Jet Isomorphism

for

Conformal Geometry



Local invariants of conformal structures can be
viewed as functions on the space of jets of met-
rics modulo diffeomorphism and conformal rescal-
ing. We will define this space and show that it
has a natural action of a parabolic subgroup P of
the conformal group. A jet isomorphism theorem
refers to a result asserting the existence of a P-
equivariant isomorphism to a space described in
terms of tensor representations of P.

Such results are central in the study of conformal
invariant theory.

This approach is suggested by Fefferman’s paper:
Parabolic Invariant Theory in Complex Analysis,
Adv. Math. 1979.

Conformal case:
Fefferman and Graham, in preparation
Graham and Hirachi, in preparation
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Lecture 1

Formulation of the space of conformal struc-
tures as a P-space.

Statement of jet isomorphism theorem for n
odd via ambient metric

Lecture 2

Deformation complex and ambient realization

Proof of jet isomorphism theorem for n odd
via deformation complex

Lecture 3

Formulation of jet isomorphism theorem for n
even via inhomogeneous ambient metrics



Jet Isomorphism: Riemannian Geometry

Fix a quadratic form h of signature (p,q) on R"

M = {occ-order jets of metrics g at 0 e R™
satisfying g;;(0) = h;;}
Can identify M = {(9ij,0)|a|>1}

Diff = {oc-order jets of local diffeomorphisms
of R such that ¢(0) = 0}

ODIff = {¢ : ¢'(0) € O(h)} C Diff
Diffg = {¢ : ¢’'(0) = Id} C ODIff

ODiff acts on M on the left: ¢.g = (p~1)*g.

Can view O(h) C ODIff
O(h) is the isotropy group of the flat metric.

Can factor ODIiff = O(h) - Diffg.

O(h) acts on M/Diffg and local invariants of Rie-
mannian metrics correspond to O(h)-invariants of
M /Diffy.

The space M /Diffg can be O(h)-equivariantly
parametrized in terms of curvature tensors and
their covariant derivatives.



Definition: R = {(R(®), R(1) R(2) ...} such that
R(") € A2R"™ @ A2R"* @ @"R™ and:

E) R'ij[k£1ml]m2"'7nr =4
3) R, =g (R)
ijklymy - [ms_1ms]---my ijklmy-me "

Here Qal':;ﬂgfmlmmr(ﬁ) is a quadratic expression in the

R with » < r — 2 arising from the Ricci identity.
R has a natural O(h)-action.

There is a polynomial map M — R which evalu-
ates the covariant derivatives of curvature at the
origin.

This map induces a map M/Diffg — R which is
O(h)-equivariant.

Riemannian Jet Isomorphism Theorem:
The map M/Diffg — R is an O(h)-equivariant
bijection with polynomial inverse.



Proof: use geodesic normal coordinates to define
a slice for the Diffg action on M. Then a lineariza-
tion argument reduces the the theorem to showing
that the linearized map restricted to metrics in nor-
mal form is an isomorphism. The linearized map
can be explicitly identified as the direct sum of
intertwining maps between two equivalent realiza-
tions corresponding to different Young projectors
of irreducible representations of GL(n.R).

Thus local Riemannian invariants correspond to
O(h)-invariants of R. Weyl's classical invariant
theory for O(h) completely describes such invari-
ants,



Conformal Group

0

Define hyj = hij , signature (p+ 1.q+ 1).

= O O
e I O 2

The conformal group is G = O(h)/{+I}.

G acts by conformal transformations on (a2 com-
pactification of) (R", h;;).

The isotropy group of 0 € R™ can be identified with
the subgroup P={p € O(R) : pep = aeqg, a > 0}

Then P =

k-

a b |
p=|0 m' x|:a>0bj € R™, m’; € O(h)
0 0 =«

The corresponding conformal transformation on
R™ is denoted pp, with conformal factor £2p:

L e
pph = S23h.



These are given explicitly by:

T r 1 1

m'jz] —_:;5|:r,i:"w:i'E
' 1

a+ bzl — 5c|z|?

(p(z))t =

= (a + bj:ﬂj - %ﬂ|:ﬂ|2)“1

where
1 : . ; Eg—
= —— b, d = —=mp,
. 2a * am J
and
|| = hjjata?
Note:

Pp(0) = a~*m’;

Qp(0) =a™ 1 d2p(0) = —a%b;



Conformal Jets as P-space

M = same as before: jets of metrics such that
gi;(0) = hy;.

