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Ronnie Brown’s influence on my work is huge.

Counting only the articles based on two concepts invented by him,

§ crossed squares, which are “crossed modules of crossed modules”,
closely related to the non-abelian tensor product developed in joint work with Loday;

§ double central extensions, which are “central extensions of central extensions”,
and appear in Hopf formulae for homology and are classified by cohomology,

I count 17 published articles and three in preparation.
And that’s just me.

Today’s talk is dedicated to him.

I am currently working on a talk sketching the influence of his work on categorical algebra.
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1. The Kaluzhnin–Krasner Universal Embedding Theorem

For (non-abelian) groups A and B, the Universal Embedding Theorem says
that the (unrestricted) wreath product A ≀ B acts as a universal receptacle
for any group G viewed as an extension from A to B.

Theorem [Krasner et Kaloujnine, 1951]

For any group extension 0 Ñ A Ñ G Ñ B Ñ 0,
the group G can be embedded into the wreath product A ≀ B
via a group homomorphism ϕG : G Ñ A ≀ B. □

§ By definition, A ≀ B is the group Set(B,A) ¸ B, where
§ Set(B,A) – th : B Ñ A functionu with pointwise multiplication (hh1)(b) = h(b)h1(b),

for h, h1 : B Ñ A and b P B;
§ the action of B on Set(B,A) is (hb

1
)(b) = h(bb1), for b, b1 P B.

§ Fix a set-theoretical section s : B Ñ G of f : G Ñ B.
§ ϕG : G Ñ A ≀ B : g ÞÑ (hg, f(g)) where hg : B Ñ A : b ÞÑ s(b) ¨ g ¨ s(b ¨ f(g))´1.

It is not hard to check that this is indeed a group monomorphism.
Note that ϕG depends on the choice of s.
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2. Beyond the case of groups
Kaluzhnin–Krasner Universal Embedding Theorem
For any group extension 0 Ñ A Ñ G Ñ B Ñ 0, the group G can be embedded into
the wreath product A ≀ B via a group homomorphism ϕG : G Ñ A ≀ B. □

Recently, this result was extended to

§ K-Lie algebras, where K is a field: here A ≀ B = VectK(B,A) ¸ B
and B denotes the universal enveloping algebra of B
[Petrogradsky, Razmyslov, and Shishkin, 2007];

§ cocommutative K-Hopf algebras—combining groups and Lie algebras
[Bartholdi, Siegenthaler, and Trimble, 2014].

In all cases, the key question is: What is the wreath product?
What about associative K-algebras, for instance?

Our aim was to answer this question in general, and thus
obtain a Universal Kaluzhnin–Krasner Embedding Theorem.

Our approach is based on a category-theoretical analysis of the known cases, and includes
concrete information about the feasibility of extending the result to other (new) contexts.
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3. Reduction to split extensions
The Embedding Theorem gives us an embedding of group extensions

: A ≀ B induces

0 ,2 Set(B,A) κ
,2 Set(B,A) ¸ B

π ,2 B
σ

lr ,2 0

with σ – (0, 1B) : B Ñ (Set(B,A) ¸ B) = A ≀ B the canonical inclusion.

Any given extension E = (0 Ñ A Ñ G Ñ B Ñ 0) from A to B embeds into
this split extension, via a monomorphism of group extensions ϕ as in

0 ,2 A

ϕA

��

k ,2 G

ϕG

��

f ,2 B
s

lr ,2 0

0 ,2 Set(B,A) κ
,2 A ≀ B

π ,2 B
σ

lr ,2 0.

The set-theoretical section s is a group homomorphism iff ϕG˝s = σ,
so precisely when we have a morphism of split extensions.

Then ϕG is uniquely determined by ϕA : A Ñ Set(B,A).

The same analysis holds for Lie algebras and Hopf algebras.

This alone already implies a strong universality result.
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4. Reduction to split extensions—and a necessary condition
Any split extension S = (0 Ñ A Ñ G Õ B Ñ 0) from A to B
naturally embeds into the wreath product split extension as in
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This becomes, unavoidably:

Theorem [Deval, García-Martínez and VdL, 2024]

In a semi-abelian category X , for any objects A and B we have
R(A) =

(
0 Ñ KR(A) Ñ A ≀ B Õ B Ñ 0

)
,

a universal split extension over B into which each split extension
S =

(
0 Ñ A Ñ G Õ B Ñ 0

)
embeds, iff X is locally algebraically cartesian closed,
in which case K % R for each chosen object B
and the embedding is given by the S-component ηS : S Ñ RK(S) of the adjunction unit. □
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5. The context: semi-abelian categories

Semi-abelian categories [Janelidze, Márki and Tholen, 2002] may be described
in terms of “good behaviour” of their kernels, cokernels and split epimorphisms.

