Cocompleteness of synthetic $(\infty, 1)$ -categories

Daniel Gratzer^a **Jonathan Weinberger**^{b1}

Ulrik Buchholtz^c

^aAarhus University, Denmark ^bChapman University, USA ^cUniversity of Nottingham, United Kingdom

International Category Theory Conference CT2025, Brno, Czechia, July 18, 2025

¹Kindly supported by the Fletcher Jones Foundation.

Dedicated to the dear memory of Thomas Streicher (1958–2025)

∞ -category theory

∞ -categories:

higher morphisms and weak composition

Created with xfig by Yonatan,
https://commons.wikimedia.org/wiki/File:
Homotopy_curves.png

- Dream: $(\infty, 1)$ -category theory should be like 1-category theory, but up-to-homotopy.
- Problems in analytic, set-theoretic foundations: heavy encoding and not homotopy-invariant
- Can we do better in synthetic foundations?

Synthetic ∞ -category theory?!

- Various synthetic theories: [RV22], [Cis+25], [MW23], [AM24]; see Fernando's talk
- We'd like to do it in type theory to make it amenable to computer formalization.
- Homotopy type theory (HoTT) is a homotopy-theoretic foundation system. But ∞ -category is elusive (coherence problem)!
- Directed type theory is a potential way out, but complicated, and applicability is limited: mismatch of type theory with internal logic of Cat.
- Simplicial HoTT (sHoTT) strikes a balance: work in ∞-topos of simplicial objects, carve out (complete) Segal objects.
- Does this bring us closer to an "∞-category theory for undergraduates?" [Rie23]
- Yes!
 - Free naturality & coherence theorems
 - Reduce to finite-dimensional arguments
 - Proofs less model-dependent
 - Verification via computer

Simplicial homotopy type theory

- Question: How to extend HoTT to capture ∞-categories?
- **Answer:** (after Riehl–Shulman): HoTT + interval $\mathbb{I} := \Delta^1$
- \bullet This encompasses (complete) Segal spaces in the simplicial space model (or any $\infty\text{-topos}).$

Synthetic $(\infty, 1)$ -category theory

Definition (Synthetic ∞-categories [RS17])

A type A is ...

ullet Segal or a pre- ∞ -category if $A^{\Delta^2}\simeq A^{\Lambda_1^2}$:

$$\{\blacktriangle\} \simeq \{\land\}$$

• Rezk or a ∞ -category if it is Segal and $A \simeq A^{\mathbb{E}}$:

$$\{\bullet\}\simeq\{\bullet\cong\bullet\}$$

• an ∞ -groupoid if $A^{\parallel} \simeq A$:

$$\{ullet\}\simeq\{ullet oullet\}$$

Definition (hom type)

The **hom type** for a,b:A is: $\hom_A(a,b):=\sum_{f:\mathbb{D}\to A}f(0)=a\times f(1)=b$

Some synthetic prehistory²

- Basic CT, fibered Yoneda lemma, adjunctions [RS17]
- Limits and colimits [Bar22]
- Cartesian fibrations and generalizations [BW23; Wei24a; Wei24b] (cf. also [RV22])
- Conduché fibrations [Bar24]
- directed univalent universe for ∞-groupoids and left fibrations [GWB24] (using modal operators), cf. [Rie18; WL20; Wea24]

²There is a plethora of other directed type theories for category theories; e.g. CaTT and talks by Wilfred and Thibaut.

