Joshua Wrigley • IRIF, CNRS, Université Paris Cité

CT2025, Brno

Topoi with enough points and topological groupoids, arXiv:2408.15848

Quasi-homeomorphisms of spaces

The Grothendieck topos of sheaves on a space Sh(X) is a useful formalism to study algebraic structure defined over a space, e.g. principal bundles, sheaf cohomology.

When do two spaces have the same topoi of sheaves?

Quasi-homeomorphisms of spaces

The Grothendieck topos of sheaves on a space Sh(X) is a useful formalism to study algebraic structure defined over a space, e.g. principal bundles, sheaf cohomology.

When do two spaces have the same topoi of sheaves?

Definition

A continuous map $f: X \to Y$ is called a *quasi-homeomorphism* if

$$f^{-1} \colon \mathcal{O}(Y) \to \mathcal{O}(X)$$

is a bijection.

Theorem (Grothendieck [Gr66])

Let X and Y be T_0 -spaces, then the following are equivalent:

- (i) X and Y have equivalent categories of sheaves,
- (ii) X and Y admit subspace embeddings

$$X \subseteq W \supseteq Y$$

by quasi-homeomorphisms.

Grothendieck topoi can be thought of as 'generalised spaces' where points can have isomorphisms.

Grothendieck topoi can be thought of as 'generalised spaces' where points can have isomorphisms.

Theorem (Butz-Moerdijk [BM98])

Every topos with enough points is equivalent to the topos of sheaves on a topological groupoid.

Grothendieck topoi can be thought of as 'generalised spaces' where points can have isomorphisms.

Theorem (Butz-Moerdijk [BM98])

Every topos with enough points is equivalent to the topos of sheaves on a topological groupoid.

When do two topological groupoids have equivalent topoi of sheaves?

What plays the role of quasi-homeomorphisms for topological groupoids?

Grothendieck topoi can be thought of as 'generalised spaces' where points can have isomorphisms.

Theorem (Butz-Moerdijk [BM98])

Every topos with enough points is equivalent to the topos of sheaves on a topological groupoid.

When do two topological groupoids have equivalent topoi of sheaves? What plays the role of quasi-homeomorphisms for topological groupoids?

In the point-free setting:

Theorem (Moerdijk [Mo88a])

Two *localic* groupoids \mathbb{X} , \mathbb{Y} have the same topoi of sheaves if and only if there exist continuous functors

$$\mathbb{X}\leftarrow\mathbb{W}\rightarrow\mathbb{Y}$$

which are essential equivalences (internally to locales).

Main result and overview

Main result

Two logical groupoids \mathbb{X} , \mathbb{Y} have equivalent sheaf topoi if and only if there exist embeddings

$$\mathbb{X}\subset\mathbb{W}\supset\mathbb{Y}$$

that are quasi-homeomorphisms.

Main result and overview

Main result

Two logical groupoids X, Y have equivalent sheaf topoi if and only if there exist embeddings

$$\mathbb{X} \subseteq \mathbb{W} \supseteq \mathbb{Y}$$

that are *quasi-homeomorphisms*.

- I. We recall the construction of the *topos* of sheaves on a topological groupoid.
- II. We define the class of logical groupoids.
- III. We identify the class of *quasi-homeomorphisms* of logical groupoids.

Topological groupoids

Definition

A topological groupoid $\mathbb{X}=(X_1
ightharpoonup X_0)$ consists of a groupoid

$$X_1 \times_{X_0} X_1 \xrightarrow{m} X_1 \xleftarrow{\frac{t}{e}} X_0,$$

where X_0 and X_1 are endowed with topologies making all the above maps continuous.

If s (equivalently, t) is open, we say $\mathbb X$ is an *open* topological groupoid.

A *sheaf* on \mathbb{X} consists of:

- (i) a local homeomorphism $q\colon Y\to X_0$,
- (ii) and a continuous X_1 -action $X_1 \times_{X_0} Y \to Y$.

A *sheaf* on \mathbb{X} consists of:

- (i) a local homeomorphism $q\colon Y\to X_0$,
- (ii) and a continuous X_1 -action $X_1 \times_{X_0} Y \to Y$.