CE = jets of functions €2 such that €2(0) > 0.

Consider Diﬂ’: C?f, with semidirect product such
that (¢,9).9 = (¢~ 1)*(922g) is an action.

The product is given explicitly by:
(01,521) - (w2,522) = (1 0 w2, (821 0 p2) §23)

Define CDIff C Difl’:’ C’S’_‘:' and CDiffg C CDiff by:
CDIff = {(¢, Q) : (21)(0) € O(h)}

CDiffg = {(¢, Q) : ¢'(0) = Id, 2 = 1+ O(|z|?)}
CDiff acts on M by: (¢, Q).g = (¢~ 1)*(Q%g)

Can view P C CDIiff by p— (¢p, 2p).

Then P is the isotropy group of the flat metric
under the CDiff-action.

Can factor CDiff = P - CDiffp.



Then M /CDiffg inherits a natural P-action.

Local conformal invariants correspond precisely to
P-invariants of M /CDiffg.

Since P C GL(n+ 2,R), P acts on tensor powers
of R"+2 not R". Want to describe M/CDiffy as
a P-space in terms of tensors in n+ 2 dimensions.

Different ways to do this: ambient metric, trac-
tors.

The structure of M /CDiffy depends crucially on
whether n is even or odd. This is reflected by:

T(M/CDiffg) & V{/DV3,

where V7, V}, are dual generalized Verma modules,
and D an invariant differential operator.

If n is odd, V{/DV], is an irreducible (g, P)-module.
If n is even, V{/DV} has a unique proper (g, P)-
submodule with irreducible quotient.
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Jet Isomorphism: Conformal Geometry
n_odd

Definition: R = {(R(9, R{1) R(2) ...)} such that
R(r) ¢ A2RH2* @ AZRH2* @ @TRPT2* and:
1) Ripyrr)myn, = O

2) Rrjixr, MMz M, =0

3) R = Q17 (R)
IJKL,My-[My_1 Ms]--My = QiR LM, M,

4) W ERryr py.m, =0

e o = -
5) HIJHD,MT--MT e s=1 R;JKME,MI,.,MB...MT

Here QE;})HLMI__MT(E} is the same quadratic ex-

pression in the ﬁ‘.[ﬁ with ' < + — 2 arising from
the Ricci identity.

The first 4 conditions are invariant under all of
O(h).

Recall that p € P satisfies peg = aegp, a > 0.
11



So if we define the character oy(p) = a™%, and
view

R c n}:fc-=D(®4+?*mﬂ+E* R0_o_,),

then the last condition is invariant under P. Thus
R is a P-space.

Conformal Jet Isomorphism Theorem: If n is
odd, then there is a P-equivariant polynomial bi-
jection ¢ : M/CDiffg — R with polynomial inverse.

If n is even, there is an analogous bijection from
(n—1)-jets of metrics mod CDiffy to a correspond-
ingly truncated version of the space R. An infinite
order version of the Theorem for n even will be
discussed in Lecture 3.

The Jet Isomorphism Theorem reduces the study
of conformal invariants to the study of P-invariants
of R. This is important because algebraic tensorial
operations can be utilized to construct and study
conformal invariants.

Next we discuss the construction of the space R
and the map ¢ using the ambient metric. Lecture
2 will describe a proof of the bijectivity of c.
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Ambient Metric: Flat Case

Define
N == {:13 & Hn+2 l\ {D} : R_{JIIIJ = D}

Q= {[z] : z e N} cP*T1

The metric hyjde!dz’ on R"*+2 induces a
conformal structure on Q.

G = O(h) acts conformally on Q.

