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Locales and Toposes

• Locales are a notion of space where opens take precedence over
points.

• Toposes are a categorification of locales where opens become sheaves.
• Loc is subreflective in Topos.

Loc Topos
Sh

⊣
• Loc is a large 2-category which is locally small and locally posetal.
• Topos is a large 2-category which is not locally small, but its

hom-categories are accessible.
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Dense subcategories

Definition
A full subcategory f : C ↪→ D is dense if any of the following equivalent
properties hold:
• for each d ∈ D, colimf(c)→df(c) = d.
• lanff exists, is pointwise, and equals 1D.
• Nf : D → SetC

op
: d 7→ D(f−, d) is fully faithful.

In this talk we consider exclusively the third condition.

Remark
It is not enough that C generates D under colimits, it has to do so under
canonical colimits.
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Localic points

Let E be a topos. For any locale X we have the category of X-points of E .

(LPt E)(X) = Topos(Sh(X), E)

This defines a pseudofunctor LPt E : Locop → CAT, which is just the nerve
of Sh at E .

NSh = LPt : Topos → CATLoc
op
: E → Topos(Sh(−), E).

Goal
The nerve LPt is fully faithful bicategorically.

LPt E,F : Topos(E ,F)
∼−→ CATLoc

op
(LPt E , LPt F).
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Outline

• Background on bisites and stacks

• Proof sketch

• Searching for a left adjoint
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Sieves in bicategories

Definition
A sieve on x ∈ K is a fully faithful 1-cell S ↪→よx in CatK

op
.

Up to equivalence, this consists of 1-cells with codomain x closed under
precomposition up to isomorphism.

Example
Any 1-cell p : y → x of K generates a sieve on x via the (bijective on
objects, fully faithful) factorisation system.

よY よX

Sp

p

b.o. ff

Up to equivalence, a 1-cell belongs to Sp if it factors through p up to
isomorphism.
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Bisites
Definition
A topology J on K is a class J(x) of covering sieves on each x ∈ K such
that:
• the maximal sieveよx ↪→よx belongs to J(x),
• for each S ∈ J(x) and 1-cell f : y → x, the bipullback R ↪→よy

belongs to J(y),
R S

よy よx

⌟
∼=

f

• if all the bipullbacks of R ↪→よx along the 1-cells f : y → x of a
covering sieve S ↪→よx are covering, then R itself is covering.

Definition
A bisite is a bicategory equipped with a topology.
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Loc as a bisite

Definition
Let JO(X) on be the class of sieves on X ∈ Loc which contain at least one
open surjection.

In other words, S ∈ JO(X) if there is an open surjection p : Y → X such
that Sp ↪→ S.

This is a topology because open surjections are closed under composition,
pullbacks, and identities in Loc.

Remark
Other topologies are available but, for the purposes of this talk, JO is the
most natural.
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Stacks over a bisite

Definition
A pseudofunctor F : Kop → CAT is a stack on the bisite (K, J) if it is local
with respect to sieve inclusions:

F (X) ' CATK
op
(よX , F ) CATK

op
(S, F )∼

for each S ↪→よX in J(X).

Remark
For (Loc, JO) it suffices to check the condition for sieves Sp generated by
open surjections.
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Lax epimorphims
Taking iterated commas of any 1-cell f : C → D in a bicategory K yields a
pseudofunctor ker f : ∆2

op → K.

C ⇒D C ⇒D C C ⇒D C Cm
s

t
i

The bicolimit in K of ker f weighted by ∆2 ↪→ Cat induces a factorisation:

C D.

colim∆2 ker f

f

∼=

Definition
If colim∆2 ker f ' D we say that f is a lax epimorphism or of lax descent
type in K.

Example
In Cat, this is the (bijective on objects, fully faithful) factorisation system.
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Toposes are stacks

Proposition
For p : Y → X in Loc, the following are equivalent:
• p is a lax epimorphism in Topos.
• LPt E is a stack w.r.t. Sp for each topos E .
• LPt (Set[O]) is a stack w.r.t. Sp.

In Moerdijk and Vermeulen 2000, it is shown that open surjections are lax
epimorphisms in Topos. Hence, every LPt E is a stack on (Loc, JO).