For this, we need a zero object: an object 0 which is initial and terminal. We further assume:

§ finite limits and finite colimits exist;
§ normal epimorphisms (= cokernels) are pullback-stable;
§ any p ˝ i where i normal mono (= kernel) and p normal epi
can be written as m ˝ e with e normal epi and m normal mono;

§ whenever A k ,2G
f ,2B
s

lr where k = ker(f) and f ˝ s = 1B,

k and s are jointly extremal-epic.

Examples:
§ abelian categories: modules over a ring, sheaves of abelian groups;
§ pointed varieties of universal algebras with a group operation:
groups, rings, Lie algebras, associative algebras, crossed modules;

§ loops, Heyting semilattices, cocommutative Hopf algebras, Setop˚ .



5. The context: semi-abelian categories

Semi-abelian categories [Janelidze, Márki and Tholen, 2002] may be described
in terms of “good behaviour” of their kernels, cokernels and split epimorphisms.

For this, we need a zero object: an object 0 which is initial and terminal.

We further assume:

§ finite limits and finite colimits exist;
§ normal epimorphisms (= cokernels) are pullback-stable;
§ any p ˝ i where i normal mono (= kernel) and p normal epi
can be written as m ˝ e with e normal epi and m normal mono;

§ whenever A k ,2G
f ,2B
s

lr where k = ker(f) and f ˝ s = 1B,

k and s are jointly extremal-epic.

Examples:
§ abelian categories: modules over a ring, sheaves of abelian groups;
§ pointed varieties of universal algebras with a group operation:
groups, rings, Lie algebras, associative algebras, crossed modules;

§ loops, Heyting semilattices, cocommutative Hopf algebras, Setop˚ .



5. The context: semi-abelian categories

Semi-abelian categories [Janelidze, Márki and Tholen, 2002] may be described
in terms of “good behaviour” of their kernels, cokernels and split epimorphisms.

For this, we need a zero object: an object 0 which is initial and terminal. We further assume:

§ finite limits and finite colimits exist;
§ normal epimorphisms (= cokernels) are pullback-stable;
§ any p ˝ i where i normal mono (= kernel) and p normal epi
can be written as m ˝ e with e normal epi and m normal mono;

§ whenever A k ,2G
f ,2B
s

lr where k = ker(f) and f ˝ s = 1B,

k and s are jointly extremal-epic.

Examples:
§ abelian categories: modules over a ring, sheaves of abelian groups;
§ pointed varieties of universal algebras with a group operation:
groups, rings, Lie algebras, associative algebras, crossed modules;

§ loops, Heyting semilattices, cocommutative Hopf algebras, Setop˚ .



5. The context: semi-abelian categories

Semi-abelian categories [Janelidze, Márki and Tholen, 2002] may be described
in terms of “good behaviour” of their kernels, cokernels and split epimorphisms.

For this, we need a zero object: an object 0 which is initial and terminal. We further assume:

§ finite limits and finite colimits exist;

§ normal epimorphisms (= cokernels) are pullback-stable;
§ any p ˝ i where i normal mono (= kernel) and p normal epi
can be written as m ˝ e with e normal epi and m normal mono;

§ whenever A k ,2G
f ,2B
s

lr where k = ker(f) and f ˝ s = 1B,

k and s are jointly extremal-epic.

Examples:
§ abelian categories: modules over a ring, sheaves of abelian groups;
§ pointed varieties of universal algebras with a group operation:
groups, rings, Lie algebras, associative algebras, crossed modules;

§ loops, Heyting semilattices, cocommutative Hopf algebras, Setop˚ .



5. The context: semi-abelian categories

Semi-abelian categories [Janelidze, Márki and Tholen, 2002] may be described
in terms of “good behaviour” of their kernels, cokernels and split epimorphisms.

For this, we need a zero object: an object 0 which is initial and terminal. We further assume:

§ finite limits and finite colimits exist;
§ normal epimorphisms (= cokernels) are pullback-stable;

§ any p ˝ i where i normal mono (= kernel) and p normal epi
can be written as m ˝ e with e normal epi and m normal mono;

§ whenever A k ,2G
f ,2B
s

lr where k = ker(f) and f ˝ s = 1B,

k and s are jointly extremal-epic.