P is the isotropy group of a point in Q, so

g=0L/P

Ambient metric for Q is the metric on B»+2:

HIJd:I.'Id:EJ

13



Ambient Metric for general (M, [g])

(Fefferman-Graham 1985)
(M, [g]): €*° conformal manifold, signature (p, q)
G : Metric Bundle of [g]
G = {(z,t%g(z)) : z € M,t > 0} C S?°T*M

G
7| is an Ry-bundle with dilations §5: G — G

M
3s(z,g) = (z,5%F). Set T = £dg|s=1

Choice of metric g determines fiber coordinate t
and an identification G =Ry x M 3 (i, z).
G has a tautological tensor gg € S2T*G:
if z= (z,g) € G and i’, Y € T.G, then
go(X,Y) = g(m X, mY).
go is degenerate: go(T,.X) =0 VX eTG,

and homogeneous of degree 2: §%*gg = s2gp.
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The ambient space is G =G x R 3 (z, p).
. G — G is the inclusion t(z) = (z,0).
Dilations és : G — G act in the G factor.

Definition: An ambient metric g for (M, [g]) is

s

a smooth metric on G of signature (p+ 1,4+ 1)
satisfying:

1) 8%g = 52§
2) *§ = go

3) Ric(g) = 0 to infinite order along G

Theorem: (n odd)

There exists an ambient metric in a homogeneous
neighborhood of G in G. It is unique up to:

{a)hF‘uIII:-ack by a homogeneous diffeomorphism &
of G satisfying ®|g = Id

(b) Homogeneous terms vanishing to infinite order
along G

15



Theorem: (n > 4 even)

There is an obstruction to existence at order n/2:
the “ambient obstruction tensor”.

If 3) is modified to:
3') Ric(g) = O(p™/271)

then there is a solution g. It is unique up to homo-
geneous diffeomorphism and up to homogeneous
terms which are O(p"/?2).

The solution g has an extra geometric property:
For each p € G, the parametrized dilation orbit
s — dgp iS a geodesic for g.

The diffeomorphism invariance can be normalized
by choosing a metric g in the conformal class.
Given g, say g is in normal form relative to g if:

) g=12tdt-dp+ggat p=0

-

(in identification ¢ £ Ry x M x R induced by g).

ii) The lines p — (z,p) are geodesics for g.
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g can be chosen to be in normal form relative to g,
and is then uniquely determined by g up to O(p~)
for n odd and up to O(p™?) for n even.

The Taylor expansion of g at p = 0 is given by
polynomial expressions in derivatives of g.

The map ¢ . M — R is defined as follows. For
g € M, extend g to a metric defined near 0 € R"™.
There is an ambient metric g on B4 x K" xR in
normal form relative to g, uniquely determined to
infinite order. Ewvaluate the covariant derivatives
of curvatureofgatt=1, z=0and p= 0. These
satisfy the relations defining R.

Using the fact that the ambient curvature tensors
are tensors on the ambient space, it can be shown
that ¢ induces a map ¢ : M/CDiffy — R, and that
c Is P-equivariant.

It is possible to show by direct analysis that c is
bijective (Fefferman-Graham). A conceptual proof
will be described in Lecture 2 (Graham-Hirachi).

If n is even, there is an analogous map from
(n — 1)-jets of metrics to a correspondingly
truncated version of the space R. Lecture 3 will

describe an infinite-order extension for n even.
1T



Deformation Complex

and

Proof of

Jet Isomorphism Theorem

n odd



Recall;

h;; = fixed quadratic form on R", signature (p, gq)

i 0 0 1
h‘IJ —l &0 hij 'D
1 0 0O
G = O(h)/{£I}, P = isotropy group of [eg]
N = {z e R"T2\ {0} : hyyjz'z’ = 0}

Q={[z] Pl :ze N} G/P

Have HM:BI:EJ = 220z + |:1:|2, SO

on{lz]:2° =0} =R"  via

The conformal structure on Q is represented by
the flat metric h;;dz’dz’ on R™.

Notation: X = z{8; on R"+2



Recall also that P =

a bi * _
p= |0 m“j * | a0, bj G Rn*, mij € O(h)
0 0O =

ow(p) =a™"

To each finite dimensional representation of P is
associated a homogeneous vector bundle on
Q@ =G/P and on R" — Q. Examples:

e D, bundle of conformal densities of weight w,
induced by o E(w) = IMDy)

e T tangent bundle, induced by p — a~tm

e AP; p-forms, AP(w) = AP @ Dy

e NP (p > q):. covariant tensors with Young
symmetry

: s;}q




feNPIC ANPQAY if

fil,,-‘fﬁjl...jq — f[il...ip][jl...jq]’ f{il...ipj]_]jg..,jq o
Note ALl = @2

AET C APH trace-free tensors

AE? is irreducible
Differential operators (on R"):
dy : NP9 — APHLE g, - AP 5 AP @ AT