A *sheaf* on \mathbb{X} consists of:

- (i) a local homeomorphism $q\colon Y\to X_0$,
- (ii) and a continuous X_1 -action $X_1 imes_{X_0} Y o Y$.

Definition

The category of sheaves and their morphisms define a topos Sh(X).

A *sheaf* on \mathbb{X} consists of:

- (i) a local homeomorphism $q: Y \to X_0$,
- (ii) and a continuous X_1 -action $X_1 imes_{X_0} Y o Y$.

Definition

The category of sheaves and their morphisms define a topos Sh(X).

Example

A space X defines an 'identities only' topological groupoid.

Its topos of sheaves is the usual Sh(X).

Example

A topological group G is a topological groupoid.

Its sheaves is the topos BG of continuous actions by G on discrete sets.

Proposition

For a T_0 topological group G, the following are equivalent.

(i) The open subgroups are a basis of open neighbourhoods of the identity.

Proposition

For a T_0 topological group G, the following are equivalent.

- (i) The open subgroups are a basis of open neighbourhoods of the identity.
- (ii) The topology τ on G is the coarsest topology determined by the topos BG –

i.e. if σ is another topology on G for which $\mathsf{B} G^\sigma$ is canonically equivalent to $\mathsf{B} G^\tau$, then

$$\tau \subseteq \sigma$$
.

Proposition

For a T_0 topological group G, the following are equivalent.

- (i) The open subgroups are a basis of open neighbourhoods of the identity.
- (ii) The topology au on G is the coarsest topology determined by the topos BG
 - i.e. if σ is another topology on G for which BG^{σ} is canonically equivalent to BG^{τ} , then

$$\tau \subseteq \sigma$$
.

- (iii) There exists a set X such that $G\subseteq \Omega(X)$.
 - Here, $\Omega(X)$ is endowed with the *pointwise* convergence topology, generated by the subsets

$$\{ \alpha \in \Omega(X) \mid \alpha(x) = y \}$$

for $x, y \in X$

Proposition

For a T_0 topological group G, the following are equivalent.

- (i) The open subgroups are a basis of open neighbourhoods of the identity.
- (ii) The topology au on G is the coarsest topology determined by the topos BG –

i.e. if σ is another topology on G for which BG^{σ} is canonically equivalent to BG^{τ} , then

$$\tau \subseteq \sigma$$
.

(iii) There exists a set X such that $G\subseteq \Omega(X)$.

Here, $\Omega(X)$ is endowed with the *pointwise* convergence topology, generated by the subsets

$$\{ \alpha \in \Omega(X) \mid \alpha(x) = y \}$$

for $x, y \in X$

Definition (W.)

We say that a topological groupoid

$$\mathbb{X}=(X_1
ightrightarrows X_0)$$

is *logical* if

- $\mathbb X$ is an open topological groupoid,
- both X_0 and X_1 are T_0 spaces,
- and the topology on X_1 is the coarsest topology determined by $\mathsf{Sh}(\mathbb{X})$.

Proposition

For a T_0 topological group G, the following are equivalent.

- (i) The open subgroups are a basis of open neighbourhoods of the identity.
- (ii) The topology au on G is the coarsest topology determined by the topos BG
 - i.e. if σ is another topology on G for which BG^{σ} is canonically equivalent to BG^{τ} , then

$$\tau \subseteq \sigma$$
.

(iii) There exists a set X such that $G\subseteq \Omega(X)$.

Here, $\Omega(X)$ is endowed with the *pointwise* convergence topology, generated by the subsets

$$\{ \alpha \in \Omega(X) \mid \alpha(x) = y \}$$

for $x, y \in X$.

Definition (W.)

We say that a topological groupoid

$$\mathbb{X}=(X_1
ightrightarrows X_0)$$

is *logical* if

- $\mathbb X$ is an open topological groupoid,
- both X_0 and X_1 are T_0 spaces,
- and the topology on X_1 is the coarsest topology determined by $\mathsf{Sh}(\mathbb{X}).$

Proposition

Every topos with enough points is equivalent to the topos of sheaves on a logical groupoid.

