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Quasi-homeomorphisms of spaces

The Grothendieck topos of sheaves on a space Sh(X ) is a useful formalism to study
algebraic structure de�ned over a space, e.g. principal bundles, sheaf cohomology.

When do two spaces have the same topoi of sheaves?

De�nition
A continuous map f : X → Y is called
a quasi-homeomorphism if

f −1 : O(Y )→ O(X )

is a bijection.

Theorem (Grothendieck [Gr66])

Let X and Y be T0-spaces, then the following are
equivalent:

(i) X and Y have equivalent categories of sheaves,

(ii) X and Y admit subspace embeddings

X ⊆W ⊇ Y

by quasi-homeomorphisms.

2 / 12



Quasi-homeomorphisms of spaces

The Grothendieck topos of sheaves on a space Sh(X ) is a useful formalism to study
algebraic structure de�ned over a space, e.g. principal bundles, sheaf cohomology.

When do two spaces have the same topoi of sheaves?

De�nition
A continuous map f : X → Y is called
a quasi-homeomorphism if

f −1 : O(Y )→ O(X )

is a bijection.

Theorem (Grothendieck [Gr66])

Let X and Y be T0-spaces, then the following are
equivalent:

(i) X and Y have equivalent categories of sheaves,

(ii) X and Y admit subspace embeddings

X ⊆W ⊇ Y

by quasi-homeomorphisms.

2 / 12



Topoi and groupoids

Grothendieck topoi can be thought
of as `generalised spaces' where
points can have isomorphisms.

Theorem (Butz-Moerdijk [BM98])

Every topos with enough points is equivalent to the
topos of sheaves on a topological groupoid.

When do two topological groupoids have equivalent topoi of sheaves?

What plays the role of quasi-homeomorphisms for topological groupoids?

In the point-free setting:

Theorem (Moerdijk [Mo88a])

Two localic groupoids X, Y have the same topoi of sheaves if and only if there exist
continuous functors

X←W→ Y

which are essential equivalences (internally to locales).
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Main result and overview

Main result
Two logical groupoids X,Y have
equivalent sheaf topoi if and only
if there exist embeddings

X ⊆W ⊇ Y

that are quasi-homeomorphisms.

I. We recall the construction of the topos of

sheaves on a topological groupoid.

II. We de�ne the class of logical groupoids.

III. We identify the class of quasi-homeomorphisms

of logical groupoids.
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Topological groupoids

De�nition
A topological groupoid X = (X1 ⇒ X0) consists of a groupoid

X1 ×X0 X1 X1 X0,
m

i

t

s

e

where X0 and X1 are endowed with topologies making all the above maps continuous.

If s (equivalently, t) is open, we say X is an open topological groupoid.
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Equivariant sheaves on a groupoid

A sheaf on X consists of:

(i) a local homeomorphism q : Y → X0,

(ii) and a continuous X1-action X1 ×X0 Y → Y .

M M ′ . . . N
X0.

. . .

a

a′

...

a′′

b

...

b′

c

...

c ′

De�nition
The category of sheaves and their
morphisms de�ne a topos Sh(X).

Example

A space X de�nes an `identities only'
topological groupoid.

Its topos of sheaves is the usual Sh(X ).

Example

A topological group G is a topological
groupoid.

Its sheaves is the topos BG of continuous
actions by G on discrete sets.
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Logical groupoids

Proposition

For a T0 topological group G , the following are
equivalent.

(i) The open subgroups are a basis of open
neighbourhoods of the identity.

(ii) The topology τ on G is the coarsest topol-
ogy determined by the topos BG �

i.e. if σ is another topology on G for which
BGσ is canonically equivalent to BG τ , then

τ ⊆ σ.

(iii) There exists a set X such that G ⊆ Ω(X ).

Here, Ω(X ) is endowed with the pointwise

convergence topology, generated by the sub-
sets

{α ∈ Ω(X ) | α(x) = y }
for x , y ∈ X .

De�nition (W.)

We say that a topological groupoid

X = (X1 ⇒ X0)

is logical if

− X is an open topological groupoid,

− both X0 and X1 are T0 spaces,

− and the topology on X1 is the coarsest
topology determined by Sh(X).

Proposition

Every topos with enough points is
equivalent to the topos of sheaves on a
logical groupoid.
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Quasi-homeomorphisms of topological groupoids

Let X be a topological groupoid, and let
Y,U ⊆ X be subgroupoids.

Each arrow α ∈ X1 comes with a left
Y-action and a right U-action:

(β, α) 7→ β ◦ α, (α, γ) 7→ α ◦ γ,

where β ∈ Y1 and γ ∈ U1.

The bi-orbit for these actions is the set

Y[α]U = {β ◦ α ◦ γ | β ∈ Y1, γ ∈ U1 }.

The space of bi-orbits can be endowed with
the quotient topology via the map:

X1 ↠ Y[X1]U.

Theorem (W.)

Let X be a logical groupoid and let Y ⊆ X be a
subgroupoid.

The inclusion Y ⊆ X yields an equivalence

Sh(Y) ≃ Sh(X)
if and only if, for each open subgroupoid
U ⊆ X, the map

Y[U0 → Y0]U → X[U0 → X0]U

Y[α]U 7→ X[α]U

is a quasi-homeomorphism.
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De�nition
A subgroupoid inclusion Y ⊆ X satisfying the
theorem is said to be a quasi-homeomorphism

of logical groupoids.
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Sketch proof

A subgroup G ⊆ Ω(X ) induces a relational

structure ΣG on the set X (see Hodges [Ho93]).

If H ⊆ G ⊆ Ω(X ), then ΣH ⊇ ΣG is a
relational expansion (called a localic expansion
in Caramello [Ca18]).

If X is a logical groupoid and Y ⊆ X is a
subgroupoid, then the induced morphism

ι : Sh(Y)→ Sh(X)

is a localic geometric morphism.
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Sketch proof

Thus, ι is an equivalence if and only if it induces an isomorphism on subobjects

SubSh(X)([U0 → X0]U)→ SubSh(Y)(ι
∗[U0 → X0]U)

for each open subgroupoid U ⊆ X.

A subobject of [U0 → X0]U is an open subspace that is closed under the X1-action

(β, [α]U) 7→ [β ◦ α]U,

and similarly for ι∗[U0 → X0]U ∼= [U0 → Y0]U.

Proposition

There are isomorphisms

O(X[U0 → X0]U) ∼= SubSh(X)([U0 → X0]U),

O(Y[U0 → Y0]U) ∼= SubSh(Y)(ι
∗[U0 → X0]U).
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Consequences

Proposition

If G is a logical group, the inclusion of a subgroup H ⊆ G is a quasi-homeomorphism if
and only if H is a dense subset of G .

Corollary (W.)

(i) Two logical groupoids X,Y have equivalent topoi of sheaves if and only if there exist
embeddings

X ⊆W ⊇ Y
that are quasi-homeomorphisms.

(ii) Given two logical groupoids X, Y, every geometric morphism f : Sh(X)→ Sh(Y) is
induced by a diagram of continuous functors

Y

X W

⊆

f

where Y ⊆W is a quasi-homeomorphism.
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