81 : AP — AP~ 1 @M, 5y NPT - AP:a—1
Given by:

(d1.F Digiy-ipgr-dg = Oigiy--ipliy- i’
(d2f)iy-wipir-dgrr = ol iy -iplir-dal’
(611)iy- = —8f;,..

k
(62 )i -ipj1dg—1 — =0 fi; .. ‘tpj1 - Jg—1F"



For n > 4, the deformation complex on R" is

D D D
0 —g— AL2) =2 AFH(2) =5 AF2(2) =2 AFA(2)

! & 1.1 P "

where
Dg = tf Symd>

Dy = tfdido

Dp=tfdy p=2,3,...,n—3
Dy, o = 02d;
Dy 1 =02

It is a complex (D? = 0), analogous to deRham.
D4, D,,_» are second order, others first order.
Gasqui-Goldschmidt (1984) “by hand”

Special case of gBGG complex.

Exact on jets.

Conformally invariant.

Alternate form when n = 3.

Controls deformations of conformal structures:
Infinitesimally, have:

DoV — tf Ly-h, conformal Killing operator
Dy — W = Weyl tensor, and
g «— conformal symmetries of h



Ambient Lifts

Goal: give ambient description of spaces and maps
Different approaches: Cap-Slovak-Soucek,
Calderbank-Diemer

Definition: AP = same symmetry, on R"+2
Ag?: trace-free with respect to h ) .
AP9(w): sections homog. deg. w: Lxf =wf

HPA(w) C ﬁﬁ’q{w): sections satisfying:
(*) Ef= 0, Elfz 0, X, f=0

IfUCQ, setd ==n"1U) CN, and
%q(w) = jets along U satisfying ()

to infinite order along U

Can interpret HP(w) as a sheaf on Q. Conditions
defining HP4(w) are G-invariant, so G "acts” on
HP9(w). (“Homogeneous sheaf”)

Existence and Uniqueness of Ambient Lift:
Letp>g>0, weC.

If p>q=0, assume that w = 2p — n.

Ifg>0, assumethat w==p+2¢g—n—-1, 2p+qg—mn.

If w+n/2—p—q¢&N, then AB(w) = HPI(w)
Equality as sheaves on Q.
Isomorphism is G-equivariant.



A section f of A§9(w) can be viewed as a covariant
tensor (also denoted f) on N, homogeneous of
degree w, satisfying X_.f = 0. It is then clear that
¥ induces a map

& {f € ABY(w) : X.f =0 on @} — AR (w)

where ¢+ : N — R" T2 so in particular this gives a
map

g HP Y (w) — ﬁ%’q(w).

The Theorem asserts that this map is an isomor-
phism, i.e. each section of AQ?(w) has a unique
extension (ambient lift) as a section of HP(w).

The disallowed values correspond to the existence
of certain invariant differential operators acting on
ﬁ%‘q(w}.

Main ingredients in proof:

17 Imnitial lift: “completeing” a tensor in hﬁ’q(wj to
A9 (w)|nr (differential splitting formulae, ideas
go back to Tracy Thomas)

2. “Harmonic” extension off N/



Scalar case: p=¢g=20
(Eastwood-Graham 1991)

Theorem says: if w+n/2 ¢ N, then £(w) = H(w).

Set Q = hyjzfz’. Given f homogeneous of de-
gree w, need to find f homogeneous degree w
with Af = 0(Q*®) and f|yr = f. Construct f
inductively to higher order. Suppose

f# = 0@ .
Set
FlE+1) = k) 4 oky for n € E(w — 2k)
Then
AfE+D = KF*) + A(Q )
=A% +[4,Q"n+ 0@

=Af® 4 26QF1(2k + n + 2X)n + O(Q")

=AF*) 4 2k(n + 2w — 2k)nQ5 1 + 0(QF)
so if n 4 2w 7= 2k, can solve for 7.

If n/2 4+ w = k € N, then harmonic extension is
obstructed by the conformally invariant operator
AF,



I-fovme: o= 1. =1

Theorem says: ifw#2—-nand w4+n/2-1¢N,
then Al(w) =2 HY(w). Recall f e H(w) means

feAl(w), Af=0, 6f=0, X.,f=o.