Remark
In the non-lax case, this was first noticed in Bunge 1990.
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Proof sketch

Fix an open surjection p : X → E , with X ∈ Loc. [Joyal and Tierney 1984]

Topos(E ,F) CATLoc
op
(LPt E , LPt F)

Cocone(ker p,F) Cocone(ker LPt p, LPt F)

LPtE,F

• the left map is an equivalence since p is a lax epi.
• ker LPt p ∼=よker p and the bottom map is an equivalence by Yoneda.
• LPt E,F is an equivalence if and only if the right map is.
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Proof sketch (cont’d)

The right map

CATLoc
op
(LPt E , LPt F) Cocone(ker LPt p, LPt F)

can be rewritten as

CATLoc
op
(LPt E , LPt F) CATLoc

op
(colim∆2よker p, LPt F)

−◦p̃

where p̃ is as in

よX LPt E .

colim∆2よker p

LPt p

p̃
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Proof sketch (cont’d)

Write [ker p] for colim∆2よker p. We can compute it at each Y ∈ Loc.
• objects: maps a : Y → X .
• morphisms: lax squares

Y X

X E .

b

a p⇒

p

• and p̃ : [ker p] → LPt E is just postcomposition with p.

It remains to show that

CATLoc
op
(LPt E , LPt F) CATLoc

op
([ker p], LPt F)

−◦p̃

is an equivalence, i.e., that LPt F is local with respect to p̃ : [ker p] → LPt E .
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Proof sketch (fin)
It is easy to check that p̃ is
• pointwise fully faithful,
• JO-dense: in any bipullback

S [ker p]

よY LPt E

⌟
p̃∼=

q

the sieve S ↪→よY is covering.

As in 1-category theory, we can show that such a map belongs to the
saturation of sieves inclusions.

So, the stack LPt F is local w.r.t. p̃ and we are done: the nerve of Sh is
2-fully faithful.

LPt E,F : Topos(E ,F)
∼−→ CATLoc

op
(LPt E , LPt F).
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Some details

Let (K, J) be a bisite. Assume that f : A ↪→ B in Pstk(K) is fully faithful
and J-dense.

Let KJ be the bicategory of elements of J . Consider

DJ : KJ → Pst(K)→ : (x ∈ K, S ∈ J(x)) 7→ S ↪→よx.

Consider also the following weight.

Wf : KJ
op → Cat : (x, S) 7→ Pstk(K)→(S ↪→よx, A

f
↪→ B)cart

Then one can show that
colimWfDJ ' f

in Pstk(K)→. If C is a stack on (K, J), then

Pstk(K)(f : A → B,C) = limWfPstk(K)(S ↪→よx, C)

is a bilimit of equivalences, hence an equivalence itself.
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Can we do better?

We have seen that Topos embeds in localic prestacks.

The embedding LPt is a nerve and so preserves all bilimits. Could it have a
left biadjoint?

Topos CATLoc
op

LPt

⊣

Disclaimer
The following slides are work in progress.
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Small prestacks
As expected, there is the issue of size: CATLoc

op
is too large.

But one can still try: in Di Liberti 2022 the author provides a relative left
biadjoint on small prestacks.

CATLoc
op

small

Topos CATLoc
op

Θ

LPt

⊣

The existence of Θ follows from the theory of biKan extension, and is
realised by the formula

Θ(F ) ' CATLoc
op
(F, LPt Set[O]).

17 / 19



Small prestacks
As expected, there is the issue of size: CATLoc

op
is too large.

But one can still try: in Di Liberti 2022 the author provides a relative left
biadjoint on small prestacks.

CATLoc
op

small

Topos CATLoc
op

Θ

LPt

⊣

The existence of Θ follows from the theory of biKan extension, and is
realised by the formula

Θ(F ) ' CATLoc
op
(F, LPt Set[O]).

17 / 19



Small stacks

Maybe Lpt : Topos ↪→ CATLoc
op
factors through CATLoc

op

small , and makes Θ is a
genuine biadjoint.

No. Small bicolimits of representables live in CatLoc
op
↪→ CATLoc

op
, but in

general the image of LPt does not.

There is still hope: Lpt lands in small stacks.

Topos Stk(Loc)small Stk(Loc) CATLoc
op

LPt

Why? We saw that p̃ : [ker p] → LPt E made LPt E the stackification of
[ker p]. So LPt E is a small bicolimit of representables in Stk(Loc).
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It remains to define Θ on Stk(Loc)small. We cannot simply restrict as small
stacks are not small prestacks.

We have a pseudofunctor a : Pstk(Loc)small → Stk(Loc)small, which should
be the bilocalisation at JO-equivalences.

Pstk(Loc)small Topos

Stk(Loc)small

Θ

a
Θ̃

∼=

This is work in progress.

Thank you!
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