Formalizing ∞-categories in Rzk

- Kudasov has developed the Rzk proof assistant, implementing sHoTT: https://rzk-lang.github.io/
- Using Rzk we initiated the first ever formalizations of ∞ -category theory.
- In spring 2023, with Kudasov and Riehl we formalized the (discrete fibered) Yoneda lemma of ∞-category theory: https://emilyriehl.github.io/yoneda/
- alongside many other results
- Many proofs in this ∞ -dimensional setting *easier* than in dimension 1!
- Formalization helped find a mistake in original paper
- More students & researchers joined us developing a library for ∞-category theory: https://rzk-lang.github.io/sHoTT/ Join us!


```
··· M 09-voneda rzk md •
                                            ## The Yoroda lenma
                                            The Yoreda lemma says that evaluation at the identity defines an equivalence
W 08-propositions rais mal
                                            This is proven combining the previous steps,
XI 10-trivial-fibrations rak-rud
                                            ""rek #581es*P$17. Theorem 9.1"

▼ 03-simplicial-type-theory.rzk.md

                                            #def yonedo-lemna uses (funext)
                                            ( is-sepal-A : is-sepal A)
                                      281 (a:A)
7 06-2cat-of-segal-types.rzk.md
                                     282 6 C 1 A = 10
                                             ( is-covariant-C | is-covariant & C)
 37 08-coverient rzk.md
                                            I is equiv ((2 ) A) a hom A a 2 a C 2) (C a) (evid A a C)
7 09-yoneda.rzk.md
                                             [ ( ( yon A is-seqs)-A a C is-covariant-C)
37 10-rezk-types.rzk.md
                                                  ( unnegged & (separated a C (secondrigate())
37 12-cocartesian.rzk.md
                                                  / ( use A is-sees)-A a C is-covariant-Cl
                                                   ( evid-yon A is-segal-A a C is-covariant-C))]
```


Additions: modalities and axioms

To capture more categorical structure *modal operators* [Shu18; Gra+20]:

- Opposite op: $\langle \text{op} \mid A \rangle$ has its *n*-simplices reversed
- **Discretization/core** \flat : $\langle \flat \mid A \rangle \to A$ is the maximal subgroupoid of A
- Codiscretization $\sharp: A \to \langle \sharp \mid A \rangle$ is localization at $\partial \Delta^n \to \Delta^n$ (for closed types)
- Twisted arrows tw: $\langle \text{tw} \mid A \rangle$ has as *n*-simplices:

We furthermore need some coherence conditions and axioms about modal and simplicial interaction; in particular **Birkhoff/Blechschmidt duality** or **synthetic quasi-coherence** [Koc77; Ble23; CCH24; PS25; SY25; Wil25; Mye25]:

Axiom (Blechschmidt duality/synthetic quasi-coherence [Ble23; CCH24])

Let A be a finitely presented \mathbb{I} -algebra, i.e., $A \simeq \mathbb{I}[x_1, \dots, x_n]/(r_1 = s_1, \dots, r_n = s_n)$, then the evaluation map is an equivalence:

$$\lambda a, f.f(a) : A \simeq (\hom_{\mathbb{I}}(A, \mathbb{I}) \to \mathbb{I})$$

The universe of spaces

Theorem

- ① There is a synthetic ∞ -category $\mathcal S$ whose terms are ∞ -groupoids.
- ② ${\mathcal S}$ classifies (amazing) left fibrations: $E \longrightarrow {\mathcal S}_*$
- ③ S is closed under Σ , identity types, and finite (co)limits.
- \mathfrak{S} is directed univalent: $(\Delta^1 o \mathcal{S}) \simeq \left(\sum_{A,B:\mathcal{S}} (A o B)\right)$

NB: Bootstrapping is done in *cubical* outer layer: use tiny interval [Lic+18; WL20; Wea24; Ril24] and simplicial types as subtopos [KV20; Sat19; SW21; Wil25].

Towards synthetic higher algebra

We can internally define presheaf categories $PSh(C) :\equiv \langle op | C \rangle \rightarrow S$.

Definition (∞ -monoids)

The category Mon_∞ of ∞ -monoids is the full subcategory of $\mathrm{PSh}(\Delta)$ defined by the predicate

$$\varphi(X :_{\flat} \mathrm{PSh}(\Delta)) :\equiv \prod_{n:\mathrm{Nat}} \mathrm{isEquiv}(\langle X(\iota_k)_{k < n} \rangle : X(\Delta^n) \to X(\Delta^1)^n)$$

This encodes the structure of a homotopy-coherent monoid. Multiplication is given through

$$\mu_X: X(\Delta^1) \simeq X(\Delta^1)^2 \to X(\Delta^1).$$

Definition (∞ -groups)

The category Grp_{∞} of ∞ -groups is the full subcategory of Mon_{∞} defined by the predicate

$$\varphi(X :_{\flat} \mathrm{Mon}_{\infty}) :\equiv \mathrm{isEquiv}(\lambda x, y. \langle x, \mu_X(x,y) \rangle : X(\Delta^1)^2 \to X(\Delta^1)^2)$$

One can show that both these categories have the right type of morphisms.