Can choose some f € Al(w) such that .*f = f.
This determines fup to addition of ¥d@Q+ Q¢ with
i a function and ¢ a 1-form, both of homogeneity
w — 2. Can choose f so that X.f = 0(Q2?). Try
to determine i, ¢ so that

X(f 4+ %dQ + Q¢) = 0(Q?)

and
5(f + vdQ + Q) = 0(Q).
First equation gives ¥dQ(X)+Qd(X) = 0(Q?), so
29 + ¢(X) = 0(Q).
Second equation gives
0f —2(n + w)y — 26(X) = 0(Q),

so combining gives

5f —2(n+ w—2)¥ = 0(Q).

If n 4w = 2, we can determine ¥ mod Q).



Now all components of f|y are determined mod
0(Q). Write f = frdz!; all f; are homogeneous of
degree w — 1. By scalar case, can uniquely extend
each f; harmonically to infinite order. Claim that
the extension automatically satisfies §f = 0 and
X.f =0 to infinite order. Check §f|y = 0. Com-
mute A through § to see that Adf = 0. But éf has
homogeneity w—2 and n+ (w— 2) ¢ N, so unigue-
ness for scalar case gives 6f = 0. Now X .f =0 is
similar. Uses 6f = 0 and that X.f = 0(Q?).

For higher p, g, the algebra of the “initial lift" is
more complicated, but the basic idea is the same.
For given p, g with g > 0, there are two invariant di-
vergence operators obstructing the initial lift, giv-
ing rise to two excluded values of w. (If p=g¢q > 0,
one of the obstructing operators is second order—
an iterated divergence.)

This ambient lift theorem implies a correspond-
ing statement providing a (g, P)-equivariant iso-
morphism between jets at [eg] € Q of sections
of AB%(w) with jets at eg € R" T2 of elements
of HP9(w). This “jet isomorphism theorem for
Ag?(w)" can be interpreted as providing an am-
bient description of the dual generalized Verma
modules. The (g, P)-action in the ambient de-
scription is given in terms of tensor representa-

tions.
10



Lift of Deformation Complex, n > 5 odd

Observe that for p, q, w € Z, the condition

w+n/2—-p—qg¢gN

for harmonic lifting is automatic if n is odd. Can
check that the lifting theorem applies to all Ab?(w)
which occur in the deformation complex except for
the second-to-last one. This one fails because the
last operator is d», which is the divergence oper-
ator obstructing the initial lift. So we have an
ambient description for each bundle in the defor-
mation complex except the second to last one.

It is not difficult to identify the differential opera-
tors on R"*+2 which correspond to the operators in
the deformation complex in this realization. One
obtains:

11



Theorem: Let n > 5 be odd. The deformation
complex with last two spaces removed can be re-
alized as:

—

0—g— HI(2) 22 HLL(2) 28 722(2) 22

=

D‘:ﬁ.— o ], —
HA2(2) — -+« "2 H22(2),

where the differential operators are;

Do =Symdy (so (Dof)rs =8ufn)
Dy = dad;
ﬁ;,.:&”l p=23,...,n—3.

Remarks:

1. Can extend this complex to include one more
term lifting ker(D,,_1) C ﬁghl‘l(ﬂ).

2. There is a version for n = 3, including also the
extra term lifting ker(D>).

12



Jet Isomorphism Theorem Proof, n odd

Recall statement:

M = {oc-order jets of metrics g at 0 € R"
satisfying g;;(0) = hy;}

CDiffg = {(, ) : ¢'(0) = Id, Q = 1 + O(|z|?)}
R = {(R®, R R(2) ...)} such that
R(") e A2 @ A2 @ @"R"+2* and:
1) Rypsrr) vy, =0
2) RyjikL MMM, =0
3) EIJKL,Ml-u[MH_lMﬁ]mMT = QE?HLMT--MT(E}
4) EIKEIJHL,MI--aMP =0
5) ﬁL,L'f'i'ttll,Ml---ﬂpﬂ} = ¥ et ﬁj;ﬂmhml...‘ﬁ...mr

¢ : M/CDiffg — R giving curvature tensors of am-

bient metric is bijective.
13



First step: Linearization argument.
Suffices to prove that

de: TM/TO - TR

is an isomorphism, where

O = CDiffg-orbit of flat metric h.