Let \mathbb{X} be a topological groupoid, and let $\mathbb{Y}, \mathbb{U} \subseteq \mathbb{X}$ be subgroupoids.

Each arrow $\alpha \in X_1$ comes with a left \mathbb{Y} -action and a right \mathbb{U} -action:

$$(\beta, \alpha) \mapsto \beta \circ \alpha, \ (\alpha, \gamma) \mapsto \alpha \circ \gamma,$$

where $\beta \in Y_1$ and $\gamma \in U_1$.

Let $\mathbb X$ be a topological groupoid, and let $\mathbb Y, \mathbb U \subseteq \mathbb X$ be subgroupoids.

Each arrow $\alpha \in X_1$ comes with a left \mathbb{Y} -action and a right \mathbb{U} -action:

$$(\beta, \alpha) \mapsto \beta \circ \alpha, \ (\alpha, \gamma) \mapsto \alpha \circ \gamma,$$

where $\beta \in Y_1$ and $\gamma \in U_1$.

The bi-orbit for these actions is the set

$$_{\mathbb{Y}}[\alpha]_{\mathbb{U}} = \{ \beta \circ \alpha \circ \gamma \mid \beta \in Y_1, \gamma \in U_1 \}.$$

The space of bi-orbits can be endowed with the quotient topology via the map:

$$X_1 \twoheadrightarrow_{\mathbb{Y}}[X_1]_{\mathbb{U}}.$$

Let $\mathbb X$ be a topological groupoid, and let $\mathbb Y, \mathbb U \subseteq \mathbb X$ be subgroupoids.

Each arrow $\alpha \in X_1$ comes with a left \mathbb{Y} -action and a right \mathbb{U} -action:

$$(\beta, \alpha) \mapsto \beta \circ \alpha, \ (\alpha, \gamma) \mapsto \alpha \circ \gamma,$$

where $\beta \in Y_1$ and $\gamma \in U_1$.

The bi-orbit for these actions is the set

$$_{\mathbb{Y}}[\alpha]_{\mathbb{U}} = \{ \beta \circ \alpha \circ \gamma \mid \beta \in Y_1, \gamma \in U_1 \}.$$

The *space of bi-orbits* can be endowed with the quotient topology via the map:

$$X_1 \twoheadrightarrow_{\mathbb{Y}} [X_1]_{\mathbb{U}}.$$

Theorem (W.)

Let $\mathbb X$ be a logical groupoid and let $\mathbb Y\subseteq\mathbb X$ be a subgroupoid.

The inclusion $\mathbb{Y} \subseteq \mathbb{X}$ yields an equivalence

$$\mathsf{Sh}(\mathbb{Y}) \simeq \mathsf{Sh}(\mathbb{X})$$

if and only if, for each open subgroupoid $\mathbb{U}\subseteq\mathbb{X},$ the map

$$_{\mathbb{Y}}[U_0 \to Y_0]_{\mathbb{U}} \to _{\mathbb{X}}[U_0 \to X_0]_{\mathbb{U}}$$
 $_{\mathbb{Y}}[\alpha]_{\mathbb{U}} \mapsto _{\mathbb{X}}[\alpha]_{\mathbb{U}}$

is a quasi-homeomorphism.

Theorem (W.)

Let \mathbb{X} be a logical groupoid and let $\mathbb{Y}\subseteq\mathbb{X}$ be a subgroupoid.

The inclusion $\mathbb{Y} \subseteq \mathbb{X}$ yields an equivalence

$$\mathsf{Sh}(\mathbb{Y})\simeq\mathsf{Sh}(\mathbb{X})$$

if and only if, for each open subgroupoid $\mathbb{U} \subset \mathbb{X}$, the map

$$\mathbf{Y}[U_0 \to Y_0]_{\mathbb{U}} \to \mathbf{X}[U_0 \to X_0]_{\mathbb{U}}$$
$$\mathbf{Y}[\alpha]_{\mathbb{U}} \mapsto \mathbf{X}[\alpha]_{\mathbb{U}}$$

is a quasi-homeomorphism.