^aneed the codiscrete modality #

Cofinal functors & Quillen's Theorem A

Definition (Cofinal functors)

A functor $f :_{\flat} C \to D$ is *right cofinal* if for every $X :_{\flat} D \to \mathcal{S}$ we have:

$$\varinjlim_{D} X \simeq \varinjlim_{C} X \circ f$$

Proposition (Characterization of right cofinality)

A functor is right cofinal iff it is left orthogonal to all right fibrations.

Theorem (Quillen's Theorem A)

A functor $f:_{\flat}C\to D$ is right cofinal if and only if $L_{\mathbb{I}}(C\times_{D}d/D)\simeq \mathbf{1}$ for each $d:_{\flat}D$.

Sifted colimits

Definition

A crisp ∞ -category C is *sifted* if $\varinjlim_{C}: \mathcal{S}^C \to \mathcal{S}$ preserves finite products.

With Quillen's Theorem A we get:

Proposition

A crisp ∞ -category C is sifted if and only if for all $n : \mathbb{N}$ the map $C^! : C \to C^n$ is right cofinal.

Theorem

If C has finite coproducts and sifted colimits then C is cocomplete.

Filtered colimits

Definition

An ∞ -category is **finite** if it is generated by 0, 1, or 1 under pushouts.

Definition

A crisp ∞ -category C is *filtered* if $\underline{\lim}: \mathcal{S}^C \to \mathcal{S}$ preserves finite limits.

Definition

A crisp ∞ -category C is weakly filtered if $C^!: \mathcal{C}^X \to \mathcal{C}$ is right cofinal for all finite ∞ -categories X.

We can adapt [SW25] to prove:

Theorem

If C has finite and filtered colimits then it is cocomplete.

Spectra

Stable homotopy theory studies the limit behavior of spaces upon repeatedly suspending them. Spaces get replaced by spectra which correspond to symmetric monoidal ∞ -groupoids and are central to higher algebra:

Definition (The category of spectra)

The ∞ -category of *spectra* is defined as the limit (in the ambient universe): $\operatorname{Sp} :\equiv \underline{\lim}(\mathcal{S}_* \overset{\Omega}{\leftarrow} \mathcal{S}_* \overset{\Omega}{\leftarrow} \ldots)$.

Proposition

Sp is closed under finite limits and filtered colimits.

Following [Cno25], using the cofinality of \mathbb{N} we can prove:

Proposition

 $\Omega: \mathbf{Sp} \to \mathbf{Sp}$ is an equivalence.

Proposition

Sp is finitely cocomplete, and pushouts coincide with pullbacks.

Corollary

Sp is cocomplete.

Ordinary homology theories and smash product

For a commutative ring R, consider the Eilenberg–Mac Lane spectrum functor $1 \mapsto HR : S \to Sp$.

Theorem

The family of functors $H_i: \mathcal{S} \to \operatorname{Ab}$ defined by $H_iX :\equiv \pi_i \operatorname{H}(X;R)$ satisfies the Eilenberg–Steenrod axioms.

Via directed univalence we can define the smash product $-\wedge -: \mathcal{S}_* \times \mathcal{S}_* \to \mathcal{S}_*$, immediately recovering the results proven in Book HoTT such as associativity [Lju24]. Using directed univalence again, we can lift the following to a functor on spectra:

Definition

The **smash product** of spectra $X, Y : \mathbf{Sp}$ is given by

$$X \otimes Y :\equiv \varinjlim_{i,j:\mathbb{N}} \Omega^{i+j} \Sigma^{\infty} (X_i \wedge Y_j).$$

Outlook

- synthetic ∞-category Cat and (co)cartesian straightening-unstraightening
- ullet more on Conduché fibrations and the $(\infty,2)$ -topos perspective
- ullet synthetic ∞ -monads, ∞ -operads, (symmetric) monoidal ∞ -categories, \dots
- $(\mathbf{Sp}, \otimes, \mathbb{S})$ as an s.m.c. (or the unit in presentable stable ∞ -categories)
- internal higher topos theory
- metatheory of (higher?) type theories internally in type theory
- computational version and metatheory of modal sHoTT
- synthetic higher and differential geometry [Sch13; SS12; Shu18; Wel18; CCH24; MR23]
- more formalization
- ...