Involves truncation at finite jets to make every-
thing finite-dimensional, constructing a slice via
conformal normal form to show that MY /CDiffg
iIs @ smooth manifold, and either the inverse func-
tion thecocrem or an algebraic induction argument
on N.

Second step: Reformulate spaces and map de.

Lemma: TM/TO = J ®3 /DoJAL, where
J: infinite order jets at 0 € R™.

Proof: (Suppress writing 7 everywhere)

TM = {s € ®?:5(0) =0}.

TO = {Lyh :V = O0(|z|%)} @ {$22h : 2 = O(|z|?)}
= DoJA! & {Q%h: Q = O(|z|?)}.

Now s(0) disappears in @%fﬂgﬂl anyhow, and
trace parts cancel.

14



Proposition: TR £ ker(D»s) C JH22,
where 7. infinite order jets at eg € R"1=,

Proof: Have:

TR = {(R©®, R(1) R(2) ...)} such that
B") e A2 @ A2 @ @ R™+2* and:

1) Ryykr),my-M, =0

2) Rpjikr,myMo-M, = O

3) Rpjkri, My [M, 1 Mg)--M, = O

4) M5 Rryper myom, = O

—

o - " -
5) RIJKD,Mr“MT = - RIJHMS,Ml---Ms---Mr

15



3) < get a jet R at eg of a section of A2 ® A2,

1) and 4) < R is a section of ﬁ%‘z.

5) < X,R =0 to infinite order.

2) & R < ker(D5).

Now R is a section of H?2 < in addition:
AR=0 and é6R=0.

So it is clear that kErfﬁztﬁg,z) CTR.

But the conditions AR = 0 and 4R = 0 easily

follow from the fact that R is trace-free using the
second Bianchi identity.

16



So composing with these isomorphisms, the jet
isomorphism theorem reduces to the statement on
jets:

de : ©3/DoA! — ker(Dp) C H?2

IS an isomorphism.

The lift of the deformation complex contains:

l 1 l

D D
Al B @3 = A 5

Since the deformation complex is exact on jets,
D; induces an isomorphism ©3/DgAl £ ker(Dj) £
ker(Ds). One can show that this map agrees with
de, and the result follows.

When n = 3, the deformation complex looks a
little different. But still have an ambient lift for
ker(D>) C nﬁfl{c}). The jet isomorphism follows in
the same manner.

17



Inhomogeneous Ambient

Metrics

and

Jet Isomorphism Theorem

n even

(Joint with Kengo Hirachi)



When n is even, the construction of the ambient
metric is obstructed at order n/2. So the map ¢
evaluating the covariant derivatives of curvature
of the ambient metric cannot be defined beyond
this order. This is a reflection of a difference in
the structure of M /CDiffy as a P-space when n is
even.

The same phenomenon occurs when constructing
the ambient lift for AJ(w) when w+n/2—p—q € N.

In this lecture, an extension of the theory to these
cases will be outlined.

Main Ingredients:

¢ Weaken homogeneity condition

e Solutions of ambient equations with log's

e Invariant smooth part

e EXxistence of ambiguity

e Jet isomorphism theorem for enlarged space

2



Topics

. Ambient lift with log and jet isomorphism for
scalars

. Formulate jet isomorphism for
conformal structures

. Inhomogeneous ambient metrics



Ambient Lift with Log for Scalars

Recall: if w+n/2 ¢ N, then £(w) = H(w), where
H(w)= harmonic jets along N' homogeneous of
degree w. But if w4+ n/2 = m € N, then har-
monic extension is obstructed at order m by the
conformally invariant operator A™.

Can always find a harmonic extension by including
a log term:

Proposition. Suppose w+n/2 =m € N and f €
E(w). There exists f of the form

—

f=34+1Q™logQ

with &, | smooth, § homog. degree w, I homog.
deg. w —2m, such that A f =0 and fly = f.
Also, f is uniqgue modulo QMH(w — 2m).

So the harmonic extension f with log term is not
unique: In addition to f, one must prescribe the
Q™ coefficient of f on A/; then f is uniquely deter-
mined. Space of harmonic extensions with log is
parametrized by £(w) x E(w—2m). The £(w—-2m)
factor is the ambiguity in the (non-smooth) har-
monic lift.