 $hd V_{\mathbb{Y}}[U_0 o Y_0]_{\mathbb{U}} \subseteq \mathbb{Y}[X_1]_{\mathbb{U}}$ is the subspace of bi-orbits

$$\mathbb{Y}[x \xrightarrow{\alpha} y]_{\mathbb{U}}$$

where $x \in U_0$ and $y \in Y_0$.

Theorem (W.)

Let \mathbb{X} be a logical groupoid and let $\mathbb{Y}\subseteq\mathbb{X}$ be a subgroupoid.

The inclusion $\mathbb{Y} \subseteq \mathbb{X}$ yields an equivalence

$$\mathsf{Sh}(\mathbb{Y})\simeq\mathsf{Sh}(\mathbb{X})$$

if and only if, for each open subgroupoid $\mathbb{U}\subseteq\mathbb{X}$, the map

$$\mathbf{Y}[U_0 \to Y_0]_{\mathbb{U}} \to \mathbf{X}[U_0 \to X_0]_{\mathbb{U}}$$
$$\mathbf{Y}[\alpha]_{\mathbb{U}} \mapsto \mathbf{X}[\alpha]_{\mathbb{U}}$$

is a quasi-homeomorphism.

 $hd V_{\mathbb{Y}}[U_0 o Y_0]_{\mathbb{U}} \subseteq \mathbb{Y}[X_1]_{\mathbb{U}}$ is the subspace of bi-orbits

$$\mathbb{Y}[x \xrightarrow{\alpha} y]_{\mathbb{U}}$$

where $x \in U_0$ and $y \in Y_0$.

Theorem (W.)

Let \mathbb{X} be a logical groupoid and let $\mathbb{Y} \subseteq \mathbb{X}$ be a subgroupoid.

The inclusion $\mathbb{Y} \subseteq \mathbb{X}$ yields an equivalence

$$\mathsf{Sh}(\mathbb{Y})\simeq\mathsf{Sh}(\mathbb{X})$$

if and only if, for each open subgroupoid $\mathbb{U}\subseteq\mathbb{X}$, the map

$$\mathbb{Y}[U_0 \to Y_0]_{\mathbb{U}} \to \mathbb{X}[U_0 \to X_0]_{\mathbb{U}}$$

$$\mathbb{Y}[\alpha]_{\mathbb{U}} \mapsto \mathbb{X}[\alpha]_{\mathbb{U}}$$

is a quasi-homeomorphism.

 $hd X[U_0 o X_0]_{\mathbb U} \subseteq {}_{\mathbb X}[X_1]_{\mathbb U}$ is the subspace of bi-orbits

$$\mathbb{X}[x \xrightarrow{\alpha} y]_{\mathbb{U}}$$

where $x \in U_0$

Theorem (W.)

Let \mathbb{X} be a logical groupoid and let $\mathbb{Y} \subseteq \mathbb{X}$ be a subgroupoid.

The inclusion $\mathbb{Y}\subseteq\mathbb{X}$ yields an equivalence

$$\mathsf{Sh}(\mathbb{Y}) \simeq \mathsf{Sh}(\mathbb{X})$$

if and only if, for each open subgroupoid $\mathbb{U}\subseteq\mathbb{X}$, the map

$$\mathbb{Y}[U_0 \to Y_0]_{\mathbb{U}} \to \mathbb{X}[U_0 \to X_0]_{\mathbb{U}}$$
 $\mathbb{Y}[\alpha]_{\mathbb{U}} \mapsto \mathbb{X}[\alpha]_{\mathbb{U}}$

is a quasi-homeomorphism.

Definition

A subgroupoid inclusion $\mathbb{Y} \subseteq \mathbb{X}$ satisfying the theorem is said to be a *quasi-homeomorphism* of logical groupoids.

A subgroup $G \subseteq \Omega(X)$ induces a *relational* structure Σ_G on the set X (see Hodges [Ho93]). If $H \subseteq G \subseteq \Omega(X)$, then $\Sigma_H \supseteq \Sigma_G$ is a

If $H \subseteq G \subseteq \Omega(X)$, then $\Sigma_H \supseteq \Sigma_G$ is a relational expansion (called a localic expansion in Caramello [Ca18]).

