Analysis and geometry of shape spaces
 I - V

Peter W. Michor
Winterschool Geometry and Physics, Srni, Jan. 17-24, 2009

Content:

Introduction: What are shape spaces and what are they good for. A little bit of history.
Shape spaces of plane curves:
The topology of shape space.
Hamiltonian background and conserved momenta.
A bunch of metrics, their geodesics and curvatures:
The L^{2}-metric and its vanishing of geodesic distance.
Almost local metrics.
Immersion Sobolev metrics.
The scale invariant Sobolov H^{1}-metric and its relation to the Grassmannian of 2-planes in an infinite dimensional space, and Neretin geodesics.
A covariant formula for curvature and its relation to O'Neill's curvature formulas.

Shape spaces as quotients of diffeomorphism groups:
Right invariant metrics on diffeomorphism groups, their geodesics and curvatures.
Landmark space, geodesics and curvatures. Spaces of submanifolds (plane curves and higher dimensional ones)
High dimensional shape space $\operatorname{Imm}(M, N) / \operatorname{Diff}(M)$ Vanishing geodesic distance on diffeomorphism groups. Burgers equation corresponds to this phenomenon. The Camassa-Holm equation has to positive geodesic distance. For the Korteweg-de Vries equation we do not know.
The universal Teichmueller space with the WeilPeterssen metric as shape space. (not done)

Based on:
P.M. and D. Mumford. Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. (JEMS) 8 (2006), 1-48, arXiv:math.DG/0312384.
H. Kodama, P.M. The homotopy type of the space of degree 0 immersed curves. Revista Matemática Complutense 19 (2006), 227-234. arXiv:math/0509694.
P.M. and D. Mumford. An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Numerical Harmonic Analysis 23 (2007), 74-113.
arXiv:math.DG/0605009
P.M., David Mumford, Jayant Shah, Laurent Younes: A Metric on Shape Space with Explicit Geodesics. Rend. Lincei Mat. Appl. 9 (2008) 25-57. arXiv:0706.4299
Mario Micheli, P.M., David Mumford: Landmarks. In preparation.
David Mumford: Lectures at the Chennai Mathematical Institute.
P.M., David Mumford: Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms, Documenta Math. 10 (2005), 217-245. arXiv:math.DG/0409303
V.Cervera, F.Mascaro, P.M.: The action of the diffeomorphism group on the space of immersions. Diff. Geom. Appl. 1 (1991), 391-401
For background material: Peter W. Michor: Some Geometric Evolution Equations Arising as Geodesic Equations on Groups of Diffeomorphism, Including the Hamiltonian Approach. IN: Phase space analysis of Partial Differential Equations. Birkhauser Verlag 2006. Pages 133-215. arXiv:math/0609077

Introduction:

What are shapes, why are they interesting, and how are they arranged in shape spaces.

Albrecht Dürer was the first to look at the effect of diffeomorphisms on shape

Fig. 13. (Aler Albrecht Durer.)
Treatise on Proportion, 1528

A modern view: geodesics between faces

 Shortest paths in the space of diffeos carrying one face to the other (Vaillant, Trouve, Younes)

D'Arcy Thompson: Growth and Form, 1917, was the first to systematically study the forms of homologous biological shapes
"The study of form may be descriptive merely or it may become analytical. We begin by describing the shape of an object in the simple words of common speech: we end by defining it in the precise language of mathematics.... The mathematical description of a 'form' has a quality of precision that is quite lacking in our earlier stage of mere description ... We are brought in touch with Galileo's aphorism that 'the Book of Nature is written in the characters of Geometry'.", p. 269.
"In a very large part of morphology, our essential task lies in the comparison of related forms rather than in the precise definition of each; and the deformation of a complicated figure may be a phenomenon easy of comprehension, though the figure itself have to be left unanalyzed and undefined. ... This method is the Theory of Transformations." p. 271

F4. 131. Anipocs ayturs.

Fis 191 Oriliernowes

Primate skulls are of particular interest

To right: named 'landmark points' on skulls Below: D'Arcy Thompson's skulls Below right: Bookstein's deformations

Medical Scans require shape analysis to detect defects - cortex

Medical scans II - heart defects

- All vertebrates with their internal structures are 3D diffeomorphic (more or less); all healthy male (e.g. without tumors) and all healthy female humans are really clearly diffeomorphic with only moderate distortion.
- Can you, then, form an ideal 3D computer model of a male human and female human including all organs/bones/vessels etc.?
- THEN: for each MRI or other scan of each patient, find an optimal diffeomorphism of the scanned region with the ideal model, revealing individual differences.

A hippopotamus and a giraffe are indeed diffeomorphic! (2D matching of outlines with surface markings carried over)

A hippopotaffe and a girotamus

Matching by landmark points: J. Glaunes

Fish - can we classify them by their shape or by diffeomorphism to a prototype?

Clustering of shapes (and a wellknow Boa Constrictor)

What mathematics can we bring to this?

- People find it natural to judge whether two shapes are 'similar'. We should seek a metric on the set of shapes to describe this
- It is natural to compare two shapes by warping one to the other. We should look for geodesics, shortest paths between shapes
- People will cluster shapes into different categories. We need to study datasets of shapes with various statistical algorithms.
- People will say that shape looked more like a dog than a cat. We need to put probability measures on shape space and take their ratios.

There are many possible metrics!

The central shape is similar in various respects to all 5 of the shapes around it but in different metrics!

We can adapt function theory ideas -
Lp-norms on k derivatives
a) In L^{1}, distances are:

$$
\mathrm{A}<\mathrm{B}, \mathrm{C}<\mathrm{D}, \mathrm{E}
$$

b) $\operatorname{In} L^{\infty}$, distances are:

$$
\mathrm{B}<\mathrm{C}, \mathrm{D}<\mathrm{A}, \mathrm{E}
$$

c) $\ln L^{\infty}$ with 1-jets:

D $<B, C<A, E$
d) In L^{1} with 2-jets:

D $<A, B<C, E$
e) To make E close, need 'robust' non-convex metrics that discard outliers.
d) To make D far, qualitative ideas of 'parts' are needed as it doesn't break into 2 parts.

Advantages of Riemannian metrics

- Have gradients of functionals, gradient flow
- Can expect, at least locally, to have unique geodesics, hence optimal paths from one shape to another
- Can analyze departure from flatness via Riemann curvature tensor
- Can carry over classical statistical data analysis via the exponential map
- Can expect to have diffusion, Brownian motion, hence base probability measures
Let me go into some detail here.

First we need to make the set of 'shapes' into a manifold so we can do differential geometry on it

Riemann introduced the idea of manifolds in his Habilitation Lecture in 1854. He also imagined the infinite dimensional version:
"There are however manifolds in which the fixing of position requires not a finite number but either an infinite series or a continuous manifold of determinations of quantity. Such manifolds are constituted for example by ... the possible shapes of a figure in space, etc."

The idea of an "atlas" - some illustrations off

 the web!The abstract idea: many pieces, on each have coordinates x_{l}, \ldots, x_{n}

In dimension two, there are tori,
 pretzels, surfaces with handles. Can (with some pain) make an atlas for each.

The set \mathcal{S} of all smooth plane curves forms a manifold!
Start with a fixed curve $C \in \mathcal{S}$ parametrized by $s \mapsto \phi(s)$
Define a local chart near ϕ :
$\psi_{a}(s)=\phi(s)+a(s) \vec{n}(s)$,
$\vec{n}(s)=$ unit normal to C,
$C_{o}=$ image of ψ_{a}
$U_{\phi}=\left\{a \mid \psi_{a}\right.$ smooth $\}$
$\subset($ v.sp.of fcns. $a)$
$a \mapsto C_{a}$ is the chart, $a(s)$ the local linear coord.
$\mathcal{S}=\bigcup_{\phi} U_{\phi}$, gives the atlas

An abstract view of what we are doing

-This whole blob represents the space of all plane curves
-Each curve represents a single point in the space
-The dotted lines represents parts which can be represented as deformations of the central shape - forming a coordinate chart
-The sequence of shapes A, B, C, D, E are points along a curve in the space of shapes comnecting a circle to a banana to a new moon.

SIX ingredients of differential geometry

1. Charts/local coordinates at every point $P \in M$:

$$
P \stackrel{\approx}{\curvearrowleft}\left(x_{1}(P), x_{2}(P), \cdots, x_{n}(P)\right)
$$

2. A tangent space $T_{P} M$ to M, which in coordinates is the vector space of infinitesimal changes ($d x_{1}, d x_{2}, \cdots, d x_{n}$). We can associate to every curve $\gamma:[0,1] \rightarrow M$ its tangents

$$
\dot{\gamma}(t)=\left(\cdots, d / d t\left(x_{t}(\gamma(t))\right), \cdots\right) \in T_{\gamma(t)} M .
$$

3. A way of measuring size in $T_{p} M$, a 'Riemannian metric':

$$
\left\|\left(d x_{1}, \cdots, d x_{n}\right)\right\|=\sqrt{\sum_{i, j=1}^{n} g_{i, j}(P) d x_{i} d x_{j}}
$$

4. Integrating this, we get the length of paths: $\ell(\gamma)=\int_{0}\|\dot{\gamma}(t)\| d t$

All this will carry over to infinite dimensional manifolds

Ingredient 5. Geodesics

Navigating the earth, a shortest path is seldom a straight line: you must weave to avoid hills and valleys.

Start with the variational principle:

$$
\begin{aligned}
& \delta\left(\text { path length }=\int_{0}^{1}\left\|\frac{d x}{d t}\right\| d t\right)=0 \\
& \frac{d^{2} x^{i}}{d t^{2}}(t)=\sum_{j, k} \Gamma_{j k}^{i}(x) \cdot \frac{d x^{j}}{d t}(t) \cdot \frac{d x^{k}}{d t}(t)
\end{aligned}
$$

This too will work in infinite dimensional manifolds

Exploratory data analysis can be done geodesics

Start with a dataset of points $\left\{P_{i}\right\}$ in \mathbb{R}^{n}

1. Form their mean $\bar{P}=\left(\sum_{i} P_{i}\right) / N$
2. Form their covariance matrix $\mathrm{C}=\left(\sum_{i}\left(P_{i}-\bar{P}\right)^{t} \otimes\left(P_{i}-\bar{P}\right)\right) / N$
3. Take its eigenvectors with large eigenvalues:
principal components of the dataset
4. In other cases, seek first to break the dataset into clusters
a. k-means
b. nearest neighbor clustering
with distinct means and principal components

These are the standard work horses for data in linear spaces. On a manifold, we use geodesics.

Data analysis via geodesics

- Given a dataset $\left\{P_{i}\right\}$ on a manifold M, its Karcher mean is a point Q minimizing

$$
\sum_{i}\left(\text { length of geodesics } P_{i} \text { to } Q\right)^{2}
$$

- Once you have the mean, take the shortest geodesics from each P_{i} to Q and let $t_{i} \in T_{Q} M$ be the tangent vector to this geodesic at Q.
- Then take the principal components via the linear theory on $\left\{t_{i}\right\}$.
- k-means can also be done via Karcher means.

This approach has been applied, e.g. to the shape of the hippocampus and the diagnosis of schizophrenia and Alzeimer's; to the shape of the heart in various conditions; to the shape of the prostate; etc.

Ingredient 6. Geodesics are not always act like straight lines: curvature

The idea of curvature:
Euclid: parallel lines stay the same distance apart; ZERO CURVATURE

Non-Euclidean geometry (Bolyai, Gauss): geodesics diverge exponentially, e.g. at mountain passes; NEGATIVE CURVATURE

Spherical geometry: great circles come together at antipodes; similar thing at mountain peaks or valleys. POSITIVE CURVATURE

Gravitational lensing: positive curvature in our space-time. What you see is not what is out there!

Curvature also carries over to infinite dimensional spaces

Geodesic triangles in the space of plane curves (Michor-M metric):

There is more than one way to rotate an ellipse!

For small shapes, curvature is negative and the path nearly goes back to the circle (= the 'origin'). Angle sum $=102$ degrees.
For large shapes, curvature is positive, 2 protrusions grow while 2 shrink. Angle sum $=207$ degrees.

Geometry behind curvature

- Get curvature at each point in each 2plane: Riemann's sectional curvature and curvature tensor $R_{i j k l}$, Ricci and scalar curvatures.
- When positive, beyond cut locus, geodesics are not unique. Datasets may not have means.
- When negative, easy to get lost, space is big - but datasets do have means, geodesics are unique.

What will we look at in this course?