Note that f iIs no longer homogeneous.



Reformulation in terms of smooth part

It turns out that [ can be written entirely in terms
of §, and the condition that f be harmonic can
be written entirely in terms of §. Thus one can
reformulate the exte‘r}_ﬂgﬂ as a map

E(w) xE(w—-2m) — 5 3 £(w) staying entirely in the
smooth category. Here &(w) = jets along N of ho-
mogeneous functions of degree w, not necessarily
harmonic.

——

Calculate: Af=AG+1Q™logQ)
= (A5 +2mIiQ™ 1) + Al Q™ log Q.

So Eff 0 Al=0and As = —2mlQm—1.
Apply A™1 to second equation to get

—2mil = c;mA™5.
This gives [ in terms of §. Substituting back, can
write both equations in terms of s:

AZ = cnQ™ 1A™F and A™ Tl = 0.
This gives the substitute ambient lift theorem:

Theorem. Suppose w+n/2=m & N. Then
E(w) x E(w — 2m) = Hs(w), where Hs(w) =

(€ &(w): AF = cmQ™ 1A™5 and A™T15=0]}.

5



The G-structure on £(w) x E(w — 2m) is not the
product: one must break the G-invariance to de-
fine the £(w — 2m) factor. The correct statement
respecting the (G-structure is that there is a G-
equivariant exact sequence

0 — E(w —2m) — He(w) — E(w) — 0

Summary: the space that has the ambient rep-
resentation is not the initial space £(w), but an
enlargement: £(w) x £(w — 2m).

The ambient space is similar to that in the case
n odd: {f € E(w) : A5 = 0}; now the harmonic
equation has an inhomogeneous term, the coeffi-
cient of which solves a second equation.

The corresponding statement on jets at a point is
the substitute jet isomorphism theorem for scalars
in the obstructed cases.

For the deformation complex for n even, the

spaces in the first half of the sequence have

obstructed ambient lifts. There are analogous

substitute jet isomorphism theorems for these

spaces which are used in the proof of the jet

isomorphism for conformal structures for n even.
3]



Jet Isomorphism Theorem, n even

The jet isomorphism theorem for conformal struc-
tures involves similar features as above. This time
the space M of jets of metrics is augmented by
the space of jets of trace-free symmetric 2-tensors.
There is a map from the product to a space of am-
bient curvature tensors which induces a bijection
from the quotient by CDiffy. Set

Then T has a natural P-action. When n was odd,
the space R of lists of ambient curvature tensors
was a P-invariant subset of 7.

Theorem: n even. There is a P-equivariant poly-
nomial injection ¢ : (M x J©§)/CDiffg — T, whose
image R is a submanifold of T whose tangent
space TR is the space of jets R € JA%2(2) which
are solutions to the following equations:

1) Rrjyixr,m =0

2) X.R=0
3) trR = c,Q"/2-1An2-1%rR
4) AM*trR=0

Also, ¢ 1 : R — (M x J©3)/CDiffg is polynomial.

T



Here trR;x = h'LR} 5 corresponds to the Ricci
tensor.

Comparison with n odd

For n odd, TR is defined by the same equations
except that 3) and 4) are replaced by the single
equation trR = 0. This is analogous to the sit-
uation for the scalar problem. Observe that trR
does vanish to order n/2 — 1.

For n odd, the nonlinear space R was identified ex-
plicitly in terms of the Ricci identity. For n even,
the same Ricci-identity relation holds on R. How-
ever, there are nonlinear equations giving rise to
3) and 4) which are not written explicitly. For n
odd, the equation that the Ricci tensor vanish to
all orders is linear in the derivatives of curvature
so this was not an issue. It is not a problem that
the nonlinear terms in the equations defining R are
not explicit.



The rest of the talk will describe the construc-
tion of the map e¢. Once ¢ has been con-
structed, the proof of the jet isomorphism the-
orem uses the same idea as for n odd: lift the
deformation complex. However, the algebra is
much more complicated, as there is an ambigu-
ity for the lift of each term in the deformation
complex.