Examples:
§ abelian categories: modules over a ring, sheaves of abelian groups;
§ pointed varieties of universal algebras with a group operation:
groups, rings, Lie algebras, associative algebras, crossed modules;

§ loops, Heyting semilattices, cocommutative Hopf algebras, Setop˚ .



5. The context: semi-abelian categories

Semi-abelian categories [Janelidze, Márki and Tholen, 2002] may be described
in terms of “good behaviour” of their kernels, cokernels and split epimorphisms.

For this, we need a zero object: an object 0 which is initial and terminal. We further assume:

¨
� ,2 @i ,2

De
_��

¨

@p
_��

¨
� ,2

Dm
,2 ¨

§ finite limits and finite colimits exist;
§ normal epimorphisms (= cokernels) are pullback-stable;
§ any p ˝ i where i normal mono (= kernel) and p normal epi
can be written as m ˝ e with e normal epi and m normal mono;

§ whenever A k ,2G
f ,2B
s

lr where k = ker(f) and f ˝ s = 1B,

k and s are jointly extremal-epic.

Examples:
§ abelian categories: modules over a ring, sheaves of abelian groups;
§ pointed varieties of universal algebras with a group operation:
groups, rings, Lie algebras, associative algebras, crossed modules;

§ loops, Heyting semilattices, cocommutative Hopf algebras, Setop˚ .



5. The context: semi-abelian categories

Semi-abelian categories [Janelidze, Márki and Tholen, 2002] may be described
in terms of “good behaviour” of their kernels, cokernels and split epimorphisms.

For this, we need a zero object: an object 0 which is initial and terminal. We further assume:

¨
� ,2 @i ,2

De
_��

¨

@p
_��

¨
� ,2

Dm
,2 ¨

§ finite limits and finite colimits exist;
§ normal epimorphisms (= cokernels) are pullback-stable;
§ any p ˝ i where i normal mono (= kernel) and p normal epi
can be written as m ˝ e with e normal epi and m normal mono;

§ whenever A k ,2G
f ,2B
s

lr where k = ker(f) and f ˝ s = 1B,

k and s are jointly extremal-epic.

Examples:
§ abelian categories: modules over a ring, sheaves of abelian groups;
§ pointed varieties of universal algebras with a group operation:
groups, rings, Lie algebras, associative algebras, crossed modules;

§ loops, Heyting semilattices, cocommutative Hopf algebras, Setop˚ .



5. The context: semi-abelian categories

Semi-abelian categories [Janelidze, Márki and Tholen, 2002] may be described
in terms of “good behaviour” of their kernels, cokernels and split epimorphisms.

For this, we need a zero object: an object 0 which is initial and terminal. We further assume:

¨
� ,2 @i ,2

De
_��

¨

@p
_��

¨
� ,2

Dm
,2 ¨

§ finite limits and finite colimits exist;
§ normal epimorphisms (= cokernels) are pullback-stable;
§ any p ˝ i where i normal mono (= kernel) and p normal epi
can be written as m ˝ e with e normal epi and m normal mono;

§ whenever A k ,2G
f ,2B
s

lr where k = ker(f) and f ˝ s = 1B,

k and s are jointly extremal-epic.

Examples:
§ abelian categories: modules over a ring, sheaves of abelian groups;
§ pointed varieties of universal algebras with a group operation:
groups, rings, Lie algebras, associative algebras, crossed modules;

§ loops, Heyting semilattices, cocommutative Hopf algebras, Setop˚ .



5. The context: semi-abelian categories

Semi-abelian categories [Janelidze, Márki and Tholen, 2002] may be described
in terms of “good behaviour” of their kernels, cokernels and split epimorphisms.

For this, we need a zero object: an object 0 which is initial and terminal. We further assume:

¨
� ,2 @i ,2

De
_��

¨

@p
_��

¨
� ,2

Dm
,2 ¨

§ finite limits and finite colimits exist;
§ normal epimorphisms (= cokernels) are pullback-stable;
§ any p ˝ i where i normal mono (= kernel) and p normal epi
can be written as m ˝ e with e normal epi and m normal mono;

§ whenever A k ,2G
f ,2B
s

lr where k = ker(f) and f ˝ s = 1B,

k and s are jointly extremal-epic.