A subgroup $G \subseteq \Omega(X)$ induces a relational structure Σ_G on the set X (see Hodges [Ho93]).

If $H \subseteq G \subseteq \Omega(X)$, then $\Sigma_H \supseteq \Sigma_G$ is a relational expansion (called a localic expansion in Caramello [Ca18]).

If $\mathbb X$ is a logical groupoid and $\mathbb Y\subseteq\mathbb X$ is a subgroupoid, then the induced morphism

$$\iota \colon \mathsf{Sh}(\mathbb{Y}) \to \mathsf{Sh}(\mathbb{X})$$

is a *localic* geometric morphism.

Thus, ι is an equivalence if and only if it induces an isomorphism on subobjects

$$\operatorname{\mathsf{Sub}}_{\operatorname{\mathsf{Sh}}(\mathbb{X})}(W) o \operatorname{\mathsf{Sub}}_{\operatorname{\mathsf{Sh}}(\mathbb{Y})}(\iota^*W)$$

for each $W \in Sh(X)$ in a generating set of Sh(X).

A subgroup $G \subseteq \Omega(X)$ induces a relational structure Σ_G on the set X (see Hodges [Ho93]).

If $H \subseteq G \subseteq \Omega(X)$, then $\Sigma_H \supseteq \Sigma_G$ is a relational expansion (called a localic expansion in Caramello [Ca18]).

For a topological group G, a generating set for BG is given by G/K endowed with the obvious G-action, where $K \subseteq G$ is an open subgroup.

If $\mathbb X$ is a logical groupoid and $\mathbb Y\subseteq\mathbb X$ is a subgroupoid, then the induced morphism

$$\iota \colon \mathsf{Sh}(\mathbb{Y}) \to \mathsf{Sh}(\mathbb{X})$$

is a *localic* geometric morphism.

A subgroup $G \subseteq \Omega(X)$ induces a relational structure Σ_G on the set X (see Hodges [Ho93]).

If $H \subseteq G \subseteq \Omega(X)$, then $\Sigma_H \supseteq \Sigma_G$ is a relational expansion (called a localic expansion in Caramello [Ca18]).

For a topological group G, a generating set for BG is given by G/K endowed with the obvious G-action, where $K \subseteq G$ is an open subgroup.

If $\mathbb X$ is a logical groupoid and $\mathbb Y\subseteq\mathbb X$ is a subgroupoid, then the induced morphism

$$\iota \colon \mathsf{Sh}(\mathbb{Y}) \to \mathsf{Sh}(\mathbb{X})$$

is a *localic* geometric morphism.

For an open subgroupoid $\mathbb{U}\subseteq\mathbb{X}$, the space $[U_0\to X_0]_\mathbb{U}$ yields a sheaf on \mathbb{X} . These form a generating set for the topos $\mathsf{Sh}(\mathbb{X})$.

Thus, ι is an equivalence if and only if it induces an isomorphism on subobjects

$$\operatorname{\mathsf{Sub}}_{\operatorname{\mathsf{Sh}}(\mathbb{X})}([U_0 o X_0]_{\mathbb{U}}) o \operatorname{\mathsf{Sub}}_{\operatorname{\mathsf{Sh}}(\mathbb{Y})}(\iota^*[U_0 o X_0]_{\mathbb{U}})$$

for each open subgroupoid $\mathbb{U}\subseteq\mathbb{X}$.

Thus, ι is an equivalence if and only if it induces an isomorphism on subobjects

$$\mathcal{O}(\mathbb{X}[U_0 \to X_0]_{\mathbb{U}}) \cong \mathsf{Sub}_{\mathsf{Sh}(\mathbb{X})}([U_0 \to X_0]_{\mathbb{U}}) \to \mathsf{Sub}_{\mathsf{Sh}(\mathbb{Y})}(\iota^*[U_0 \to X_0]_{\mathbb{U}})$$
$$\cong \mathcal{O}(\mathbb{Y}[U_0 \to Y_0]_{\mathbb{U}})$$

for each open subgroupoid $\mathbb{U}\subseteq\mathbb{X}$.