- There are three very different mathematical approaches to putting Riemannian metrics on the space of shapes
a. Metrics on the group of diffeomorphisms and its quotients, e.g. N-tuples of pts.
b. Local metrics on the nonlinear Grassmannian of submfds $\quad\{N \subset M \mid M$ fixed $\}$
c. Conformal approaches for plane domains and their boundaries $\Omega \subset \mathbb{C}, C=\partial \Omega$ and, esp.:

$$
\operatorname{Diff}\left(S^{\downarrow}\right) / S L_{2} \simeq\{\Omega\} / \text { transl.,scalings }
$$

Shape spaces of plane curves:

Some spaces:
$\operatorname{Diff}\left(S^{1}\right)$ a regular Lie group,$=\operatorname{Diff}+\left(S^{1}\right)$ Diff $^{-}\left(S^{1}\right)$.
$\operatorname{Emb}=\operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right)$, the manifold of all smooth embeddings $S^{1} \rightarrow \mathbb{R}^{2}$. $T \operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right)=\operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right) \times C^{\infty}\left(S^{1}, \mathbb{R}^{2}\right)$.
$\operatorname{Imm}=\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$, the manifold of all smooth immersions $S^{1} \rightarrow \mathbb{R}^{2}$.
$T \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)=\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right) \times C^{\infty}\left(S^{1}, \mathbb{R}^{2}\right)$.
$\operatorname{Imm}_{\text {free }}=\operatorname{Imm}_{\text {free }}\left(S^{1}, \mathbb{R}^{2}\right)$, the manifold of all free smooth immersions $S^{1} \rightarrow \mathbb{R}^{2}$, i.e., those with trivial isotropy group for the right action of $\operatorname{Diff}\left(S^{1}\right)$ on $\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$.
$B_{e}=B_{e}\left(S^{1}, \mathbb{R}^{2}\right)=\operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right) / \operatorname{Diff}\left(S^{1}\right)$, the manifold of 1-dimensional connected submanifolds of \mathbb{R}^{2},
$B_{i}=B_{i}\left(S^{1}, \mathbb{R}^{2}\right)=\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right) / \operatorname{Diff}\left(S^{1}\right)$, an infinite dimensional 'orbifold'
$B_{i, \text { free }}=\operatorname{Imm}_{\text {free }}\left(S^{1}, \mathbb{R}^{2}\right) / \operatorname{Diff}\left(S^{1}\right)$, a manifold, the base of a principal fiber bundle,

Notation. We work mostly with arclength $d s$, arclength derivative D_{s} and the unit tangent vector v to the curve:

$$
\begin{aligned}
d s & =\left|c_{\theta}\right| d \theta \\
D_{s} & =\partial_{\theta} /\left|c_{\theta}\right| \\
v & =c_{\theta} /\left|c_{\theta}\right|
\end{aligned}
$$

Attention: Given a family of curves $c(\theta, t)$, then ∂_{θ} and ∂_{t} commute but D_{s} and ∂_{t} don't. Rotation through 90 degrees (complex multiplication by $\sqrt{-1}$) will be denoted by:

$$
J=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

The unit normal vector to the image curve is thus

$$
n=J v .
$$

Curvature and length on $\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$

$$
\begin{aligned}
& \kappa: \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right) \rightarrow C^{\infty}\left(S^{1}, \mathbb{R}\right), \\
& \kappa(c)=\frac{\operatorname{det}\left(c_{\theta}, c_{\theta \theta}\right)}{\left|c_{\theta}\right|^{3}}=\left\langle n, D_{s} v\right\rangle \\
& d \kappa(c)(h)=\frac{\left\langle J h_{\theta}, c_{\theta \theta}\right\rangle}{\left|c_{\theta}\right|^{3}}+\frac{\left\langle J c_{\theta}, h_{\theta \theta}\right\rangle}{\left|c_{\theta}\right|^{3}}-3 \kappa(c) \frac{\left\langle h_{\theta}, c_{\theta}\right\rangle}{\left|c_{\theta}\right|^{2}} . \\
& =\left\langle D_{s}^{2}(h), n\right\rangle-2 \kappa\left\langle D_{s}(h), v\right\rangle
\end{aligned}
$$

The length function

$$
\begin{aligned}
\ell & : \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right) \rightarrow \mathbb{R}, \quad \ell(c)=\int_{S^{1}}\left|c_{\theta}\right| d \theta \\
d \ell_{c}(h) & =\int_{S^{1}} \frac{\left\langle h_{\theta}, c_{\theta}\right\rangle}{\left|c_{\theta}\right|} d \theta=\int_{S^{1}}\left\langle D_{s}(h), v\right\rangle d s \\
& =-\int_{S^{1}}\left\langle h, D_{s}(v)\right\rangle d s=-\int_{S^{1}} \kappa(c)\langle h, n\rangle d s
\end{aligned}
$$

The degree of immersions. The degree or rotation degree of an immersion $c: S^{1} \rightarrow \mathbb{R}^{2}$ is the winding number around 0 of the tangent $c^{\prime}: S^{1} \rightarrow \mathbb{R}^{2}$. $\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$ decomposes into the disjoint union of the open submanifolds $\operatorname{Imm}^{k}\left(S^{1}, \mathbb{R}^{2}\right)$ for $k \in \mathbb{Z}$ according to the degree k. These are connected according to a theorem of Whitney and Graustein (1931-32)

Theorem. The manifold $\operatorname{Imm}^{k}\left(S^{1}, \mathbb{R}^{2}\right)$ of immersed curves of degree k contains S^{1} as a strong smooth deformation retract.
For $k \neq 0$ the manifold
$B_{i}^{k}\left(S^{1}, \mathbb{R}^{2}\right):=\operatorname{Imm}^{k}\left(S^{1}, \mathbb{R}^{2}\right) / \operatorname{Diff}+\left(S^{1}\right)$
is contractible.
For $k=0$ we have (surprise, Kodama-M.)

$$
\begin{aligned}
& \pi_{1}\left(B^{0}\left(S^{1}, \mathbb{R}^{2}\right)\right)=\mathbb{Z} \\
& \pi_{2}\left(B^{0}\left(S^{1}, \mathbb{R}^{2}\right)\right)=\mathbb{Z} \\
& \pi_{k}\left(B^{0}\left(S^{1}, \mathbb{R}^{2}\right)\right)=0 \quad \text { for } k>2
\end{aligned}
$$

The tangent bundle is
$T \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)=\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right) \times C^{\infty}\left(S^{1}, \mathbb{R}^{2}\right)$, the cotangent bundle is
$T^{*} \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)=\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right) \times \mathcal{D}\left(S^{1}\right)^{2}$
where the second factor consists of periodic distributions.

We consider smooth Riemannian metrics on $\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$, i.e., smooth mappings

$$
\begin{aligned}
& G: \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right) \times C^{\infty}\left(S^{1}, \mathbb{R}^{2}\right) \times C^{\infty}\left(S^{1}, \mathbb{R}^{2}\right) \rightarrow \mathbb{R} \\
& (c, h, k) \mapsto G_{c}(h, k), \quad \text { bilinear in } h, k \\
& G_{c}(h, h)>0 \quad \text { for } h \neq 0
\end{aligned}
$$

Each such metric is weak in the sense that G_{c}, viewed as bounded linear mapping

$$
\begin{aligned}
& G_{c}: T_{c} \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)=C^{\infty}\left(S^{1}, \mathbb{R}^{2}\right) \rightarrow \\
& \rightarrow T_{c}^{*} \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)=\mathcal{D}\left(S^{1}\right)^{2} \\
& G: T \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right) \rightarrow T^{*} \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right) \\
& G(c, h)=\left(c, G_{c}(h, \quad)\right)
\end{aligned}
$$

is injective, but can never be surjective.

In the sequel we shall further assume that that the weak Riemannian metric G itself admits G gradients with respect to the variable c in the following sense:
$d G_{c}(m)(h, k)=G_{c}\left(m, H_{c}(h, k)\right)=G_{c}\left(K_{c}(m, h), k\right)$
$H, K: \operatorname{Imm} \times C^{\infty} \times C^{\infty} \rightarrow C^{\infty}$
$(c, h, k) \mapsto H_{c}(h, k), K_{c}(h, k)$
smooth and bilinear in h, k.
We will check and compute these gradients for several concrete metrics below.

The fundamental symplectic form on

$T \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$ pulled back from the canonical symplectic form on the contangent bundle via the mapping $G: T \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right) \rightarrow T^{*} \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$ is then:

$$
\begin{aligned}
& \omega_{(c, h)}\left(\left(k_{1}, \ell_{1}\right),\left(k_{2}, \ell_{2}\right)\right)= \\
& =-d G_{c}\left(k_{1}\right)\left(h, k_{2}\right)-G_{c}\left(\ell_{1}, k_{2}\right) \\
& \quad+d G_{c}\left(k_{2}\right)\left(h, k_{1}\right)+G_{c}\left(\ell_{2}, k_{1}\right) \\
& =G_{c}\left(k_{2}, H_{c}\left(h, k_{1}\right)-K_{c}\left(k_{1}, h\right)\right) \\
& \quad+G_{c}\left(\ell_{2}, k_{1}\right)-G_{c}\left(\ell_{1}, k_{2}\right)
\end{aligned}
$$

The geodesic equation. The Hamiltonian vector field of the Riemann energy function

$$
E(c, h)=\frac{1}{2} G_{c}(h, h), \quad E: T \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right) \rightarrow \mathbb{R}
$$

is the geodesic vector field:

$$
\begin{aligned}
& \operatorname{grad}_{1}^{\omega}(E)(c, h)=h \\
& \operatorname{grad}_{2}^{\omega}(E)(c, h)=\frac{1}{2} H_{c}(h, h)-K_{c}(h, h)
\end{aligned}
$$

and the geodesic equation becomes:

$$
\begin{aligned}
& \begin{cases}c_{t} & =h \\
h_{t} & =\frac{1}{2} H_{c}(h, h)-K_{c}(h, h)\end{cases} \\
& c_{t t}=\frac{1}{2} H_{c}\left(c_{t}, c_{t}\right)-K_{c}\left(c_{t}, c_{t}\right)
\end{aligned}
$$

The momentum mapping for a G-isometric group action. Consider a (possibly infinite dimensional regular) Lie group with Lie algebra \mathfrak{g} with a right action $g \mapsto r^{g}$ by isometries on $\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$. Fundamental vector field mapping $\zeta: \mathfrak{g} \rightarrow \mathfrak{X}\left(\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)\right)$ a bounded Lie algebra homomorphism, given by

$$
\zeta_{X}(c)=\partial_{t} \mid r_{0} \exp (t X)^{\operatorname{ex}}(c)
$$

momentum map $j: \mathfrak{g} \rightarrow C_{G}^{\infty}\left(T \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right), \mathbb{R}\right)$:

$$
j_{X}(c, h)=G_{c}\left(\zeta_{X}(c), h\right)
$$

$\mathcal{J}: T \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right) \rightarrow \mathfrak{g}^{\prime}, \quad\langle\mathcal{J}(c, h), X\rangle=j_{X}(c, h)$.

It fits into the following commmutative diagram and is a homomorphism of Lie algebras:

$$
0 \longrightarrow H^{0} \xrightarrow{i} C_{G}^{\infty} \underset{\substack{j}}{\operatorname{grad}^{\omega}} \underset{\substack{ \\\mathfrak{K}_{\omega} \mathrm{Imm}}}{\mathfrak{x}_{\omega} \longrightarrow H^{1} \longrightarrow 0}
$$

\mathcal{J} is equivariant for the group action. Along any geodesic $t \mapsto c(t, \quad)$ this momentum mapping is constant, thus for any $X \in \mathfrak{g}$

$$
\left\langle\mathcal{J}\left(c, c_{t}\right), X\right\rangle=j_{X}\left(c, c_{t}\right)=G_{c}\left(\zeta_{X}(c), c_{t}\right)
$$

is constant in t.

We can apply this construction to the following group actions on $\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$.

- The smooth right action of the group $\operatorname{Diff}\left(S^{1}\right)$ on Imm $\left(S^{1}, \mathbb{R}^{2}\right)$, given by composition from the right: $c \mapsto c \circ \varphi$ for $\varphi \in \operatorname{Diff}\left(S^{1}\right)$. For $X \in \mathfrak{X}\left(S^{1}\right)$ the fundamental vector field is then given by

$$
\zeta_{X}^{\text {Diff }}(c)=\zeta_{X}(c)=\left.\partial_{t}\right|_{0}\left(c \circ \mathrm{~F}_{t}^{X}\right)=c_{\theta} \cdot X
$$

The reparametrization momentum, for any vector field X on S^{1} is thus:

$$
j_{X}(c, h)=G_{c}\left(c_{\theta} \cdot X, h\right)
$$

Assuming the metric is reparametrization invariant, it follows that on any geodesic $c(\theta, t)$, the expression $G_{c}\left(c_{\theta} \cdot X, c_{t}\right)$ is constant for all X.

- The left action of the Euclidean motion group $M(2)=\mathbb{R}^{2} \rtimes S O(2)$ on $\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$ given by $c \mapsto$ $e^{a J} c+B$ for $\left(B, e^{a J}\right) \in \mathbb{R}^{2} \times S O(2)$. The fundamental vector field mapping is

$$
\zeta_{(B, a)}(c)=a J c+B
$$

The linear momentum is thus $G_{c}(B, h), B \in \mathbb{R}^{2}$ and if the metric is translation invariant, $G_{c}\left(B, c_{t}\right)$ will be constant along geodesics. The angular momentum is similarly $G_{c}(J c, h)$ and if the metric is rotation invariant, then $G_{c}\left(J c, c_{t}\right)$ will be constant along geodesics.

- The action of the scaling group of \mathbb{R} given by $c \mapsto e^{r} c$, with fundamental vector field $\zeta_{a}(c)=a . c$. If the metric is scale invariant, then the scaling momentum $G_{c}\left(c, c_{t}\right)$ will also be invariant along geodesics.

