclei

Nucleus

Let $A = (A, \leq, \rightarrow, S)$ be an arrow algebra. A mapping $j : A \rightarrow A$ will be called a *nucleus* if the following three properties are satisfied:

- (1) $a \leq b$ implies $ja \leq jb$ for all $a, b \in A$.
- (2) $\bigwedge_{a \in A} a \rightarrow ja \in S$.
- (3) $\bigwedge_{a,b\in A}(a\to jb)\to (ja\to jb)\in S$.

Examples

Let $A = (A, \preccurlyeq, \rightarrow, S)$ be an arrow algebra and $a \in A$. Then the following define nuclei:

- $jx = (x \rightarrow a) \rightarrow a$
- $jx = a \rightarrow x$
- $jx = x \lor a$, where \lor is the join in the logical ordering.

Subalgebras from nuclei

Proposition

Let $(A, \leq, \rightarrow, S)$ be an arrow algebra and $j: A \rightarrow A$ be a nucleus on it. Then $A_i = (A, \leq, \rightarrow_i, S_i)$ with

$$a \rightarrow_j b :\equiv a \rightarrow jb$$

 $a \in S_j :\Leftrightarrow ja \in S$

is also an arrow algebra.

Subalgebras from nuclei

Proposition

Let $(A, \preccurlyeq, \to, S)$ be an arrow algebra and $j: A \to A$ be a nucleus on it. Then $A_j = (A, \preccurlyeq, \to_j, S_j)$ with

$$a \rightarrow_j b :\equiv a \rightarrow jb$$

 $a \in S_j :\Leftrightarrow ja \in S$

is also an arrow algebra.

Theorem

The arrow tripos associated to A_j is a subtripos of the one associated to A. Indeed, any subtripos of AT(A) is of this form.

Cartesian morphism of arrow algebras

Cartesian morphisms of arrow algebras (Tarantino)

Let $A = (A, \leq, \rightarrow, S_A)$ and $B = (B, \leq, \rightarrow, S_B)$ be arrow algebras. Then a cartesian morphism $f : A \rightarrow B$ is a function $f : A \rightarrow B$ satisfying:

Cartesian morphism of arrow algebras

Cartesian morphisms of arrow algebras (Tarantino)

Let $\mathcal{A}=(A, \preccurlyeq, \rightarrow, S_A)$ and $\mathcal{B}=(B, \preccurlyeq, \rightarrow, S_B)$ be arrow algebras. Then a cartesian morphism $f:\mathcal{A}\to\mathcal{B}$ is a function $f:A\to B$ satisfying:

Cartesian morphisms of arrow algebras (Tarantino)

Let $A = (A, \leq, \rightarrow, S_A)$ and $B = (B, \leq, \rightarrow, S_B)$ be arrow algebras. Then a cartesian morphism $f : A \rightarrow B$ is a function $f : A \rightarrow B$ satisfying:

- ② there exists an element $r \in S_B$ such that for all $a, a' \in A$ we have

$$r \preccurlyeq f(a \rightarrow a') \rightarrow f(a) \rightarrow f(a').$$

Cartesian morphisms of arrow algebras (Tarantino)

Let $A = (A, \leq, \rightarrow, S_A)$ and $B = (B, \leq, \rightarrow, S_B)$ be arrow algebras. Then a cartesian morphism $f : A \to B$ is a function $f : A \to B$ satisfying:

- ② there exists an element $r \in S_B$ such that for all $a, a' \in A$ we have

$$r \preccurlyeq f(a \rightarrow a') \rightarrow f(a) \rightarrow f(a').$$

Cartesian morphisms of arrow algebras (Tarantino)

Let $A = (A, \leq, \rightarrow, S_A)$ and $B = (B, \leq, \rightarrow, S_B)$ be arrow algebras. Then a cartesian morphism $f : A \rightarrow B$ is a function $f : A \rightarrow B$ satisfying:

- ② there exists an element $r \in S_B$ such that for all $a, a' \in A$ we have

$$r \preccurlyeq f(a \rightarrow a') \rightarrow f(a) \rightarrow f(a').$$

This leads to a category ${\rm ArrAlg}_{\rm cart}$ of arrow algebras and cartesian morphisms between those.

Cartesian morphisms of arrow algebras (Tarantino)

Let $A = (A, \leq, \rightarrow, S_A)$ and $B = (B, \leq, \rightarrow, S_B)$ be arrow algebras. Then a cartesian morphism $f : A \rightarrow B$ is a function $f : A \rightarrow B$ satisfying:

- ② there exists an element $r \in S_B$ such that for all $a, a' \in A$ we have

$$r \preccurlyeq f(a \rightarrow a') \rightarrow f(a) \rightarrow f(a').$$

 $\text{ for any subset } X \subseteq A \times A, \\ \text{if } \textstyle \textstyle \textstyle \int_{(a,a') \in X} a \to a' \in S_A \text{ then } \textstyle \textstyle \textstyle \int_{(a,a') \in X} f(a) \to f(a') \in S_B.$

This leads to a category $\operatorname{ArrAlg_{cart}}$ of arrow algebras and cartesian morphisms between those. We will regard this category as pre-order enriched with $f \preccurlyeq g: \mathcal{A} \to \mathcal{B}$ if $\bigwedge_{a \in \mathcal{A}} fa \to ga \in \mathcal{S}_B$.