A subobject of $[U_0 o X_0]_{\mathbb U}$ is an open subspace that is closed under the X_1 -action

$$(\beta, [\alpha]_{\mathbb{U}}) \mapsto [\beta \circ \alpha]_{\mathbb{U}},$$

and similarly for $\iota^*[U_0 o X_0]_\mathbb{U} \cong [U_0 o Y_0]_\mathbb{U}.$

Proposition

There are isomorphisms

$$\begin{split} &\mathcal{O}(\mathbb{X}[U_0 \to X_0]_{\mathbb{U}}) \cong \mathsf{Sub}_{\mathsf{Sh}(\mathbb{X})}([U_0 \to X_0]_{\mathbb{U}}), \\ &\mathcal{O}(\mathbb{Y}[U_0 \to Y_0]_{\mathbb{U}}) \cong \mathsf{Sub}_{\mathsf{Sh}(\mathbb{Y})}(\iota^*[U_0 \to X_0]_{\mathbb{U}}). \end{split}$$

Consequences

Proposition

If G is a logical group, the inclusion of a subgroup $H\subseteq G$ is a quasi-homeomorphism if and only if H is a *dense* subset of G.

Consequences

Proposition

If G is a logical group, the inclusion of a subgroup $H \subseteq G$ is a quasi-homeomorphism if and only if H is a *dense* subset of G.

Corollary (W.)

(i) Two logical groupoids \mathbb{X}, \mathbb{Y} have equivalent topoi of sheaves if and only if there exist embeddings

$$\mathbb{X} \subseteq \mathbb{W} \supseteq \mathbb{Y}$$

that are quasi-homeomorphisms.

Consequences

Proposition

If G is a logical group, the inclusion of a subgroup $H \subseteq G$ is a quasi-homeomorphism if and only if H is a *dense* subset of G.

Corollary (W.)

(i) Two logical groupoids \mathbb{X}, \mathbb{Y} have equivalent topoi of sheaves if and only if there exist embeddings

$$\mathbb{X} \subseteq \mathbb{W} \supseteq \mathbb{Y}$$

that are quasi-homeomorphisms.

(ii) Given two logical groupoids \mathbb{X} , \mathbb{Y} , every geometric morphism $f: \mathsf{Sh}(\mathbb{X}) \to \mathsf{Sh}(\mathbb{Y})$ is induced by a diagram of *continuous functors*

$$\mathbb{X} \xrightarrow{f} \mathbb{W}$$

where $\mathbb{Y} \subseteq \mathbb{W}$ is a quasi-homeomorphism.

References

- [BM98] Butz C., Moerdijk I. Representing topoi by topological groupoids. J. Pure Appl. Algebra 130 (1998), no. 3, 223–235.
- [Ca18] Caramello O. Theories, sites, toposes. OUP (2018).
- [Gr66] Grothendieck A. Éléments de géométrie algébrique IV. Institut des Hautes Études Scientifiques, (1966).
- [Ho93] Hodges W. Model theory. CUP, (1993).
- [Mo88a] Moerdijk I. The classifying topos of a continuous groupoid I. Trans. Amer. Math. Soc. 310 (1988), 629–668.
- [Wr24] Wrigley J.L. Topoi with enough points and topological groupoids. (2024) arXiv: 2408. 15848.

Further Reading

- [AF13] Awodey S., Forssell H. First-order logical duality. *Ann. Pure Appl. Logic* 164 (2013), no. 3, 319–348.
- [Ca16] Caramello O. Topological Galois theory. *Adv. Math.* 291 (2016), 646–695.
- [JT84] Joyal A., Tierney M. An extension of the Galois theory of Grothendieck. Mem. Amer. Math. Soc. 51 (1984), no. 309.
- [Mo88b] Moerdijk I. Morita equivalence for continuous groups. *Proc. Cambridge Philos. Soc.* 103 (1988), no. 1, 97–115.
 - [Wr23] Wrigley J.L. On topological groupoids that represent theories. (2023) arXiv: 2306.16331.

Thank you for listening