If the Riemannian metric G on Imm is invariant under the action of $\operatorname{Diff}\left(S^{1}\right)$ it induces a metric on the quotient B_{i} as follows. For any $C_{0}, C_{1} \in B_{i}$, consider all liftings $c_{0}, c_{1} \in \operatorname{Imm}$ such that $\pi\left(c_{0}\right)=$ $C_{0}, \pi\left(c_{1}\right)=C_{1}$ and all smooth curves $t \mapsto(\theta \mapsto$ $c(t, \theta))$ in $\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$ with $c(0, \cdot)=c_{0}$ and $c(1, \cdot)=$ c_{1}. Since the metric G is invariant under the action of $\operatorname{Diff}\left(S^{1}\right)$ the arc-length of the curve $t \mapsto \pi(c(t, \cdot))$ in $B_{i}\left(S^{1}, \mathbb{R}^{2}\right)$ is given by

$$
\begin{aligned}
& L_{G}^{\mathrm{hor}}(c):=L_{G}(\pi(c(t, \cdot))) \\
& =\int_{0}^{1} \sqrt{G_{\pi(c)}\left(T_{c} \pi \cdot c_{t}, T_{c} \pi \cdot c_{t}\right)} d t \\
& =\int_{0}^{1} \sqrt{G_{c}\left(c_{t}^{\perp}, c_{t}^{\perp}\right)} d t \\
& \operatorname{dist}_{G}^{B_{i}\left(S^{1}, \mathbb{R}^{2}\right)}\left(C_{1}, C_{2}\right)=\inf _{c} L_{G}^{\mathrm{hor}}(c) .
\end{aligned}
$$

The simplest (L^{2-}) metric.

$$
G_{c}^{0}(h, k)=\int_{S^{1}}\langle h, k\rangle d s=\int_{S^{1}}\langle h, k\rangle\left|c_{\theta}\right| d \theta
$$

We compute the G^{0}-gradients of $c \mapsto G_{c}^{0}(h, k)$:
$d G^{0}(c)(m)(h, k)=G_{c}^{0}\left(K_{c}^{0}(m, h), k\right)=G_{c}^{0}\left(m, H_{c}^{0}(h, k)\right)$,
$K_{c}^{0}(m, h)=\left\langle D_{s}(m), v\right\rangle h, \quad D_{s}=\frac{\partial_{\theta}}{\left|c_{\theta}\right|}, \quad v=\frac{c_{\theta}}{\left|c_{\theta}\right|}$.
$H_{c}^{0}(h, k)=-D_{s}(\langle h, k\rangle v)$
Geodesic equation

$$
c_{t t}=-\frac{1}{2\left|c_{\theta}\right|} \partial_{\theta}\left(\frac{\left|c_{t}\right|^{2} c_{\theta}}{\left|c_{\theta}\right|}\right)-\frac{1}{\left|c_{\theta}\right|^{2}}\left\langle c_{t \theta}, c_{\theta}\right\rangle c_{t} .
$$

Horizontal Geodesics for G^{0}

$\left\langle c_{t}, c_{\theta}\right\rangle=0$ and $c_{t}=a n=a J \frac{c_{\theta}}{\left|c_{\theta}\right|}$ for $a \in C^{\infty}\left(S^{1}, \mathbb{R}\right)$. We use functions $a, s=\left|c_{\theta}\right|$, and κ, only holonomic derivatives:

$$
\begin{aligned}
& s_{t}=-a \kappa s, \quad a_{t}=\frac{1}{2} \kappa a^{2}, \\
& \kappa_{t}=a \kappa^{2}+\frac{1}{s}\left(\frac{a_{\theta}}{s}\right)_{\theta}=a \kappa^{2}+\frac{a_{\theta \theta}}{s^{2}}-\frac{a_{\theta} s_{\theta}}{s^{3}} .
\end{aligned}
$$

We may assume $\left.s\right|_{t=0} \equiv 1$. Let $v(\theta)=a(0, \theta)$, the initial value for a. Then
$\frac{s_{t}}{s}=-a \kappa=-2 \frac{a_{t}}{a}$, so $\log \left(s a^{2}\right)_{t}=0$, thus $s(t, \theta) a(t, \theta)^{2}=s(0, \theta) a(0, \theta)^{2}=v(\theta)^{2}$,
a conserved quantity along the geodesic. We substitute $s=\frac{v^{2}}{a^{2}}$ and $\kappa=2 \frac{a_{t}}{a^{2}}$ to get

$$
\begin{aligned}
& a_{t t}-4 \frac{a_{t}^{2}}{a}-\frac{a^{6} a_{\theta \theta}}{2 v^{4}}+\frac{a^{6} a_{\theta} v_{\theta}}{v^{5}}-\frac{a^{5} a_{\theta}^{2}}{v^{4}}=0, \\
& a(0, \theta)=v(\theta)
\end{aligned}
$$

a nonlinear hyperbolic second order equation. Note that wherever $v=0$ then also $a=0$ for all t. So substitute $a=v b$. The outcome is

$$
\begin{aligned}
\left(b^{-3}\right)_{t t} & =-\frac{v^{2}}{2}\left(b^{3}\right)_{\theta \theta}-2 v v_{\theta}\left(b^{3}\right)_{\theta}-\frac{3 v v_{\theta \theta}}{2} b^{3} \\
b(0, \theta) & =1
\end{aligned}
$$

This is the codimension 1 version where Burgers' equation is the codimension 0 version.

Now the big surprise for the L^{2}-metric:
Theorem. For $c_{0}, c_{1} \in \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$ there exists always a variation through immersions $t \mapsto c(t, \cdot)$ with $c(0, \cdot)=c_{0}$ and $\pi(c(1, \cdot))=\pi\left(c_{1}\right)$ for any given immersions c_{0} and c_{1} such that $L_{G^{0}}^{h o r}(c)$ is arbitrarily small.

Thus the distance dist ${ }_{G^{0}}^{B_{i}}$ on $B_{i}\left(S^{1}, \mathbb{R}^{2}\right)$ vanishes. The simplest (L^{2}-) metric G^{0} is useless on shape space.

The general almost local metric G^{Φ}.

$$
G_{c}^{\Phi}(h, k):=\int_{S^{1}} \Phi\left(\ell_{c}, \kappa_{c}(\theta)\right)\langle h(\theta), k(\theta)\rangle d s
$$

The metric G^{Φ} is invariant under the reparametization group $\operatorname{Diff}\left(S^{1}\right)$ and under the Euclidean motion group.

We compute the $G^{\Phi_{-}}$gradients of $c \mapsto G_{c}^{\Phi}(h, k)$:

$$
\begin{aligned}
& d G^{\Phi}(c)(m)(h, k)=G_{c}^{\Phi}\left(K_{c}^{\Phi}(m, h), k\right) \\
& \quad=G_{c}^{\Phi}\left(m, H_{c}^{\Phi}(h, k)\right)
\end{aligned}
$$

$$
K_{c}^{\Phi}(m, h)=-\left(\int_{S^{1}} \kappa_{c}\langle m, n\rangle d s\right) \frac{\partial_{1} \Phi(\ell, \kappa)}{\Phi(\ell, \kappa)} h
$$

$$
+\frac{\partial_{2} \Phi(\ell, \kappa)}{\Phi(\ell, \kappa)}\left(\left\langle D_{s}^{2}(m), n\right\rangle-2 \kappa\left\langle D_{s}(m), v\right\rangle\right) h
$$

$$
+\left\langle D_{s}(m), v\right\rangle h
$$

$$
H_{c}^{\Phi}(h, k)=\frac{1}{\Phi(\ell, \kappa)}\left(-\left(\kappa_{c} \int \partial_{1} \Phi(\ell, \kappa)\langle h, k\rangle d s\right) n\right.
$$

$$
+D_{s}^{2}\left(\partial_{2} \Phi(\ell, \kappa)\langle h, k\rangle n\right)+
$$

$$
\left.+2 D_{s}\left(\partial_{2} \Phi(\ell, \kappa) \kappa\langle h, k\rangle v\right)-D_{s}(\Phi(\ell, \kappa)\langle h, k\rangle v)\right)
$$

Conserved momenta for G^{Φ} along any geodesic $t \mapsto c(\quad, t)$:

$$
\begin{array}{ll}
\Phi\left(\ell_{c}, \kappa_{c}\right)\left\langle v, c_{t}\right\rangle\left|c_{\theta}\right|^{2} \in \mathfrak{X}\left(S^{1}\right) & \text { reparam. mom. } \\
\int_{S^{1}} \Phi\left(\ell_{c}, \kappa_{c}\right) c_{t} d s \in \mathbb{R}^{2} & \text { linear moment. } \\
\int_{S^{1}} \Phi\left(\ell_{c}, \kappa_{c}\right)\left\langle J c, c_{t}\right\rangle d s \in \mathbb{R} & \text { angular moment. }
\end{array}
$$

Setting the reparametrization momentum to 0 and doing symplectic reduction amounts exactly to investigating the quotient space $B_{i}\left(S^{1}, \mathbb{R}^{2}\right)=\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right) / \operatorname{Diff}\left(S^{1}\right)$ and using horizontal geodesics for doing so; a horizontal geodesic is G^{Φ}-normal to the $\operatorname{Diff}\left(S^{1}\right)$-orbits. If it is normal at one time it is normal forever (since the reparametrization momentum is conserved).

Horizontality for G^{Φ}.

$T_{c}\left(c \circ \operatorname{Diff}\left(S^{1}\right)\right)=\left\{X . c_{\theta}: X \in C^{\infty}\left(S^{1}, \mathbb{R}\right)\right\}$. Thus the bundle of horizontal vectors is

$$
\begin{aligned}
& \mathcal{N}_{c}=\left\{h \in C^{\infty}\left(S^{1}, \mathbb{R}^{2}\right):\langle h, v\rangle=0\right\} \\
& =\left\{a . n \in C^{\infty}\left(S^{1}, \mathbb{R}^{2}\right): a \in C^{\infty}\left(S^{1}, \mathbb{R}\right)\right\}
\end{aligned}
$$

A tangent vector $h \in T_{c} \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)=C^{\infty}\left(S^{1}, \mathbb{R}^{2}\right)$ has an orthonormal decomposition

$$
\begin{aligned}
h & =h^{\top}+h^{\perp} \in T_{c}\left(c \circ \operatorname{Diff}^{+}\left(S^{1}\right)\right) \oplus \mathcal{N}_{c} \\
h^{\top} & =\langle h, v\rangle v \in T_{c}\left(c \circ \operatorname{Diff}^{+}\left(S^{1}\right)\right), \\
h^{\perp} & =\langle h, n\rangle n \in \mathcal{N}_{c},
\end{aligned}
$$

into smooth tangential and normal components, independent of the choice of $\Phi(\ell, \kappa)$.

Consider a path $t \mapsto c(\cdot, t)$ in the manifold $\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$ It projects to a path $\pi \circ c$ in $B_{i}\left(S^{1}, \mathbb{R}^{2}\right)$ whose energy is called the horizontal energy of c :

$$
\begin{aligned}
& E_{G^{\Phi}}^{\mathrm{hor}}(c)=\frac{1}{2} \int_{a}^{b} \int_{S^{1}} \Phi\left(\ell_{c}, \kappa_{c}\right)\left\langle c_{t}, n\right\rangle^{2} d \theta d t \\
& =\frac{1}{2} \int_{[a, b] \times S^{1}} \Phi\left(\ell_{c}, \kappa_{c}\right) \frac{\left|n_{S}^{0}\right|^{2}}{\sqrt{1-\left|n_{S}^{0}\right|^{2}}} d \mu_{S}
\end{aligned}
$$

Here the final expression is only in terms of the surface S and its fibration over the time axis, and is valid for any path c. This anisotropic area functional has to be minimized in order to prove that geodesics exists between arbitrary curves (of the same degree) in $B_{i}\left(S^{1}, \mathbb{R}^{2}\right)$.

The horizontal geodesic equation.
Let $c(\theta, t)$ be a horizontal geodesic for the metric G^{Φ}. Then $c_{t}(\theta, t)=a(\theta, t) \cdot n(\theta, t)$. Denote the integral of a function over the curve with respect to arclength by a bar. Then the geodesic equation for horizontal geodesics is:

$$
\begin{aligned}
a_{t}=\frac{1}{2 \Phi} & \left(-\kappa \Phi+\kappa^{2} \partial_{2} \Phi\right) a^{2} \\
& -D_{s}^{2}\left(\partial_{2} \Phi \cdot a^{2}\right)+2 \partial_{2} \Phi \cdot a D_{s}^{2}(a) \\
& \left.-2 \partial_{1} \Phi \cdot \overline{(\kappa a)} \cdot a+\overline{\left(\partial_{1} \Phi \cdot a^{2}\right)} \cdot \kappa\right)
\end{aligned}
$$

Curvature on B_{i} for G^{Φ}.

Let $W\left(\theta_{1}, \theta_{2}\right)=h\left(\theta_{1}\right) m\left(\theta_{2}\right)-h\left(\theta_{2}\right) m\left(\theta_{1}\right)$
so that its second derivative
$\partial_{2} W\left(\theta_{1}, \theta_{1}\right)=W_{2}\left(\theta_{1}, \theta_{1}\right)=h\left(\theta_{1}\right) m^{\prime}\left(\theta_{1}\right)-h^{\prime}\left(\theta_{1}\right) m\left(\theta_{1}\right)$ is the Wronskian of h and m.

$$
\begin{aligned}
& R_{0}^{\Phi}(m, h, m, h)=G_{0}^{\Phi}\left(R_{0}(m, h) m, h\right)= \\
& =\int\left(\kappa \cdot \Phi_{2}-\frac{\Phi}{2}+\frac{\Phi_{2} \cdot \Phi_{2}^{\prime \prime}-2\left(\Phi_{2}^{\prime}\right)^{2}-\left(\Phi_{2} \kappa\right)^{2}}{2 \Phi}\right)\left(\theta_{1}\right) W_{2}\left(\theta_{1}, \theta_{1}\right)^{2} d \theta_{1} \\
& +\int \frac{\Phi_{22}\left(\theta_{1}\right)}{2} W_{22}\left(\theta_{1}, \theta_{1}\right)^{2} d \theta_{1} \\
& +\iint\left(\frac{\Phi_{1}^{\prime} \Phi_{2}}{\Phi}-\frac{\Phi_{1} \Phi_{2} \Phi_{1}^{\prime}}{\Phi^{2}}\right)\left(\theta_{1}\right) W_{2}\left(\theta_{1}, \theta_{1}\right) \int W\left(\theta_{1}, \theta_{2}\right) \kappa\left(\theta_{2}\right) d \theta_{2} d \theta_{1} \\
& +\iint\left(\frac{\Phi_{1} \Phi_{2}}{\Phi}-\Phi_{12}\right)\left(\theta_{1}\right) W_{22}\left(\theta_{1}, \theta_{1}\right) \int W\left(\theta_{1}, \theta_{2}\right) \kappa\left(\theta_{2}\right) d \theta_{2} d \theta_{1} \\
& +\iint \frac{\Phi_{1}\left(\theta_{1}\right)}{2}\left(1-\frac{\Phi_{2} \cdot \kappa}{\Phi}\left(\theta_{2}\right)\right) W_{1}\left(\theta_{1}, \theta_{2}\right)^{2} d \theta_{2} d \theta_{1} \\
& \left.+\iint\left(\frac{\Phi_{2} \cdot \kappa^{3}-\Phi_{2}^{\prime \prime} \cdot \kappa}{4 \Phi}-\frac{\kappa^{2}}{4}+\left(\frac{\Phi_{2}^{\prime} \cdot \kappa}{2 \Phi}\right)^{\prime}+\frac{\kappa^{2}}{8 \Phi}\right) \cdot \Phi_{1}\right)\left(\theta_{1}\right) \\
& \left.+\iiint\left(\frac{\Phi_{11}}{2}-\frac{\Phi_{1}^{2}}{4 \Phi}\right)\left(\theta_{1}\right)-\Phi_{1}\left(\theta_{1}\right) \frac{\Phi_{1}}{2 \Phi}\left(\theta_{2}\right)\right) \\
&
\end{aligned}
$$