References I

- [AM24] Fernando Abellán and Louis Martini. $(\infty, 2)$ -Topoi and descent. 2024. arXiv: 2410.02014 [math.CT]. url: https://arxiv.org/abs/2410.02014.
- [Bar22] César Bardomiano Martínez. *Limits and colimits of synthetic* ∞*-categories*. 2022. arXiv: 2202.12386.
- [Bar24] César Bardomiano Martínez. Exponentiable functors between synthetic ∞ -categories. 2024. arXiv: 2407.18072.
- [Ble23] Ingo Blechschmidt. A general Nullstellensatz for generalized spaces. Draft. 2023. url: https://rawgit.com/iblech/internal-methods/master/paper-qcoh.pdf.
- [BW23] Ulrik Buchholtz and Jonathan Weinberger. "Synthetic fibered $(\infty,1)$ -category theory". In: *Higher Structures* 7 (1 2023), pp. 74–165. doi: 10.21136/HS.2023.04.
- [CCH24] Felix Cherubini, Thierry Coquand, and Matthias Hutzler. "A foundation for synthetic algebraic geometry". In: Mathematical Structures in Computer Science 34.9 (2024), pp. 1008–1053.

References II

- [Cis+25] Denis-Charles Cisinski et al. Formalization of Higher Categories. Book project in progress. 2025. url: https://drive.google.com/file/d/11Kaq7watGGl3xvjqw9qHjm6SDPFJ2-0o.
- [Cno25] Bastiaan Cnossen. Introduction to stable homotopy theory. Online. 2025. url: https://drive.google.com/file/d/livHDIqclbg2hxmUEMTqmj2TnsAHQxVg9/view.
- [GWB24] Daniel Gratzer, Jonathan Weinberger, and Ulrik Buchholtz. *Directed univalence in simplicial homotopy type theory.* 2024. arXiv: 2407.09146.
- [Gra+20] Daniel Gratzer et al. "Multimodal Dependent Type Theory". In: *Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science*. LICS '20. ACM, 2020. doi: 10.1145/3373718.3394736.
- [KV20] Krzysztof Kapulkin and Vladimir Voevodsky. "A cubical approach to straightening". In: *Journal of Topology* 13.4 (2020), pp. 1682–1700. doi: 10.1112/topo.12173.
- [Koc77] Anders Kock. "A simple axiomatics for differentiation". In: *Mathematica Scandinavica* 40.2 (1977), pp. 183–193.

References III

- [Lic+18] Daniel R. Licata et al. "Internal Universes in Models of Homotopy Type Theory". In: 3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018). Ed. by Hélène Kirchner. Vol. 108. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2018, 22:1–22:17. doi: 10.4230/LIPIcs.FSCD.2018.22.
- [Lju24] Axel Ljungström. "Symmetric monoidal smash products in homotopy type theory". In: *Mathematical Structures in Computer Science* 34.9 (2024), pp. 985–1007. doi: 10.1017/S0960129524000318.
- [MW23] Louis Martini and Sebastian Wolf. *Internal higher topos theory*. 2023. arXiv: 2303.06437.
- [Mye25] David Jaz Myers. Liberating synthetic quasi-coherence from forcing. Topos Institute blog post. 2025. url: https://topos.institute/blog/2025-07-13-liberating-synthetic-quasi-coherence-from-forcing/.
- [MR23] David Jaz Myers and Mitchell Riley. *Commuting Cohesions*. 2023. arXiv: 2301.13780 [math.CT].