Examples:
§ abelian categories: modules over a ring, sheaves of abelian groups;
§ pointed varieties of universal algebras with a group operation:
groups, rings, Lie algebras, associative algebras, crossed modules;

§ loops, Heyting semilattices, cocommutative Hopf algebras, Setop˚ .



5. The context: semi-abelian categories

Semi-abelian categories [Janelidze, Márki and Tholen, 2002] may be described
in terms of “good behaviour” of their kernels, cokernels and split epimorphisms.

For this, we need a zero object: an object 0 which is initial and terminal. We further assume:

¨
� ,2 @i ,2

De
_��

¨

@p
_��

¨
� ,2

Dm
,2 ¨

§ finite limits and finite colimits exist;
§ normal epimorphisms (= cokernels) are pullback-stable;
§ any p ˝ i where i normal mono (= kernel) and p normal epi
can be written as m ˝ e with e normal epi and m normal mono;

§ whenever A k ,2G
f ,2B
s

lr where k = ker(f) and f ˝ s = 1B,

k and s are jointly extremal-epic.

Examples:
§ abelian categories: modules over a ring, sheaves of abelian groups;
§ pointed varieties of universal algebras with a group operation:
groups, rings, Lie algebras, associative algebras, crossed modules;

§ loops, Heyting semilattices, cocommutative Hopf algebras, Setop˚ .



6. Split extensions and pointed slices

Dominique Bourn calls a split epimorphism f : G Ñ B with a chosen splitting s a point,
because it is a point in the slice category (X Ó B). We write PtB(X ) – (1B Ó (X Ó B)).

B

1B �$

s ,2 G

fz�
B

A k ,2 G
f ,2 B
s

lr f ˝ s = 1B, k = ker(f)

The protomodularity condition that for any point (f, s), the kernel k and splitting s are
jointly extremal-epic implies that any split epimorphism is a cokernel of its kernel, so that

PtB(X ) » ExtSB(X ).

Via a general semidirect product construction [Bourn and Janelidze, 1998] involving
a notion of internal action, we view a split extension S = (0 Ñ A Ñ G Õ B Ñ 0)
as a “non-abelian B-module structure” on A and write G as A ¸ B.

Taking kernel PtB(X ) Ñ X “is” forgetting the B-action K : ExtSB(X ) Ñ X : S ÞÑ A.

Protomodularity is equivalent to the condition that these functors reflect isomorphisms.
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6. Split extensions and pointed slices

Dominique Bourn calls a split epimorphism f : G Ñ B with a chosen splitting s a point,
because it is a point in the slice category (X Ó B). We write PtB(X ) – (1B Ó (X Ó B)).

B

1B �$

s ,2 G

fz�
B

A k ,2 G
f ,2 B
s

lr f ˝ s = 1B, k = ker(f)

The protomodularity condition that for any point (f, s), the kernel k and splitting s are
jointly extremal-epic implies that any split epimorphism is a cokernel of its kernel, so that

PtB(X ) » ExtSB(X ).
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1. The Kaluzhnin–Krasner Universal Embedding Theorem

For (non-abelian) groups A and B, the Universal Embedding Theorem says
that the (unrestricted) wreath product A ≀ B acts as a universal receptacle
for any group G viewed as an extension from A to B.

Theorem [Krasner et Kaloujnine, 1951]

For any group extension 0 Ñ A Ñ G Ñ B Ñ 0, (A◁ G, B – G/A)
the group G can be embedded into the wreath product A ≀ B
via a group homomorphism ϕG : G Ñ A ≀ B. □

§ By definition, A ≀ B is the group Set(B,A) ¸ B, where
§ Set(B,A) – th : B Ñ A functionu with pointwise multiplication (hh1)(b) = h(b)h1(b),

for h, h1 : B Ñ A and b P B;
§ the action of B on Set(B,A) is (hb

1
)(b) = h(bb1), for b, b1 P B.

§ Fix a set-theoretical section s : B Ñ G of f : G Ñ B. (f˝s = 1B)
§ ϕG : G Ñ A ≀ B : g ÞÑ (hg, f(g)) where hg : B Ñ A : b ÞÑ s(b) ¨ g ¨ s(b ¨ f(g))´1.

It is not hard to check that this is indeed a group monomorphism.
Note that ϕG depends on the choice of s.



7. Constructing function spaces: cartesian closedness

A category with finite products is cartesian closed when any two objects A, B have
an exponential AB.