Special case: the metric G^{A}.
If we choose $\Phi\left(\ell_{c}, \kappa_{c}\right)=1+A \kappa_{c}^{2}$ then we obtain the metric we have investigated before:

$$
G_{c}^{A}(h, k)=\int_{S^{1}}\left(1+A \kappa_{c}(\theta)^{2}\right)\langle h(\theta), k(\theta)\rangle d s
$$

The horizontal geodesic equation for the G^{A}-metric reduces to

$$
\begin{aligned}
a_{t}=\frac{1}{1+A \kappa_{c}^{2}}(& -\frac{1}{2} \kappa_{c} a^{2} \\
& +A\left(a^{2}\left(-D_{s}^{2}\left(\kappa_{c}\right)+\frac{1}{2} \kappa_{c}^{3}\right)\right. \\
& \left.\left.-4 D_{s}\left(\kappa_{c}\right) a D_{s}(a)-2 \kappa_{c} D_{s}(a)^{2}\right)\right)
\end{aligned}
$$

Along a geodesic $t \mapsto c(t, \quad)$ we have the following conserved quantities:
$\left(1+A \kappa_{c}^{2}\right)\left\langle v, c_{t}\right\rangle\left|c_{\theta}\right|^{2} \in \mathfrak{X}\left(S^{1}\right) \quad$ reparam. mom.
$\int_{S^{1}}\left(1+A \kappa_{c}^{2}\right) c_{t} d s \in \mathbb{R}^{2}$
$\int_{S^{1}}\left(1+A \kappa_{c}^{2}\right)\left\langle J c, c_{t}\right\rangle d s \in \mathbb{R}$
linear momentum
angular momentum

Lipschitz continuity of $\sqrt{\ell}: B_{i} \rightarrow \mathbb{R}_{\geq 0}$. For C_{0} and C_{1} in $B_{i}=\operatorname{Imm} / \operatorname{Diff}\left(S^{1}\right)$ we have for $A>0$:

$$
\sqrt{\ell\left(C_{1}\right)}-\sqrt{\ell\left(C_{0}\right)} \leq \frac{1}{2 \sqrt{A}} \operatorname{dist}_{G^{A}}^{B_{i}\left(S^{1}, \mathbb{R}^{2}\right)}\left(C_{1}, C_{2}\right)
$$

Area swept out bound.
If c is any path from C_{0} to C_{1}, then
(area of the region $\left.\begin{array}{c}\text { swept out by the } \\ \text { variation } c\end{array}\right) \leq \max _{t} \sqrt{\ell(c(t, \cdot))} \cdot L_{G^{A}}^{h o r}(c)$.

Maximum distance bound.

Consider $\epsilon<\min \left\{\sqrt{A \ell} / 4, \ell^{3 / 4} / \sqrt{8}\right\}$ and let
$\eta=4\left(\ell^{3 / 4} A^{-1 / 4}+\ell^{1 / 4}\right) \sqrt{\epsilon}$. Then for any path c starting at C_{0} whose length $L_{G^{A}}^{\text {hor }}$ is ϵ, the final curve lies in the tubular neighborhood of C_{0} of width η. More precisely, if we choose the path $c(t, \theta)$ to be horizontal, then
$\max _{\theta}|c(0, \theta)-c(1, \theta)|<\eta$.

Corollary.

For any $A>0$, the map from $B_{i}\left(S^{1}, \mathbb{R}^{2}\right)$ in the G^{A} metric to the space $B_{i}^{\text {cont }}\left(S^{1}, \mathbb{R}^{2}\right)$ in the Frechet metric is continuous, and, in fact, uniformly continuous on every subset where the length ℓ is bounded. In particular, G^{A} is a separating metric on $B_{i}\left(S^{1}, \mathbb{R}^{2}\right)$. Moreover, the completion $\overline{B_{i}}\left(S^{1}, \mathbb{R}^{2}\right)$ of $B_{i}\left(S^{1}, \mathbb{R}^{2}\right)$ in this metric can be identified with a subset of $B_{i}^{l i p}\left(S^{1}, \mathbb{R}^{2}\right)$.

Explicit equicontinuity bounds, under appropriate parametrization.

Corollary.

If a path $c(\theta, t), 0 \leq t \leq 1$ satisfies:

- $\left|c_{\theta}(\theta, t)\right| \equiv \ell(t) / 2 \pi$ for all θ, t,
- $\left\langle c_{t}, c_{\theta}\right\rangle(0, t) \equiv 0$ in a base point 0 for all t
- $\int_{C_{t}}\left(1+A \kappa_{C_{t}}^{2}\right)\left|\left\langle c_{t}, i c_{\theta}\right\rangle\right|^{2} d \theta /\left|c_{\theta}\right| \equiv L^{2}$ for all t, then

$$
\begin{align*}
\mid c\left(\theta_{1}, t_{1}\right)- & \left.c\left(\theta_{2}, t_{2}\right)\left|\leq \frac{\ell_{\max }}{2 \pi}\right| \theta_{1}-\theta_{2} \right\rvert\,+ \\
& +7\left(\ell_{\max }^{3 / 4} / A^{1 / 4}+\ell_{\max }^{1 / 4}\right) \sqrt{L\left(t_{1}-t_{2}\right)} \tag{1}
\end{align*}
$$

whenever $\left|t_{1}-t_{2}\right| \leq \min \left(2 \sqrt{A \ell_{\min }}, \ell_{\min }^{3 / 2}\right) /(8 L)$.

A numerical simulation of the geodesic connecting two circles. Minimize $E_{G^{1}}^{\text {hor }}(c)$ for variations c with initial and end curves unit circles at distance 3 produced the following image for the geodesic:

The geodesic joining 2 'random' shapes of size about 1 at distance 5 apart with $A=.25$ (using 20 time samples and a 48-gon approximation for all curves).

The forward integration of the geodesic equation when $A=0$, starting from a straight line in the direction given by a smooth bump-like vector field. Note that two corner like singularities with curvature going to ∞ are about to form.

Top Row: Geodesics in 3 metrics joining the same two ellipses. Ellipses have eccentricity 3 , same center and are rotated at 60° degree.

Bottom Row: Geodesic triangles in B_{e} formed by joining three ellipses at angles 0,60 and 120 degrees, for the same three values of A. Here the intermediate shapes are just rotated versions of the geodesic in the top row but are laid out on a plane triangle for visualization purposes.

The sectional curvature on B_{i}

$$
\begin{aligned}
& R_{0}(a, b, a, b)=G_{0}^{A}\left(R_{0}(a, b) a, b\right)= \\
& =\int_{S^{1}}\left(\frac{1}{2}\left(A \kappa^{2}-1\right)\left(a b^{\prime}-a^{\prime} b\right)^{2}+A\left(a b^{\prime \prime}-a^{\prime \prime} b\right)^{2}\right) d \theta \\
& +\int_{S^{1}} \frac{A \kappa^{2}-A^{2} \kappa^{4}+2 A^{2} \kappa \kappa^{\prime \prime}-4 A^{2} \kappa^{\prime 2}}{1+A \kappa^{2}}\left(a b^{\prime}-a^{\prime} b\right)^{2} d \theta \\
& =\int_{S^{1}} \frac{-\left(A \kappa^{2}-1\right)^{2}+4 A^{2} \kappa \kappa^{\prime \prime}-8 A^{2} \kappa^{\prime 2}}{2\left(1+A \kappa^{2}\right)} W(a, b)^{2} d \theta \\
& +\int_{S^{1}} A W(a, b)^{\prime 2} d \theta
\end{aligned}
$$

where $W(a, b)=a b^{\prime}-a^{\prime} b$ is the Wronskian of a and b.

Special case: the conformal metrics

 $\Phi(\ell(c), \kappa(c))=\Phi(\ell(c))$, metric proposed by Menucci and Yezzi and, for Φ linear, independently by Shah:$$
G_{c}^{\Phi}(h, k)=\Phi\left(\ell_{c}\right) \int_{S^{1}}\langle h, k\rangle d s=\Phi\left(\ell_{c}\right) G_{c}^{0}(h, k)
$$

All these metrics are conformally equivalent to the basic L^{2}-metric G^{0}.
As they show, the infimum of path lengths in this metric is positive so long as Φ satifies an inequality $\Phi(\ell) \geq C . \ell$ for some $C>0$.

More precisely (Shah), if Area(c) is area swept over by the path c,
$\operatorname{dist}_{G^{\ell}}\left(C_{0}, C_{1}\right)=\inf _{c} \operatorname{Area}(c)$
$\sqrt{A e} . \inf _{c} \operatorname{Area}(c) \leq \operatorname{dist}_{G^{e}} A \ell\left(C_{0}, C_{1}\right) \leq$

$$
\leq \sqrt{A e} \cdot e^{A \ell_{\max }} \inf _{c} \operatorname{Area}(c)
$$

The horizontal geodesic equation reduces to:

$$
a_{t}=-\frac{\kappa}{2} a^{2}+\frac{\partial_{1} \Phi}{\Phi} \cdot\left(\frac{1}{2}\left(\int a^{2} . d s\right) \kappa-\left(\int \kappa \cdot a \cdot d s\right) a\right)
$$

If we change variables and write $b(s, t)=\Phi(\ell(t)) \cdot a(s, t)$, then this equation simplifies to:

$$
b_{t}=-\frac{\kappa}{2 \Phi}\left(b^{2}-\frac{\partial_{1} \Phi}{\Phi} \int b^{2} d s\right)
$$

Along a geodesic $t \mapsto c(t, \quad)$ we have the following conserved quantities:
$\Phi\left(\ell_{c}\right)\left\langle v, c_{t}\right\rangle\left|c^{\prime}(\theta)\right|^{2} \in \mathfrak{X}\left(S^{1}\right) \quad$ reparam. moment.
$\Phi\left(\ell_{c}\right) \int_{S^{1}} c_{t} d s \in \mathbb{R}^{2}$
linear moment.
$\Phi\left(\ell_{c}\right) \int_{S^{1}}\left\langle J c, c_{t}\right\rangle d s \in \mathbb{R}$
angular moment.

Curvature on B_{i} for the conformal metrics. Sectional curvature has been computed by J. Shah. Let g, h be orthonomal, then

Curv. in plane $\langle g . h\rangle$

$$
\begin{aligned}
& =\frac{\Phi}{2} \cdot \overline{\left(g \cdot D_{s}(h)-h \cdot D_{s}(g)\right)^{2}}+\frac{\partial_{1} \Phi}{4 \Phi} \cdot\left(\overline{g^{2} \cdot \kappa^{2}}+\overline{h^{2} \cdot \kappa^{2}}\right) \\
& +\frac{3 \partial_{1} \Phi^{2}-2 \Phi \cdot \partial_{1}^{2} \Phi}{4 \Phi^{2}} \cdot\left(\overline{(g \cdot \kappa)^{2}}+\overline{(h \cdot \kappa)^{2}}\right) \\
& -\frac{\partial_{1} \Phi}{2 \Phi} \cdot\left(\overline{D_{s}(g)^{2}}+\overline{D_{s}(h)^{2}}+\frac{\partial_{1} \Phi}{2 \Phi^{2}} \cdot \overline{\kappa^{2}}\right)
\end{aligned}
$$

Note that the first two lines are positive while the last line is negative. The first term is the curvature term for the H^{0}-metric. The key point about this formula is how many positive terms it has.

Special case: the smooth scale invariant metric $G^{S I}$
$\Phi(\ell, \kappa)=\ell^{-3}+A \frac{\kappa^{2}}{\ell}$ gives the metric:

$$
G_{c}^{S I}(h, k)=\int_{S^{1}}\left(\frac{1}{\ell_{c}^{3}}+A \frac{\kappa_{c}^{2}}{\ell_{c}}\right)\langle h, k\rangle d s .
$$

The beauty of this metric is that (a) it is scale invariant and (b) $\log (\ell)$ is Lipschitz, hence the infimum of path lengths is always positive.

Horizontal geodesics in this metric as special case of the equation for G^{Φ} :

$$
\begin{aligned}
a_{t} & =\frac{1}{1+A(\ell \kappa)^{2}}\left(\left(-1+A(\ell \kappa)^{2}\right) \frac{\kappa a^{2}}{2}\right. \\
& -2 A \ell^{2} \kappa D_{s}(a)^{2}-4 A \ell^{2} D_{s}(\kappa) a D_{s}(a) \\
& +\left(3+A(\ell \kappa)^{2}\right) \overline{(a \kappa)} \cdot a-\frac{3}{2} \overline{\left(a^{2}\right)} \cdot \kappa \\
& \left.-\frac{A \ell^{2}}{2} \overline{(\kappa a)^{2}} \cdot \kappa\right)
\end{aligned}
$$

where the "overline" stands now for the average of a function over the curve, i.e. $\int \cdots d s / \ell$.

Since this metric is scale invariant, there are now four conserved quantities, instead of three:

$$
\Phi(\ell, \kappa)\left\langle v, c_{t}\right\rangle\left|c^{\prime}(\theta)\right|^{2} \in \mathfrak{X}\left(S^{1}\right) \quad \text { reparam. mom. }
$$

$$
\int_{S^{1}} \Phi(\ell, \kappa) c_{t} d s \in \mathbb{R}^{2}
$$

linear moment.

$$
\int_{S^{1}} \Phi(\ell, \kappa)\left\langle J c, c_{t}\right\rangle d s \in \mathbb{R}
$$

angular moment.

$$
\Phi(\ell, \kappa)\left\langle c, c_{t}\right\rangle d s \in \mathbb{R}
$$

scaling moment.

The Wasserstein metric and a related G^{Φ}-metric. The Wasserstein metric (also known as the MongeKantorovich metric) is a metric between probability measures on a common metric space. Let μ and ν be 2 probability measures on a metric space (X, d). Consider all measures ρ on $X \times X$ whose marginals under the 2 projections are μ and ν. Then:

$$
d_{\mathrm{wass}}(\mu, \nu)=\inf _{\rho} \iint_{X \times X} d(x, y) d \rho(x, y) .
$$

where inf is over all ρ with $\operatorname{pr}_{1, *}(\rho)=\mu$ and $\operatorname{pr}_{2, *}(\rho)=$ ν.
The Wasserstein norm is sandwiched between $G^{\ell^{-1}}$ and $G^{\Phi_{W}}$ for $\Phi_{W}=\frac{1}{\ell}+\frac{1}{12} \ell \kappa^{2}$.