References IV

[PS25] Leoni Pugh and Jonathan Sterling. When is the partial map classifier a Sierpiński cone? 2025, arXiv: 2504, 06789. [Rie18] Emily Riehl. On the directed univalence axiom. Online. Talk on work joint with Evan Cavallo and Christian Sattler, 2018, url: https://math.jhu.edu/~eriehl/JMM2018-directed-univalence.pdf. [Rie23] Emily Riehl. "Could ∞-Category Theory Be Taught to Undergraduates?" In: Notices of the American Mathematical Society 70.5 (2023). doi: 10.1090/noti2692. [RS17] Emily Riehl and Michael Shulman. "A type theory for synthetic ∞ -categories". In: Higher Structures 1 (1 2017), pp. 147–224. doi: 10.21136/HS.2017.06. [RV22] Emily Riehl and Dominic Verity. Elements of \infty -Category Theory. Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2022, doi: 10.1017/9781108936880. Mitchell Riley. A Type Theory with a Tiny Object. 2024. arXiv: 2403.01939 [Ril24] [math.CT]. url: https://arxiv.org/abs/2403.01939.

References V

[Sat19]

1805.04126 [math.CT]

	1000.04120 [math.01].
[SW25]	Christian Sattler and David Wärn. <i>Untitled note on confluent colimits</i> . Online. 2025. url: https://www.cse.chalmers.se/~sattler/docs/confluent/new-2025.txt.
[Sch13]	Urs Schreiber. "Differential cohomology in a cohesive infinity-topos". 2013. eprint: 1310.7930.
[SS12]	Urs Schreiber and Michael Shulman. "Quantum Gauge Field Theory in Cohesive Homotopy Type Theory". In: <i>Proceedings 9th Workshop on Quantum Physics and Logic, QPL 2012, Brussels, Belgium, 10-12 October 2012.</i> Ed. by Ross Duncan and Prakash Panangaden. Vol. 158. EPTCS. 2012, pp. 109–126. doi: 10.4204/EPTCS.158.8. url: https://doi.org/10.4204/EPTCS.158.8.
[Shu18]	Michael Shulman. "Brouwer's fixed-point theorem in real-cohesive homotopy type theory". In: <i>Mathematical Structures in Computer Science</i> 28.6 (2018), pp. 856–941. doi: 10.1017/S0960129517000147. url: https://doi.org/10.1017/S0960129517000147.

Christian Sattler. Idempotent completion of cubes in posets. 2019. arXiv:

References VI

[SY25]

2505 13096

	2303.13030.
[SW21]	Thomas Streicher and Jonathan Weinberger. "Simplicial sets inside cubical sets". In: <i>Theory and Application of Categories</i> 37.10 (2021), pp. 276–286.
[WL20]	Matthew Z. Weaver and Daniel R. Licata. "A Constructive Model of Directed Univalence in Bicubical Sets". In: <i>Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science</i> . LICS '20. ACM, July 2020. doi: 10.1145/3373718.3394794.
[Wea24]	Matthew Zachary Weaver. "Bicubical Directed Type Theory". PhD thesis. Princeton University, 2024.
[Wei24a]	Jonathan Weinberger. "Internal sums for synthetic fibered $(\infty,1)$ -categories". In: Journal of Pure and Applied Algebra 228.9 (Sept. 2024), p. 107659. issn: 0022-4049. doi: 10.1016/j.jpaa.2024.107659.
[Wei24b]	Jonathan Weinberger. "Two-sided cartesian fibrations of synthetic $(\infty,1)$ -categories". In: <i>Journal of Homotopy and Related Structures</i> 19.3 (2024), pp. 297–378. doi: 10.1007/s40062-024-00348-3.

Jonathan Sterling and Lingyuan Ye. Domains and Classifying Topoi. 2025. arXiv:

References VII

- [Wel18] Felix Wellen. Cartan Geometry in Modal Homotopy Type Theory. 2018. arXiv: 1806.05966 [math.DG].
- [Wil25] Mark Damuni Williams. *Projective Presentations of Lex Modalities*. 2025. arXiv: 2501.19187 [cs.L0]. url: https://arxiv.org/abs/2501.19187.