Formally, “times B” is left adjoint to “to the power B”: (´) ˆ B % (´)B

§ Set is cartesian closed: AB – Set(B,A) = th : B Ñ A functionu.

§ A cartesian closed category with a zero object is necessarily trivial:
X (B,A) – X (J ˆ B,A) – X (J,AB) – X (K,AB) = t¡AB : K Ñ ABu

§ However, recall how Set(B,A) occurs when constructing A ≀ B in Gp!

How to “correct” the concept so that it applies to Gp, LieK, etc.?

Would not work:

§ closedness for a different product such as b; (too abelian)

§ local or algebraic cartesian closedness. (no zeroes; too weak)
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8. Flavours of cartesian closedness
plain local

plain

C ˆ E

��

,2 E

!E

��
C ,2 J

C ˆB E

��

p˚(f) ,2 E

p

��
C

f
,2 B

p˚ : (X Ó B) Ñ (X Ó E)

algebraic

C ˆ E ,2

��

Elr

!E

��
C ,2

Jlr

C ˆB E

��

p˚(f) ,2 E
p˚(s)

lr

p

��
C

f ,2 B
s

lr

p˚ : PtB(X ) Ñ PtE(X )

Which pullback functors are left adjoint?

In a semi-abelian category X , the condition (LACC) reduces to the special case E = 0.
If X is a variety, then this amounts to cocontinuity of the kernel functor ¡˚B .
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9. Local algebraic cartesian closedness [J. R. A. Gray, 2012]

Local algebraic cartesian closedness (LACC) is about function spaces
in the context of split extensions in a semi-abelian category X

:

the condition K % R that K : ExtSB(X ) Ñ X sending a split extension
T =

(
0 Ñ L Ñ L ¸ B Õ B Ñ 0

)
over B to the object L admits a right adjoint R : X Ñ ExtSB(X ).

This means that for any object A of X , we have
R(A) =

(
0 Ñ KR(A) Ñ A ≀ B Õ B Ñ 0

)
together with a natural isomorphism

T Ñ R(A)

K(T) = L Ñ A

Examples: KR(A) – Set(B,A) in Gp, and KR(A) – VectK(B,A) in LieK.
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4. Reduction to split extensions—and a necessary condition
Any split extension S = (0 Ñ A Ñ G Õ B Ñ 0) from A to B
naturally embeds into the wreath product split extension as in

0 ,2 A

ϕA

��

k ,2 G

ϕG

��

f ,2 B
s

lr ,2 0

0 ,2 Set(B,A) κ
,2 A ≀ B

π ,2 B
σ

lr ,2 0.

This becomes, unavoidably:

Theorem [Deval, García-Martínez and VdL, 2024]

In a semi-abelian category X , for any objects A and B we have
R(A) =

(
0 Ñ KR(A) Ñ A ≀ B Õ B Ñ 0

)
,

a universal split extension over B into which each split extension
S =

(
0 Ñ A Ñ G Õ B Ñ 0

)
embeds, iff X is locally algebraically cartesian closed,
in which case K % R for each chosen object B
and the embedding is given by the S-component ηS : S Ñ RK(S) of the adjunction unit. □



10. Bad news
Few semi-abelian categories are (LACC), and most are known not to be.

Groups, Lie algebras, cocommutative Hopf algebras, (pre)crossed modules
are essentially the only known non-abelian examples!

Let K be a field. A non-associative K-algebra is a K-vector space equipped with a
(not necessarily associative) bilinear operation. A category of such algebras,
determined by a set of polynomial equations is called a variety of K-algebras.

Examples: LieK, VectK; K-algebras which are associative, commutative, Leibniz,
Jacobi–Jordan, alternative, nilpotent of a certain degree, etc.

When is such a category (LACC)?

Theorem [García-Martínez and VdL, 2019]

Over an infinite field K with char(K) ‰ 2, the only non-abelian
(LACC) variety of non-associative K-algebras is LieK. □

There is no Kaluzhnin–Krasner Theorem for associative algebras!
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11. Outlook

§ From the result for split extension to an embedding theorem for all extensions,
some work needs to be done. Going into this today would lead us too far.

§ A version of the theorem for (pre)crossed modules is in progress:
these do form (LACC) semi-abelian categories.

§ Variations impose themselves:
what about topological groups, for instance? This is an open question.
… Compactly generated Hausdorff groups are (LACC) through.
So, finding the optimal setting for KK here seems an interesting problem.
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Thank you!
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