Immersion-Sobolev metrics on $\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$ and on B_{i}
Note that $D_{s}=\frac{\partial_{\theta}}{\left|c_{\theta}\right|}$ is anti self-adjoint for the metric G^{0}, i.e., for all $h, k \in C^{\infty}\left(S^{1} . \mathbb{R}^{2}\right)$ we have

$$
\int_{S^{1}}\left\langle D_{s}(h), k\right\rangle d s=\int_{S^{1}}\left\langle h,-D_{s}(k)\right\rangle d s
$$

The metric:

$$
\begin{aligned}
G_{c}^{\mathrm{imm}, n}(h, k) & =\int_{S^{1}}\left(\langle h, k\rangle+A \cdot\left\langle D_{s}^{n} h, D_{s}^{n} k\right\rangle\right) \cdot d s \\
& =\int_{S^{1}}\left\langle L_{n}(h), k\right\rangle d s \quad \text { where } \\
L_{n}(h) \text { or } L_{n, c}(h) & =I+(-1)^{n} A \cdot D_{s}^{2 n}(h)
\end{aligned}
$$

Geodesics in the $H^{\mathrm{imm}, n}$-metric

$$
\begin{aligned}
& \left(L_{n}\left(c_{t}\right)\right)_{t}=-\left\langle L_{n}\left(c_{t}\right), D_{s}\left(c_{t}\right)\right\rangle v \\
& \quad-\frac{\left|c_{t}\right|^{2} \kappa(c)}{2} n-\left\langle D_{s}\left(c_{t}\right), v\right\rangle L_{n} c_{t} \\
& \quad+\frac{A}{2} \cdot \sum_{j=1}^{2 n-1}(-1)^{n+j}\left\langle D_{s}^{2 n-j} c_{t}, D_{s}^{j} c_{t}\right\rangle \kappa(c) n
\end{aligned}
$$

Existence of geodesics. Theorem

Let $n \geq 1$. For each $k \geq 2 n+1$ the geodesic equation has unique local solutions in the Sobolev space of H^{k}-immersions. The solutions depend C^{∞} on t and on the initial conditions $c(0,$.$) and c_{t}(0,$.$) .$ The domain of existence (in t) is uniform in k and thus this also holds in $\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$.

Sketch of Proof Flow equation of a smooth (C^{∞}) vector field on the H^{2}-open set $U^{k} \times H^{k}\left(S^{1}, \mathbb{R}^{2}\right)$ in the Sobolev space $H^{k}\left(S^{1}, \mathbb{R}^{2}\right) \times H^{k}\left(S^{1}, \mathbb{R}^{2}\right)$ where $U^{k}=\left\{c \in H^{k}:\left|c_{\theta}\right|>0\right\} \subset H^{k}$ is H^{2}-open.

$$
\begin{aligned}
c_{t} & =u=: X_{1}(c, u) \\
u_{t} & =L_{n, c}^{-1}\left(-\left\langle L_{n, c}(u), D_{s}(u)\right\rangle D_{s}(c)\right. \\
& -\frac{\left|c_{t}\right|^{2} \kappa(c)}{2} J D_{s}(c)-\left\langle D_{s}(u), D_{s} c\right\rangle u \\
& +\frac{A}{2} \cdot \sum_{j=1}^{2 n-1}(-1)^{n+j}\left\langle D_{s}^{2 n-j} u, D_{s}^{j} u\right\rangle \kappa(c) J D_{s}(c) \\
& \left.+(-1)^{n} A \cdot \sum_{j=1}^{2 n-1} D_{s}^{j}\left(\left\langle D_{s}(u), D_{s}(c)\right\rangle D_{s}^{2 n-j}(u)\right)\right) \\
& =: X_{2}(c, u)
\end{aligned}
$$

The conserved momenta of $G^{\mathrm{imm}, n}$ along any geodesic $t \mapsto c(t, \quad)$:

$$
\begin{array}{ll}
\left\langle c_{\theta}, L_{n, c}\left(c_{t}\right)\right\rangle\left|c^{\prime}(\theta)\right| \in \mathfrak{X}\left(S^{1}\right) & \text { repar. moment. } \\
\int_{S^{1}} L_{n, c}\left(c_{t}\right) d s \in \mathbb{R}^{2} & \text { linear moment. } \\
\int_{S^{1}}\left\langle J c, L_{n, c}\left(c_{t}\right)\right\rangle d s \in \mathbb{R} & \text { angular moment. }
\end{array}
$$

Horizontality for $G^{\mathrm{imm}, n} h \in T_{c} \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$ is $G_{c}^{\mathrm{imm}, n}$-orthogonal to the $\operatorname{Diff}\left(S^{1}\right)$-orbit through c if and only if

$$
0=G_{c}^{\mathrm{imm}, n}\left(h, \zeta_{X}(c)\right)=\int_{S^{1}} X \cdot\left\langle L_{n, c}(h), c_{\theta}\right\rangle d s
$$

for all $X \in \mathfrak{X}\left(S^{1}\right)$. So the $G^{\text {imm, } n_{-} \text {-normal bundle is }}$ given by

$$
\mathcal{N}_{c}^{n}=\left\{h \in C^{\infty}\left(S, \mathbb{R}^{2}\right):\left\langle L_{n, c}(h), v\right\rangle=0\right\}
$$

The G^{n}-orthonormal projection $T_{c} \operatorname{Imm} \rightarrow \mathcal{N}_{c}^{n}$, denoted by $h \mapsto h^{\perp}=h^{\perp, G^{n}}$ and the complementary projection $h \mapsto h^{\top} \in T_{c}\left(c \circ \operatorname{Diff}\left(S^{1}\right)\right)$ are 1dimensional pseudo-differential operators.

They are determined as follows:

$$
h^{\top}=X(h) . v \text { where }\left\langle L_{n, c}(h), v\right\rangle=\left\langle L_{n, c}(X(h) \cdot v), v\right\rangle
$$

Thus we are led to consider the linear differential operators associated to $L_{n . c}$

$$
\begin{aligned}
& L_{c}^{\top}, L_{c}^{\perp}: C^{\infty}\left(S^{1}\right) \rightarrow C^{\infty}\left(S^{1}\right), \\
& L_{c}^{\top}(f)=\left\langle L_{n, c}(f . v), v\right\rangle=\left\langle L_{n, c}(f . n), n\right\rangle, \\
& L_{c}^{\perp}(f)=\left\langle L_{n, c}(f . v), n\right\rangle=-\left\langle L_{n, c}(f . n), v\right\rangle .
\end{aligned}
$$

The operator L_{c}^{\top} is of order $2 n$ and also unbounded, self-adjoint and positive on $L^{2}\left(S^{1},\left|c_{\theta}\right| d \theta\right)$. In particular, L_{c}^{\top} is injective. L_{c}^{\perp}, on the other hand is of order $2 n-1$ and is skew-adjoint. For example, if $n=1$, then one finds that:

$$
\begin{aligned}
& L_{c}^{\top}=-A \cdot D_{s}^{2}+\left(1+A \cdot \kappa^{2}\right) \cdot I \\
& L_{c}^{\perp}=-2 A . \kappa . D_{s}-A \cdot D_{s}(\kappa) . I
\end{aligned}
$$

The operator $L_{c}^{\top}: C^{\infty}\left(S^{1}\right) \rightarrow C^{\infty}\left(S^{1}\right)$ is invertible. This is by deformation invariance of the index.

We want to go back and forth between the 'natural' horizontal space of vector fields $a . n$ and the $G^{\mathrm{imm}, n_{-}}$ horizontal vector fields $\{h \mid\langle L h, v\rangle=0\}$: We use $C_{c}: C^{\infty}\left(S^{1}, \mathbb{R}^{2}\right) \rightarrow C^{\infty}\left(S^{1}\right)$ given by

$$
C_{c}(h):=\left(L_{c}^{\top}\right)^{-1} \circ L_{c}^{\perp},
$$

a pseudo-differential operator of order -1 so that

$$
a . n+C(a) \cdot v \quad \text { is } H^{\mathrm{imm}, n} \text {-horizontal }
$$

The restriction of the metric $G^{\mathrm{imm}, n}$ to horizontal vector fields $h_{i}=a_{i} . n+b_{i} . v$ can be computed like this:

$$
\begin{aligned}
G_{c}^{\mathrm{imm}, n}\left(h_{1}, h_{2}\right) & =\int_{S^{1}}\left\langle L h_{1}, h_{2}\right\rangle \cdot d s \\
& =\int_{S^{1}}\left(L^{\top}+L^{\perp} \circ C\right) a_{1} \cdot a_{2} \cdot d s
\end{aligned}
$$

Thus the metric restricted to horizontal vector fields is given by the pseudo differential operator $L^{\text {red }}=$ $L^{\top}+L^{\perp} \circ\left(L^{\top}\right)^{-1} \circ L^{\perp}$.

The metric on the cotangent space to B_{i}, is simple. On the smooth cotangent space $C^{\infty}\left(S^{1}, \mathbb{R}^{2}\right) \cong G_{c}^{0}\left(T_{c} \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)\right) \subset \mathcal{D}\left(S^{1}\right)^{2}$ the dual metric is given by convolution with the elementary kernel K_{n}.

$$
\begin{aligned}
\breve{G}_{c}^{n}\left(a_{1}, a_{2}\right)= & \iint_{S^{1} \times S^{1}} K_{n}\left(s_{1}-s_{2}\right) \\
& .\left\langle n_{c}\left(s_{1}\right), n_{c}\left(s_{2}\right)\right\rangle \cdot a_{1}\left(s_{1}\right) \cdot a_{2}\left(s_{2}\right) \cdot d s_{1} d s_{2}
\end{aligned}
$$

Horizontal geodesics

For any smooth path c in $\operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right)$ there exists a smooth path φ in $\operatorname{Diff}\left(S^{1}\right)$ with $\varphi(t, \quad)=\operatorname{Id}_{S^{1}}$ depending smoothly on c such that the path e given by $e(t, \theta)=c(t, \varphi(t, \theta))$ is horizontal: $\left\langle L_{n, c}\left(e_{t}\right), e_{\theta}\right\rangle=$ 0 .

We may specialize the general geodesic equation to horizontal paths and then take the v and n parts of the geodesic equation. For a horizontal path we may write $L_{n, c}\left(c_{t}\right)=\tilde{a} n$ for $\tilde{a}(t, \theta)=\left\langle L_{n, c}\left(c_{t}\right), n\right\rangle$. The v part of the equation turns out to vanish
identically and then n part gives us

$$
\begin{aligned}
\tilde{a}_{t}= & -\frac{\left|c_{t}\right|^{2} \kappa(c)}{2}-\left\langle D_{s} c_{t}, v\right\rangle \tilde{a}+ \\
& +\frac{\kappa(c)}{2} \sum_{j=1}^{2 n-1}(-1)^{n+j}\left\langle D_{s}^{2 n-j} c_{t}, D_{s}^{j} c_{t}\right\rangle
\end{aligned}
$$

A Lipschitz bound for arclength in $G^{\text {mm, } n}$

$$
\left|\sqrt{\ell\left(C_{1}\right)}-\sqrt{\ell\left(C_{0}\right)}\right| \leq \frac{C(A, n)}{2} \operatorname{dist}_{G^{n}}^{B_{i}}\left(C_{1}, C_{0}\right)
$$

The scale invariant Sobolov H^{1}-metric and its relation to the Grassmannian of 2-planes in an infinite dimensional space, and Neretin geodesics.

$$
\begin{aligned}
G_{c}(h, k) & =\lim _{A \rightarrow \infty} \frac{1}{A} G_{c}^{\mathrm{imm}, \mathrm{scal}, 1}(h, k) \\
& =\frac{1}{\ell(c)} \int_{S^{1}}\left\langle D_{s} h, D_{s} k\right\rangle d s \\
& =\frac{1}{\ell(c)} \int_{S^{1}}\left\langle h,-D_{s}^{2} k\right\rangle d s
\end{aligned}
$$

on Imm /translations or $\{c \in \operatorname{Imm}: c(1)=0\}$.

Geodesics in this metric

$$
\begin{aligned}
c_{t t}= & -\frac{1}{2} D_{s}^{-2}\left(\kappa_{c} n_{c}\right)\left\|c_{t}\right\|_{G_{c}}^{2}-\frac{1}{2} D_{s}^{-1}\left(\left|D_{s} c_{t}\right|^{2} v_{c}\right) \\
& -\frac{1}{\ell_{c}} \int \kappa_{c}\left\langle c_{t}, n_{c}\right\rangle d s \cdot c_{t}-D_{s}^{-1}\left(\left\langle D_{s} c_{t}, v_{c}\right\rangle D_{s} c_{t}\right)
\end{aligned}
$$

The conserved momenta of $G^{\mathrm{imm}, n}$ along any geodesic $t \mapsto c(t, \quad)$:
$\frac{-1}{\ell(c)}\left\langle c_{\theta}, D_{s}^{2}\left(c_{t}\right)\right\rangle\left|c^{\prime}(\theta)\right| \in \mathfrak{X}\left(S^{1}\right) \quad$ rear. moment.
$\frac{-1}{\ell(c)} \int_{S^{1}} D_{s}^{2}\left(c_{t}\right) d s=0 \in \mathbb{R}^{2} \quad$ linear moment.
$\frac{-1}{\ell(c)} \int_{S^{1}}\left\langle i c, D_{s}^{2}\left(c_{t}\right)\right\rangle d s \in \mathbb{R} \quad$ angular moment.
$\frac{-1}{\ell(c)} \int_{S^{1}}\left\langle c, D_{s}^{2}\left(c_{t}\right)\right\rangle d s=\partial_{t} \log (\ell(t))$ scaling moment.

Thm. For each $k \geq 3 / 2$ this geodesic equation has unique local solutions in the Sobolev space of H^{k}-immersions. The solutions depend C^{∞} on t and on the initial conditions $c(0,$.$) and c_{t}(0,$.$) . The$ domain of existence (in t)
is uniform in k and thus this also holds in $\operatorname{Imm}_{*}:=$ $\left\{c \in \operatorname{Imm}\left(S^{1}, \mathbb{R}^{2}\right): c(1)=0\right\}$.