Inhomogeneous Ambient Metrics
N - R™"
Recall: ¢ : metric bundle of [g), G=¢Gx k&
gg = tautological 2-tensor on §

For n odd, ambient metric § on G satisfies:
1) 655 = 579

2) " = go

3) Ric(g) = 0 to infinite order along G

Existence is obstructed for n even, analogous
to obstruction to ambient lift of a density when
w+ n/2 € N. Construct ambient metrics with
log's. But log of ?77. No canonical @ for the
nonlinear problem.



r: defining function for ¢ € ¢ homog. deg. 0
! defining function hDrQDg, degree 2 p

) Ver < Q
Definition. A;pq = asymptotic expansions of
metrics on G of signature (p+ 1.9+ 1) of the
form:

G~ 4+ 5 gMe@®2 Liog ruN
N>1

where each V), N > 0, is a smooth symmetric
2-tensor field on G satisfying §25(V) = s25(V),
and such that *g = gg.

Independent of choice of r, r4, invariant under
smooth homogeneous diffeomorphisms such
that ®|g = 1.

Definition: A metric g € Ajgq is straight if
for each p € G, the dilation orbit s — dsp is
a geodesic for g.

Definition: An inhomogeneous ambient metric
for (M, [g]) is a straight metric g € A|5q satis-
fying Ric(g) = 0.
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Important property: s X
Proposition. Let g € Ajpq be straight. Then
S (7 7) is a smooth defining
function for G homogeneous of degree 2,
ECTlT‘):Q'
Smooth part. If g € Ajpg is straight, take ru =
g(T.T) in asymptotic expansion. Then the
smooth part of g is §{D:'. Invariantly deter-
mined: If @ is a smooth homogeneous diffeo-
morphism such that ®|g = I, then (¢*7)(0) =
*(g(?)

Recall from Lecture 1: A metric g in the con-
formal class determines an identification ¢ =
K4 x M, so also an identification = Ry x M x
R. Given g, say smooth metric g is in normal
form relative to g if:

i) g=2dt-dp+goatp=0
(identification G =Ry x M x R induced by g).

i) The lines p — (z, p) are geodesics for g.

An inhomogeneous ambient metric g is said to
be in normal form relative to g if its smooth
part is in normal form relative to g.
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Main existence, uniqueness theorem for inho-
mogeneous ambient metrics:

Theorem. Up to pull-back by a smooth ho-
mogeneous diffeomorphism which restricts to
the identity on ¢, the inhomogeneous ambi-
ent metrics for (M, [g]) are parametrized by the
choice of an arbitrary trace-free symmetric 2-
tensor field A;; (the ambiguity tensor) on M.

Parametrization: Choose g. Write g in nor-
mal form in decomposition § — ]E_l_ x M x B
induced by g. Let §(9) = smooth part. Con-
sider M component. Homogeneous of degree
2, SO write q(D} — tgqum- Then gé?}(:[:,p) ==
Smc:-c:-th 1- parameter family of metrics on M
with q” }{:T 0) = given metric g. The ambigu-

ity tensor A;; is:

tf (926 |p=0) = i
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The choice of g and A uniquely determine g
in normal form, and therefore also the smooth
part 9. The inhomogeneous ambient met-
ric g is a device to determine the smooth ho-
mogeneous metric §(D3'. Use §'9) to construct
ambient curvature tensors, not g. Cannot dif-
ferentiate g to order beyond n/2 in any case.
All analogous to scalar case.

Note that (©) is not Ricci-flat in general, only
up to order n/2 — 1.

Consider the curvature tensor R(®) of 3(9) and
its covariant derivatives. Pass to jets at a
point. Obtain a map

M % JE}% s I'If.";ﬂﬁz*g ® ®ar+E¢ =7
by

(gijs Aij) — (ﬁ-(ma vR(® ¢2R0) ... Np=0,t=1,
x=0

13



Under a conformal change § = Q2g, § and
g}(‘:") change by pullback by a smooth, homoge-
neous diffeomorphism <. Can identify the Ja-
cobian of @ along G to derive the correspond-
ing change in R(0). This shows that there is
an induced map

¢: (M x JOF)/CDiffg — T

which is P-equivariant, as claimed in the jet
iIsomorphism theorem.

The curvature tensor R(Q) satisfies:

(0) =
L) Riikraa =0

2) X,RO0) =0
But it is not Ricci-flat, giving rise to the substi-

tute equations for the linearization, again anal-
ogous to the scalar case.
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