Correspondence to morphisms of triposes

Geometric morphisms of arrow algebras (Tarantino)

A cartesian morphism $f: \mathcal{A} \to \mathcal{B}$ is *geometric* if it has a right adjoint, that is, there is a cartesian morphism $g: \mathcal{B} \to \mathcal{A}$ such that $1 \leq gf$ and $fg \leq 1$.

Correspondence to morphisms of triposes

Geometric morphisms of arrow algebras (Tarantino)

A cartesian morphism $f: \mathcal{A} \to \mathcal{B}$ is *geometric* if it has a right adjoint, that is, there is a cartesian morphism $g: \mathcal{B} \to \mathcal{A}$ such that $1 \preccurlyeq gf$ and $fg \preccurlyeq 1$. This leads to a subcategory $\operatorname{ArrAlg}_{\operatorname{geom}}$ of arrow algebras and (geometric) morphisms between those.

As shown by Tarantino, these morphisms have the following properties:

- Morphisms of arrow algebras between locales coincide with locale morphisms.
- Morphisms between arrow algebras deriving from pcas correspond to computationally dense morphisms of pcas.
- Morphisms of arrow algebras correspond to geometric morphisms between the associated triposes.
- Morphisms between arrow algebras can be factored as a surjection followed by an embedding, where these surjections and embeddings induce surjections and embeddings on the level of triposes. The embeddings of arrow algebras are induced by (unique) nuclei.

Section 5

Comparison to work of Miquel

Our work on arrow algebras is heavily inspired by the work of Alexandre Miquel on *implicative algebras*.

Implicative algebra (Miquel)

$$a \to \bigwedge B = \bigwedge_{b \in B} a \to b.$$

Our work on arrow algebras is heavily inspired by the work of Alexandre Miquel on *implicative algebras*.

Implicative algebra (Miquel)

$$a \to \bigwedge B = \bigwedge_{b \in B} a \to b.$$

- Miquel has shown that every tripos over Set is isomorphic to an implicative tripos (an arrow tripos coming from an implicative algebra).
- Every arrow algebra is equivalent to an implicative algebra.

Our work on arrow algebras is heavily inspired by the work of Alexandre Miquel on *implicative algebras*.

Implicative algebra (Miquel)

$$a \to \bigwedge B = \bigwedge_{b \in B} a \to b.$$

- Miquel has shown that every tripos over Set is isomorphic to an implicative tripos (an arrow tripos coming from an implicative algebra).
- Every arrow algebra is equivalent to an implicative algebra.
- **③** However, there are many naturaly occurring examples of arrow algebras which are not implicative algebras. For instance, if \mathbb{P} is a pca, then $D\mathbb{P}$ is an implicative algebra iff the application in \mathbb{P} is total.

Our work on arrow algebras is heavily inspired by the work of Alexandre Miquel on *implicative algebras*.

Implicative algebra (Miquel)

$$a \to \bigwedge B = \bigwedge_{b \in B} a \to b.$$

- Miquel has shown that every tripos over Set is isomorphic to an implicative tripos (an arrow tripos coming from an implicative algebra).
- Every arrow algebra is equivalent to an implicative algebra.
- **③** However, there are many naturaly occurring examples of arrow algebras which are not implicative algebras. For instance, if \mathbb{P} is a pca, then $D\mathbb{P}$ is an implicative algebra iff the application in \mathbb{P} is total.
- Also, we have a notion of morphism of arrow algebras and a neat factorisation of these morphisms into surjections and inclusions.

THANK YOU!

References

- Benno van den Berg and Marcus Briët. Arrow algebras, arXiv:2308.14096, 2023.
- Alexandre Miquel. Implicative algebras: a new foundation for realizability and forcing. MSCS 30 (2020), 458 – 510.
- Alexandre Miquel. Implicative algebras II: completeness w.r.t. Set-based triposes, arXiv:1802.00528, 2020.
- Jaap van Oosten. Realizability: An Introduction to its Categorical Side. Elsevier, Amsterdam, 2008.
- Umberto Tarantino. A category of arrow algebras for modified realizability. Theory and Applications of Categories, 44(4): 132-180, 2025.
- Jetze Zoethout. Computability Models and Realizability Toposes. PhD thesis, University of Utrecht, 2022.