Sphere, Stiefel, and Grassmannian

$V:=\left\{f \in C^{\infty}(\mathbb{R}, \mathbb{R}): f(x+2 \pi)=\mp f(x)\right\}$ below only -: odd case. + : even case. $\|f\|^{2}=\int_{0}^{2 \pi} f^{2} d x$ weak inner product on V.
$\operatorname{Gr}(2, V)$ Grassmannian of oriented 2-planes. $T_{W} \mathrm{Gr}=L\left(W, W^{\perp}\right)$ with metric
$\|v\|^{2}=\operatorname{tr}\left(v^{\top} \circ v\right)=\|v(e)\|^{2}+\|v(f)\|^{2}$,
e, f orthonormal basis of W.

For $W \in \operatorname{Gr}(2, V)$ let
$Z(V)=\{x: f(x)=0 \forall f \in W\}$.
$\operatorname{Gr}^{0}(2, V)=\{W \in \operatorname{Gr}(2, V): Z(W)=\emptyset\}$ open in $\operatorname{Gr}(2, V)$.

The Stiefel manifold $\operatorname{St}(2, V)$ of orthonormal pairs in V.
$\mathbf{S t}^{0}(2, V)=\{(e, f) \in \mathbf{S t}: Z(e, f)=\emptyset\}$ open in $\mathbf{S t}$.
$T_{(e, f)} \mathbf{S t}=\left\{(\delta e, \delta f) \in V^{2}: 0=\langle e, d e\rangle=\langle f, \delta f\rangle=\right.$ $\langle e, \delta f\rangle+\langle f, \delta e\rangle\}$
Metric $\|(\delta e, \delta f)\|^{2}=\|\delta e\|^{2}+\|\delta f\|^{2}$.
$\mathrm{St}(2, V) \subset \mathbf{S}\left(V_{\text {open }}^{2}\right)$ sphere of radius 2.
$V_{\text {open }}=C^{\infty}([0,2 \pi], \mathbb{R})$.

The basic bijection

$$
\begin{array}{r}
\Phi(e, f)=c(\theta)=\frac{1}{2} \int_{0}^{\theta}(e+i f)^{2} d x \\
\Phi: \mathbf{S}^{0} \xrightarrow{2-\text { fold }} \frac{\text { Imm }}{\text { transl.,scalings }} \\
\Phi: \mathbf{S t}^{0} \xrightarrow{2-\text { fold }} \frac{\text { Imm }}{\text { transl.,scalings }} \\
\Phi: \mathbf{G r}^{0} \xrightarrow{\approx} \frac{\text { Imm }_{\text {odd }}}{\text { transl.,rot.,scalings }} \\
\bar{\Phi}: \mathbf{G r}^{0} / U(V) \xrightarrow{\approx} \frac{B_{i, \text { odd }}}{\text { transl.,rot.,scalings }}
\end{array}
$$

Thm. Φ is an isometry from the natural metric on St^{0} to $\mathrm{Imm}_{\text {odd }} /$ translations with the metric G.

Proof. $c_{\theta}=\frac{1}{2}(e+i f)^{2}, d s=\frac{1}{2}|e+i f|^{2} d \theta$.
$\delta c=T_{(e, f)} \Phi .(\delta e, \delta f)=\int^{\theta}(\delta e+i \delta f)(e+i f) d x$
$D_{s}(\delta c)=2 \frac{(\delta e+i \delta f)(e+i f)}{|e+i f|^{2}}$
$\left|D_{s}(\delta c)\right|^{2} d s=\left(|\delta e|^{2}+|\delta f|^{2}\right) d \theta$.

The dictionary between pairs (e, f) and immersions c connects many properties. Curvature κ works out especially nicely. We list here some of the connections:

$$
\begin{gathered}
\frac{d s}{d \theta}=\left|c_{\theta}\right|=\frac{1}{2}\left(e^{2}+f^{2}\right) \\
v=D_{s}(c)=\frac{(e+i f)^{2}}{e^{2}+f^{2}}
\end{gathered}
$$

and if $W_{\theta}(e, f)=e f_{\theta}-f e_{\theta}$ is the Wronskian, then:

$$
\begin{aligned}
v_{\theta} & =\left(\frac{(e+i f)^{2}}{e^{2}+f^{2}}\right)_{\theta}=2 \frac{W_{\theta}(e, f)}{\left(e^{2}+f^{2}\right)} i v, \quad \text { hence } \\
\kappa & =2 \frac{W_{\theta}(e, f)}{\left(e^{2}+f^{2}\right)^{2}} \quad \text { for the curvature of } c .
\end{aligned}
$$

Reparameterizations

Let $U(V)$ be the group of all unitary operators on V of the form $f \mapsto \sqrt{\varphi^{\prime}}(f \circ \varphi)$ for all smooth $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ with $\varphi^{\prime}(x)>0$ and $\varphi(x+2 \pi)=\varphi(x)+2 \pi$, i.e. lifts of $\bar{\varphi} \in \operatorname{Diff}+\left(S^{1}\right)$.
The infinitesimal action on V of a periodic vector field X on \mathbb{R} is $f \mapsto \frac{1}{2} X_{\theta} . f+X . f_{\theta}$.

Prop. $\Phi(e, f) \circ \bar{\varphi}=\Phi\left(\sqrt{\varphi^{\prime}}(e \circ \varphi), \sqrt{\varphi^{\prime}}(f \circ \varphi)\right)$.
A tangent vector $(\delta e, \delta f) \in T_{(e, f)} \mathrm{St}$ is perpendicular to the rotation orbits iff
$\langle e, d f\rangle_{V}=\langle f, d e\rangle_{V}=0$.
It is perpendicular to the reparameterization orbit iff $W_{\theta}(e, \delta e)+W_{\theta}(f, \delta f)=0$
where $W_{\theta}(a, b)=a . b_{\theta}-a_{\theta} . b$ is the Wronskian.

Neretin geodesics on $\mathbf{G r}(2, V)$

Y.A.Neretin: On Jordan angles and the triangle inequality in Grassmann manifolds, Geom. Dedicata 86 (2001)

If $W_{0}, W_{1} \in \mathbf{G r}(2, V)$, use the singular value decomposition of the orthonormal projection $p: W_{0} \rightarrow$ W_{1}. This gives ONB $\left(e^{0}, f^{0}\right)$ of W_{0} and $\left(e^{1}, f^{1}\right)$ of W_{1} such that $p\left(e^{0}\right)=\cos (\varphi) e^{1}, p\left(f^{0}\right)=\cos (\psi) f^{1}$, $e^{0} \perp f^{1}$ and $f^{0} \perp e^{1}$ for
$0 \leq \varphi, \psi \leq \pi / 2$ - the Jordan angles.
The metric is then given by

$$
\operatorname{dist}\left(W^{0}, W^{1}\right)=\sqrt{\varphi^{2}+\psi^{2}}
$$

and the geodesic by

$$
W(t)=\left\{\begin{array}{l}
e(t)=\frac{\sin ((1-t) \varphi)}{\sin (\varphi)} \cdot e^{0}+\frac{\sin (t \varphi)}{\sin (\varphi)} \cdot e^{1} \\
f(t)=\frac{\sin ((1-t) \psi)}{\sin (\varphi)} \cdot f^{0}+\frac{\sin (t \varphi)}{\sin (\varphi)} \cdot f^{1}
\end{array}\right\}
$$

We apply this to compute the distance between curves in $\mathrm{Imm}_{\mathrm{od}} /(\operatorname{sim})$ and $B_{i, \mathrm{od}} /(\operatorname{sim})$. We write $\partial_{\theta} c^{0}=r_{0}(\theta) e^{i \alpha^{0}(\theta)}$ and $\partial_{\theta} c^{1}=r_{1}(\theta) e^{i \alpha^{1}(\theta)}$. We put

$$
\begin{array}{ll}
\bar{e}^{0}=\sqrt{2 r_{0}} \cos \frac{\alpha^{0}}{2} & \bar{f}^{0}=\sqrt{2 r_{0}} \sin \frac{\alpha^{0}}{2}, \\
\bar{e}^{1}=\sqrt{2 r_{1}} \cos \frac{\alpha^{1}}{2} & \bar{f}^{1}=\sqrt{2 r_{1}} \sin \frac{\alpha^{1}}{2},
\end{array}
$$

lifting the curves to 2-planes in the Grassmannian. The 2×2 matrix $M\left(c^{0}, c^{1}\right)$ of the orthogonal projection from the space $\left\{\bar{e}^{0}, \bar{f}^{0}\right\}$ to $\left\{\bar{e}^{1}, \bar{f}^{1}\right\}$ in these bases is:

$$
\left(\begin{array}{ll}
\int_{S^{1}} 2 \sqrt{r^{0} \cdot r^{1}} \cdot \cos \frac{\alpha^{0}}{2} \cos \frac{\alpha^{1}}{2} d \theta & \int_{S^{1}} 2 \sqrt{r^{0} \cdot r^{1}} \cdot \cos \frac{\alpha^{0}}{2} \sin \frac{\alpha^{1}}{2} d \theta \\
\int_{S^{1}} 2 \sqrt{r^{0} \cdot r^{1}} \cdot \sin \frac{\alpha^{0}}{2} \cos \frac{\alpha^{1}}{2} d \theta & \int_{S^{1}} 2 \sqrt{r^{0} \cdot r^{1}} \cdot \sin \frac{\alpha^{0}}{2} \sin \frac{\alpha^{1}}{2} d \theta
\end{array}\right)
$$

Notations:

$$
\begin{aligned}
C_{ \pm} & :=\int_{S^{1}} \sqrt{r^{0} \cdot r^{1}} \cos \frac{\alpha^{0} \pm \alpha^{1}}{2} d \theta \\
& \left.=\frac{1}{2}\left(M\left(c^{0}, c^{1}\right)_{11}\right) \mp M\left(c^{0}, c^{1}\right)_{22}\right) \\
S_{ \pm} & :=\int_{S^{1}} \sqrt{r^{0} \cdot r^{1}} \sin \frac{\alpha^{0} \pm \alpha^{1}}{2} d \theta \\
& =\frac{1}{2}\left(M\left(c^{0}, c^{1}\right)_{21} \pm M\left(c^{0}, c^{1}\right)_{12}\right)
\end{aligned}
$$

We have to diagonalize this matrix by rotating the curve c^{0} by a constant angle β^{0}, i.e., the basis $\left\{\bar{e}^{0}, \bar{f}^{0}\right\}$ by the angle $\beta^{0} / 2$; and similarly c^{1} by a constant angle β^{1}. So replace α^{0} by $\alpha^{0}-\beta^{0}$ and α^{1} by $\alpha^{1}-\beta^{1}$ such that (for both signs)

$$
\begin{aligned}
0 & =\int_{S^{1}} \sqrt{r^{0} \cdot r^{1}} \sin \left(\frac{\left(\alpha^{0}-\beta^{0}\right) \pm\left(\alpha^{1}-\beta^{1}\right)}{2}\right) d \theta \\
& =S_{ \pm} \cdot \cos \frac{\beta^{0} \pm \beta^{1}}{2}-C_{ \pm} \cdot \sin \frac{\beta^{0} \pm \beta^{1}}{2}
\end{aligned}
$$

Thus

$$
\beta_{0} \pm \beta_{1}=2 \arctan \left(S_{ \pm} / C_{ \pm}\right)
$$

In the newly aligned bases, the diagonal elements of the matrix will be the cosines of the Jordan angles. The following lemma gives you a formula for them:

If $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), C_{ \pm}=\frac{1}{2}(a \mp d), S_{ \pm}=\frac{1}{2}(c \pm b)$, then the singular values of M are:

$$
\sqrt{C_{-}^{2}+S_{-}^{2}} \pm \sqrt{C_{+}^{2}+S_{+}^{2}}
$$

This gives the formula

$$
\begin{aligned}
& D_{\mathrm{od}, \operatorname{rot}}\left(c^{0}, c^{1}\right)^{2}= \\
& \quad=\arccos ^{2}\left(\sqrt{S_{+}^{2}+C_{+}^{2}}+\sqrt{S_{-}^{2}+C_{-}^{2}}\right) \\
& \quad+\arccos ^{2}\left(\sqrt{S_{-}^{2}+C_{-}^{2}}-\sqrt{S_{+}^{2}+C_{+}^{2}}\right)
\end{aligned}
$$

This is the distance in the space $\operatorname{Imm}_{\text {od }}\left(S^{1}, \mathbb{C}\right) /($ transl, rot., scalings).

Horizontal Neretin distances.

If we want the distance in the quotient space $B_{i, \mathrm{od}} /($ transl, rot., scalings) by the group $\operatorname{Diff}\left(S^{1}\right)$ we have to take the infimum of this distance over all reparametrizations.
To simplify, we assume that the initial curves c^{0}, c^{1} are parametrized by arc length so that $r^{0} \equiv r^{1} \equiv$ $1 / 2 \pi$.

Then consider a reparametrization $\phi \in \operatorname{Diff}\left(S^{1}\right)$ of one of the two curves, say $c^{0} \circ \phi$:

$$
\begin{aligned}
D_{\text {sim, diff }}\left(c^{0}, c^{1}\right)^{2} & =\inf _{\phi}\left(\arccos ^{2}\left(\lambda_{e}\left(c^{0} \circ \phi, c^{1}\right)\right)\right. \\
& \left.+\arccos ^{2}\left(\lambda_{f}\left(c^{0} \circ \phi, c^{1}\right)\right)\right)
\end{aligned}
$$

where now

$$
\begin{aligned}
\lambda_{e}\left(c^{0} \circ \phi, c^{1}\right) & =\sqrt{S_{-}^{2}(\phi)+C_{-}^{2}(\phi)}+\sqrt{S_{+}^{2}(\phi)+C_{+}^{2}(\phi)} \\
\lambda_{f}\left(c^{0} \circ \phi, c^{1}\right) & =\sqrt{S_{-}^{2}(\phi)+C_{-}^{2}(\phi)}-\sqrt{S_{+}^{2}(\phi)+C_{+}^{2}(\phi)} \\
S_{ \pm}(\phi) & :=\frac{1}{2 \pi} \int_{S^{1}} \sqrt{\phi_{\theta}} \sin \frac{\left(\alpha^{0} \circ \phi\right) \pm \alpha^{1}}{2} d \theta, \\
C_{ \pm}(\phi) & :=\frac{1}{2 \pi} \int_{S^{1}} \sqrt{\phi_{\theta}} \cos \frac{\left(\alpha^{0} \circ \phi\right) \pm \alpha^{1}}{2} d \theta .
\end{aligned}
$$

To describe the inf, we can use that geodesics in B_{i} are horizontal geodesics in Imm.
Consider the Neretin geodesic $t \mapsto\{e(t), f(t)\}$ in $\operatorname{Gr}(2, V)$ described above

$$
W(t)=\left\{\begin{array}{l}
e(t)=\frac{\sin ((1-t) \varphi)}{\sin (\varphi)} \cdot e^{0}+\frac{\sin (t \varphi)}{\sin (\varphi)} \cdot e^{1} \\
f(t)=\frac{\sin ((1-t) \psi)}{\sin (\varphi)} \cdot f^{0}+\frac{\sin (t \varphi)}{\sin (\varphi)} \cdot f^{1}
\end{array}\right\}
$$

for

$$
\begin{array}{ll}
e^{0}=\sqrt{\frac{\phi_{\theta}}{\pi}} \cos \frac{\left(\alpha^{0} \circ \phi\right)-\beta^{0}}{2} & e^{1}=\frac{1}{\sqrt{\pi}} \cos \frac{\alpha^{1}-\beta^{1}}{2} \\
f^{0}=\sqrt{\frac{\phi_{\theta}}{\pi}} \sin \frac{\left(\alpha^{0} \circ \phi\right)-\beta^{0}}{2} & f^{1}=\frac{1}{\sqrt{\pi}} \sin \frac{\alpha^{1}-\beta^{1}}{2}
\end{array}
$$

where the rotations β^{0} and β^{1} must be computed from $c^{0} \circ \phi$ and c^{1}.

The geodesic is perpendicular to all $\operatorname{Diff}\left(S^{1}\right)$-orbits if and only if the sum of Wronskians vanishes:

$$
\begin{aligned}
0= & W_{\theta}\left(e^{0}, e_{t}(0)\right)+W_{\theta}\left(f^{0}, f_{t}(0)\right)= \\
=- & \frac{1}{\sqrt{\phi_{\theta}}}\left\{\phi _ { \theta \theta } \left(\frac{\psi_{e}}{\sin \psi_{e}} \cos \frac{\left(\alpha^{0} \circ \phi\right)-\beta^{0}}{2} \cos \frac{\alpha^{1}-\beta^{1}}{2}\right.\right. \\
& \left.+\frac{\psi_{f}}{\sin \psi_{f}} \sin \frac{\left(\alpha^{0} \circ \phi\right)-\beta^{0}}{2} \sin \frac{\alpha^{1}-\beta^{1}}{2}\right) \\
- & \phi_{\theta} \alpha_{\theta}^{1}\left(\frac{\psi_{e}}{\sin \psi_{e}} \cos \frac{\left(\alpha^{0} \circ \phi\right)-\beta^{0}}{2} \sin \frac{\alpha^{1}-\beta^{1}}{2}\right. \\
& \left.-\frac{\psi_{f}}{\sin \psi_{f}} \sin \frac{\left(\alpha^{0} \circ \phi\right)-\beta^{0}}{2} \cos \frac{\alpha^{1}-\beta^{1}}{2}\right) \\
+ & \phi_{\theta}^{2}\left(\alpha_{\theta}^{0} \circ \phi\right)\left(\frac{\psi_{e}}{\sin \psi_{e}} \sin \frac{\left(\alpha^{0} \circ \phi\right)-\beta^{0}}{2} \cos \frac{\alpha^{1}-\beta^{1}}{2}\right. \\
& \left.\left.-\frac{\psi_{f}}{\sin \psi_{f}} \cos \frac{\left(\alpha^{0} \circ \phi\right)-\beta^{0}}{2} \sin \frac{\alpha^{1}-\beta^{1}}{2}\right)\right\}
\end{aligned}
$$

This is an ordinary differential equation for ϕ which is coupled to the (integral) equations for calculating the β 's as functions of ϕ. If it is non-singular (i.e., the coefficient function of $\phi_{\theta \theta}$ does not vanish for any θ) then there is a solution ϕ, at least locally. But the non-existence of the inf described for open curves above will also affect closed curves and global solutions may actually not exist. However, for closed curves that do not double back on themselves too much geodesics do seem to usually exist.

The generic way in which a family of open immersions crosses the hypersurface where $Z \neq \emptyset$. The parametrized straight line in the middle of the family has velocity with a double zero at the black dot, hence is not an immersion.

This is a geodesic of open curves running from the curve with the kink at the top left to the straight line on the bottom right. A blow up of the next to last curve is shown to reveal that the kink never goes away - it merely shrinks. Thus this geodesic is not continuous in the C^{1}-topology on $B_{\text {open }}$. The straight line is parametrized so that it stops for a whole interval of time when it hits the middle point and thus it is C^{1}-continuous in Immopen.

A great circle geodesic on $B_{\text {od }}$. The geodesic begins at the circle at the top left, runs from left to right, then to the second row and finally the third. It leaves $B_{\text {od }}$ twice: at the top right and bottom left, in both of which the singularity of the first figure occurs in 2 places. The index of the curve changes from +1 to -3 in the middle row.

Curvature. Let $W \in \operatorname{Gr}(2, V)$ be a fixed 2-plane. Let $\eta: V \rightarrow V$ be the isomorphism which equals -1 on W and 1 on W^{\perp} satisfying $\eta=\eta^{-1}$. Then Gr is the symmetric space $O(V) /\left(O(W) \times O\left(W^{\perp}\right)\right)$ with involutive automorphism $\sigma: O(V) \rightarrow O(V)$ given by $\sigma(U)=\eta \cdot U \eta$. For the Lie algebra in the $V=W \oplus W^{\perp}$-decomposition we have

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x & -y^{T} \\
y & U
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
x & y^{T} \\
y & U
\end{array}\right)
$$

Here $x \in L(W, W), y \in L\left(W, W^{\perp}\right)$. The fixed point group is $O(V)^{\sigma}=O(W) \times O\left(W^{\perp}\right)$.

The reductive decomposition $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ is given by

$$
\begin{aligned}
\left\{\left(\begin{array}{cc}
x & -y^{T} \\
y & U
\end{array}\right)\right\}= & \left\{\left(\begin{array}{cc}
x & 0 \\
0 & U
\end{array}\right), x \in \mathfrak{s o}(2)\right\} \\
& +\left\{\left(\begin{array}{cc}
0 & -y^{T} \\
y & 0
\end{array}\right), y \in L\left(W, W^{\perp}\right)\right\}
\end{aligned}
$$

For the sectional curvature we have (where we assume that Y_{1}, Y_{2} is orthonormal):

$$
\begin{aligned}
& k_{\text {span }\left(Y_{1}, Y_{2}\right)}=-B\left(Y_{2},\left[\left[Y_{1}, Y_{2}\right], Y_{1}\right]\right) \\
& =\operatorname{tr}_{W}\left(y_{2}^{T} y_{2} y_{1}^{T} y_{1}+y_{2}^{T} y_{1} y_{1}^{T} y_{2}-2 y_{2}^{T} y_{1} y_{2}^{T} y_{1}\right) \\
& =\frac{1}{2}\left\|y_{2}^{T} y_{1}-y_{1}^{T} y_{2}\right\|_{L^{2}(W, W)}^{2} \\
& \quad+\frac{1}{2}\left\|y_{2} y_{1}^{T}-y_{1} y_{2}^{T}\right\|_{L^{2}\left(W^{\perp}, W^{\perp}\right)}^{2} \geq 0 .
\end{aligned}
$$

where L^{2} stands for the space of Hilbert-Schmidt operators. Note that there are many orthonormal
pairs Y_{1}, Y_{2} on which sectional curvature vanishes and that its maximum value 2 is attained when y_{i} are isometries and $y_{2}=J y_{1}$ where J is rotation through angle $\pi / 2$ in the image plane of y_{1}.

We obtain the expression of the curvature in Imm/(sim

$$
\begin{aligned}
& k_{\mathrm{span}\left(h_{1}, h_{2}\right)}^{\operatorname{Immm}, \operatorname{sim}}=\left(\int_{C} \operatorname{det}\left(D_{s} h_{1}, D_{s} h_{2}\right) d s\right)^{2} \\
& +\iint_{C \times C} \frac{1+\cos (\alpha(x)-\alpha(y))}{2} \\
& \quad \cdot\binom{\left\langle D_{s} h_{1}(x), D_{s} h_{2}(y)\right\rangle}{-\left\langle D_{s} h_{2}(x), D_{s} h_{1}(y)\right\rangle}^{2} d s(x) d s(y) \\
& +\iint_{C \times C} \frac{1-\cos (\alpha(x)-\alpha(y))}{2} . \\
& \quad \cdot\binom{\operatorname{det}\left(D_{s} h_{1}(x), D_{s} h_{2}(y)\right)}{-\operatorname{det}\left(D_{s} h_{2}(x), D_{s} h_{1}(y)\right)}^{2} d s(x) d s(y)
\end{aligned}
$$

A major consequence of the calculation for the curvature on the Grassmannian is:

Thm. The sectional curvature on $B_{i} /(\operatorname{sim})$ is ≥ 0.

Proof. We apply O'Neill's formula to the Riemannian submersion

$$
\begin{aligned}
& \pi: \mathbf{G r}^{0} \rightarrow \mathbf{G r}^{0} / U(V) \cong B_{i} / \operatorname{Diff}^{+}\left(S^{1}\right) \\
& k_{\pi(W)}^{\mathrm{Gr}^{0} / U(V)}(X, Y)=k_{W}^{\mathbf{G r}^{0}}\left(X^{\text {hor }}, Y^{\text {hor }}\right) \\
& \quad+\frac{3}{4}\left\|\left.\left[X^{\text {hor }}, X^{\text {hor }}\right]^{\text {ver }}\right|_{W}\right\|^{2} \geq 0
\end{aligned}
$$

where $X^{\text {hor }}$ is a horizontal vector field projecting to X at $\pi(W)$. The horizontal and vertical projections exist and are pseudo differential operators.

We have explicit formulas for the O'Neill term and thus for the sectional curvature $k_{\operatorname{span}\left(h_{1}, h_{2}\right)}^{\mathrm{B}_{\mathrm{i}} /(\operatorname{sim})}$ at a curve $C \in \mathrm{~B}_{\mathrm{i}} /(\operatorname{sim})$ and tangent vector h_{i}. We also have an explicit upper bound for this as a function of h_{1}. This shows that geodesics have at least a small interval before they meet another geodesic. The size of this interval can be controlled by an upper bound that involves the supremum norm of the first two derivatives of h_{1}.

See the paper for this.

Some numerical experiments:

Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic distance: 0.443 and 0.444

Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic distance: 0.462 and 0.464

Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic distance: 0.433 and 0.439

Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic distance: 0.498 and 0.532

Curve evolution with and without the closedness constraint. Lower and upper bounds for the geodesic distance: 0.513 and 0.528

Shape spaces as quotients of diffeomorphism groups.

Sobolev metrics on $\operatorname{Diff}\left(\mathbb{R}^{2}\right)$ and its quotients $\operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right)$ and $B_{e}\left(S^{1}, \mathbb{R}^{2}\right)$
Right invariant metric on the Lie group $\operatorname{Diff}\left(\mathbb{R}^{2}\right)$ induced by the inner product

$$
\begin{aligned}
H^{n}(X, Y) & =\int_{\mathbb{R}^{2}}\langle L X, Y\rangle d x \quad \text { where } \\
L & =L_{A, n}=(1-A \Delta)^{n}, \quad \Delta=\partial_{x^{1}}^{2}+\partial_{x^{2}}^{2} .
\end{aligned}
$$

with fundamental solution $L_{A, n}\left(F_{A, n}\right)=\delta_{0}$ given by

$$
\begin{aligned}
F_{A, n}(x) & =\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{i\langle x, \xi\rangle} \frac{1}{\left(1+A|\xi|^{2}\right)^{n}} d \xi \\
& =\frac{c}{A^{(n-1) / 2}} \cdot|x|^{n-1} \cdot K_{n-1}\left(\frac{|x|}{\sqrt{A}}\right),
\end{aligned}
$$

for the classical modified Bessel functions K_{r}.

The geodesic equation on $\operatorname{Diff}\left(\mathbb{R}^{2}\right)$ is V.Arno'ld's equation EPDiff:

$t \mapsto \varphi(t, \quad) \in \operatorname{Diff}\left(\mathbb{R}^{2}\right)$

$v(t)=\left(\partial_{t} \varphi\right) \circ \varphi^{-1} \in \mathfrak{X}\left(\mathbb{R}^{2}\right), \quad u(t)=L(v(t))$,
$\frac{\partial u_{i}}{\partial t}+\sum_{j}\left(v^{j} \cdot \frac{\partial u_{i}}{\partial x^{j}}+u^{j} \cdot \frac{\partial v^{j}}{\partial x^{i}}\right)+\operatorname{div} v \cdot u_{i}=0$.

The quotient $\operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right)$.
$\operatorname{Diff}\left(\mathbb{R}^{2}\right) \rightarrow \operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right)$
$\varphi \mapsto \varphi \circ i$, where $i: S^{1} \subset \mathbb{R}^{2}$.
If $c=\varphi \circ i$, the fiber through φ is
$\varphi \cdot\{\psi: \psi \circ i=i\}=\{\psi: \psi \circ c=c\} . \varphi$.
The tangent space to the fiber is (right translated by φ)
$\left\{X \in X\left(\mathbb{R}^{2}\right): X \circ c=0\right\}$.
The horizontal subspace is the translate by φ of $\left\{Y: \int_{\mathbb{R}^{2}}\langle L Y, X\rangle d x=0\right.$, if $\left.X \circ c=0\right\}$.
If Y is C^{∞} then $Y=0$. So we need
$L Y=c_{*}(p(\theta) . d s)$ for $p \in C^{\infty}\left(S^{1}, \mathbb{R}^{2}\right)$, a distribution carried by c. Thus
$Y(x)=\int_{S^{1}} F(x-c(\theta)) p(\theta) d s$
$Y(x)=\int_{S^{1}} F(x-c(\theta)) p(\theta) d s$
Mapped to T_{c} Emb we get

$$
\begin{aligned}
(Y \circ c)(\theta) & =\int_{S^{1}} F\left(c(\theta)-c\left(\theta_{1}\right)\right) \cdot p\left(\theta_{1}\right) \cdot\left|c^{\prime}\left(\theta_{1}\right)\right| d \theta_{1} \\
& =:\left(F_{c} * p\right)(\theta) \quad \text { where } \\
F_{c}\left(\theta_{1}, \theta_{2}\right) & :=F\left(c\left(\theta_{1}\right)-c\left(\theta_{2}\right)\right)
\end{aligned}
$$

is an elliptic pseudo differential operator kernel of order $-2 n+1$ which is real and positive, so the operator $p \mapsto F_{c} * p$ is self-adjoint and positive, so injective, and by index deformation it is bijective between the Sobolev spaces on S^{1}. The inverse operator $\left(F_{c^{*}} \quad\right)^{-1}$ has kernel $L_{c}\left(\theta, \theta_{1}\right)$ which is a pseudo differential operator kernel of order $2 n-1$.

Write $h=Y \circ c \in T_{c}$ Emb and express the horizontal lift $Y=Y_{h}$ in terms of h :

$$
h=Y_{h} \circ c=F *\left(c_{*}(p . d s)\right)=F_{c} * p \text { so } p=L_{c} * h
$$

$$
Y=Y_{h}=F *\left(c_{*}\left(\left(L_{c} * h\right) \cdot d s\right)\right)
$$

$$
Y_{h}(x)=\int_{S^{1}} F(x-c(\theta))
$$

$$
\cdot \int_{S^{1}} L_{c}\left(\theta, \theta_{1}\right) h\left(\theta_{1}\right)\left|c^{\prime}\left(\theta_{1}\right)\right| d \theta_{1}\left|c^{\prime}(\theta)\right| d \theta
$$

Finally the metric:

$$
\begin{aligned}
& G_{c}^{\text {diff }, n}(h, k)=\int_{\mathbb{R}^{2}}\left\langle L Y_{h}, Y_{k}\right\rangle d x \\
& =\iint_{S^{1} \times S^{1}} L_{c}\left(\theta, \theta_{1}\right)\left\langle h\left(\theta_{1}\right), k(\theta)\right\rangle d s_{1} d s
\end{aligned}
$$

We can now compute K and H and the geodesic equation. It becomes simpler if written for the 1current $L_{c} * c_{t}=p .\left|c_{\theta}\right|=: q$:

$$
q_{t}\left(\theta_{0}\right)=-\int_{S^{1}} F_{c}^{\prime}\left(\theta_{0}, \theta_{1}\right)\left\langle q\left(\theta_{0}\right), q\left(\theta_{1}\right)\right\rangle d \theta_{1}
$$

where $F_{c}^{\prime}\left(\theta_{1}, \theta_{2}\right)=\operatorname{grad} F\left(c\left(\theta_{1}\right)-c\left(\theta_{2}\right)\right)$.

Existence of geodesics. Theorem.

Let $n \geq 1$. For each $k>2 n-\frac{1}{2}$ the geodesic equation has unique local solutions in the Sobolev space of H^{k}-embeddings. The solutions are C^{∞} in t and in the initial conditions $c(0,$.$) and c_{t}(0,$.$) . The$ domain of existence (in t) is uniform in k and thus this also holds in $\operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right)$.

Conserved momenta: Along a geodesic c,

$$
\begin{aligned}
& G_{c}^{\text {diff }, n}\left(c_{\theta} \cdot X, c_{t}\right)= \\
& =\iint_{S^{1} \times S^{1}} L_{c}\left(\theta, \theta_{1}\right)\left\langle c_{\theta}\left(\theta_{1}\right) X\left(\theta_{1}\right), c_{t}(\theta)\right\rangle d s_{1} d s
\end{aligned}
$$

is conserved for every vector field X on S^{1}; the conserved reparametrization momentum is
$\left\langle c_{\theta}, L_{c} * c_{t}\right\rangle=\left\langle c_{\theta}, q\right\rangle$.
Also $\left.\iint_{\left(S^{1}\right)^{2}} L_{c}\left(\theta, \theta_{1}\right) c_{t}(\theta)\right\rangle d s_{1} d s=\int_{S^{1}} q(\theta) d s$ is the conserved linear momentum.

$$
\begin{aligned}
\iint_{S^{1} \times S^{1}} L_{c}\left(\theta, \theta_{1}\right)\left\langle J c\left(\theta_{1}\right), c_{t}(\theta)\right\rangle & d s_{1} d s= \\
& =\int_{S^{1}}\langle J c(\theta), q(\theta)\rangle d s
\end{aligned}
$$

is the conserved angular momentum.

Horizontal geodesics.

A field h along c is horizontal if $\left\langle L_{c} * h, c_{\theta}\right\rangle=0$. For a horizontal path we have $\left\langle q, c_{\theta}\right\rangle=0$, so let $q=\tilde{a}$.n. Then the horizontal geodesic equation is

$$
\begin{aligned}
& \tilde{a}_{t}(\theta)=\left\langle q_{t}, n\right\rangle(\theta)= \\
& =-\int_{S^{1}}\left\langle F_{c}^{\prime}\left(\theta, \theta_{1}\right), n(\theta)\right\rangle \tilde{a}(\theta) \tilde{a}\left(\theta_{1}\right)\left\langle n(\theta), n\left(\theta_{1}\right)\right\rangle d \theta_{1}
\end{aligned}
$$

Note that also $n=J c_{\theta} /\left|c_{\theta}\right|$ appears. It is a strange equation, but it is well-posed byt the theorem above.

Geometry of landmark space and of spaces of currents

The diffeomorphism group

Diff $=\operatorname{Diff}_{\mathcal{S}}\left(\mathbb{R}^{n}\right)$: the regular Lie group of all diffeomorphisms which are rapidly falling towards the identity.
Its Lie algebra is the space $\mathfrak{X}_{\mathcal{S}}\left(\mathbb{R}^{n}\right)$ of all smooth vector fields which decrease rapidly, with the negative of the usual bracket as Lie bracket.
We consider $\mathfrak{X}_{\mathcal{S}}\left(\mathbb{R}^{n}\right)$ as pre Hilbert space H^{L} with inner product

$$
\langle X, Y\rangle_{H^{L}}=\int_{\mathbb{R}^{n}}\langle L X, Y\rangle d x
$$

where $L: \mathfrak{X}_{\mathcal{S}}\left(\mathbb{R}^{n}\right) \rightarrow \mathfrak{X}_{\mathcal{S}}\left(\mathbb{R}^{n}\right)$ is an invertible linear (elliptic) scalar differential operator or pseudodifferential operator which is self-adjoint with respect to the weak inner product

$$
G^{0}(X, Y)=\int_{\mathbb{R}^{n}}\langle X, Y\rangle d x
$$

on $\mathfrak{X}_{\mathcal{S}}\left(\mathbb{R}^{n}\right)$ and which is applied to each component of a vector field separately.

For example:
For the Laplacian $\Delta=\sum \partial_{i}^{2}$ and constant A, let
$L=(1-A \Delta)^{l}=\sum_{|\alpha| \leq l} \frac{(-A)^{|\alpha|} l!}{\alpha!(l-\alpha)!} \partial^{2 \alpha}$
$=\sum_{\alpha_{1}+\cdots+\alpha_{n} \leq l} \frac{(-A)^{\alpha_{1}+\cdots+\alpha_{n}} l!}{\alpha_{1}!\ldots \alpha_{n}!\left(l-\alpha_{1}\right)!\ldots\left(l-\alpha_{n}\right)!} \partial_{x_{1}}^{2 \alpha_{1}} \ldots \partial_{x_{n}}^{2 \alpha_{n}}$
The Fourier transform is $\widehat{L u}=\left(1+A|\xi|^{2}\right)^{l} \widehat{u}(\xi)$. Thus the fundamental solution K of $L K=\delta$ in the space $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ of tempered distributions is

$$
K(x)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i\langle x, \xi\rangle} \frac{1}{\left(1+|\xi|^{2}\right)^{l}} d^{n} \xi
$$

which can be expressed in terms of the classical modified Bessel functions $K_{l-1}(|x| / \sqrt{A})$. It satisfies
$\left(L^{-1} u\right)(x)=\int_{\mathbb{R}^{n}} K(x-y) u(y) d^{n} y$ for each tempered distribution u.

Or:
We consider a kernel function $K: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ with good properties (for example smooth and rapidly decreasing off the diagonal) and its associated operator $K(f)(x)=\int_{\mathbb{R}^{n}} K(x, y) f(y) d y$ which we assume to be invertible on $C_{\mathcal{S}}^{\infty}\left(\mathbb{R}^{n}\right)$ on the space of of smooth functions with compact support, and then we put $L=K^{-1}$.

Landmark space as homogeneus space

A landmark $q=\left(q_{1}, \ldots, q_{N}\right)$: N-tuple of distinct points in \mathbb{R}^{n}.
Land ${ }^{N} \subset\left(\mathbb{R}^{n}\right)^{N}$: the open subset of all landmarks. $q^{0}=\left(q_{1}^{0}, \ldots, q_{N}^{0}\right)$ a fixed standard template landmark.
Then we have the the surjective mapping

$$
\begin{aligned}
& \mathrm{ev}_{q^{0}}: \operatorname{Diff}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{Land}^{N} \\
& \varphi \mapsto \mathrm{ev}_{q^{0}}(\varphi)=\varphi\left(q^{0}\right)=\left(\varphi\left(q_{1}^{0}\right), \ldots, \varphi\left(q_{N}^{0}\right)\right)
\end{aligned}
$$

The fiber of $\mathrm{ev}_{q^{0}}$ over a landmark $q=\varphi_{0}\left(q^{0}\right)$ is

$$
\begin{aligned}
\{\varphi \in & \left.\operatorname{Diff}\left(\mathbb{R}^{n}\right): \varphi\left(q^{0}\right)=q\right\}= \\
& =\varphi_{0} \circ\left\{\varphi \in \operatorname{Diff}\left(\mathbb{R}^{n}\right): \varphi\left(q^{0}\right)=q^{0}\right\} \\
& =\left\{\varphi \in \operatorname{Diff}\left(\mathbb{R}^{n}\right): \varphi(q)=q\right\} \circ \varphi_{0}
\end{aligned}
$$

We shall use the latter representation.

The tangent space to the fiber is

$$
\left\{X \circ \varphi_{0}: X \in \mathfrak{X}_{\mathcal{S}}\left(\mathbb{R}^{n}\right), X\left(q_{i}\right)=0 \text { for all } i\right\} .
$$

A tangent vector $Y \circ \varphi_{0} \in T_{\varphi_{0}} \operatorname{Diff}_{\mathcal{S}}\left(\mathbb{R}^{n}\right)$ is $G_{\varphi_{0}}^{L}-$ perpendicular to the fiber over q if

$$
\int_{\mathbb{R}^{n}}\langle L Y, X\rangle d x=0 \quad \forall X \text { with } X(q)=0
$$

If we require Y to be smooth then $Y=0$. So we assume that $L Y=\sum_{i} P_{i} \cdot \delta_{q_{i}}$, a distributional vector field (current) with support in q. Here $P_{i} \in T_{q_{i}} \mathbb{R}^{n}$. But then

$$
\begin{aligned}
& Y(x)=L^{-1}\left(\sum_{i} P_{i} \cdot \delta_{q_{i}}\right)=\int_{\mathbb{R}^{n}} K(x-y) \sum_{i} P_{i} \cdot \delta_{q_{i}}(y) d y \\
& \quad=\sum_{i} K\left(x-q_{i}\right) \cdot P_{i}
\end{aligned}
$$

$$
T_{\varphi_{0}} \mathrm{ev}_{q^{0}} \cdot\left(Y \circ \varphi_{0}\right)=Y\left(q_{k}\right)_{k}=\sum_{i}\left(K\left(q_{k}-q_{i}\right) \cdot P_{i}\right)_{k}
$$

Consider a tangent vector $P=\left(P_{k}\right) \in T_{q}$ Land N. Its horizontal lift with footpoint φ_{0} is $P^{\text {hor }} \circ \varphi_{0}$ where the vector field $P^{\text {hor }}$ on \mathbb{R}^{n} is given as follows: Let $K^{-1}(q)_{k i}$ be the inverse of the $(N \times N)$-matrix $K(q)_{i j}=K\left(q_{i}-q_{j}\right)$. Then

$$
\begin{aligned}
P^{\mathrm{hor}}(x) & =\sum_{i, j} K\left(x-q_{i}\right) K^{-1}(q)_{i j} P_{j} \\
L\left(P^{\mathrm{hor}}(x)\right) & =\sum_{i, j} \delta\left(x-q_{i}\right) K^{-1}(q)_{i j} P_{j}
\end{aligned}
$$

Note that $P^{\text {hor }}$ is a vector field of class $H^{2 l-1}$.

The Riemannian metric on Land ${ }^{N}$ induced by the g^{L}-metric on $\operatorname{Diff}_{\mathcal{S}}\left(\mathbb{R}^{n}\right)$ is

$$
\begin{aligned}
& g_{q}^{L}(P, Q)=G_{\varphi_{0}}^{L}\left(P^{\mathrm{hor}}, Q^{\mathrm{hor}}\right)=\int_{\mathbb{R}^{n}}\left\langle L\left(P^{\mathrm{hor}}\right), Q^{\mathrm{hor}}\right\rangle d x \\
& =\int_{\mathbb{R}^{n}}\left\langle\sum_{i, j} \delta\left(x-q_{i}\right) K^{-1}(q)_{i j} P_{j}, \sum_{k, l} K\left(x-q_{k}\right) K^{-1}(q)_{k l} Q_{l}\right\rangle d x \\
& =\sum_{i, j, k, l} K^{-1}(q)_{i j} K\left(q_{i}-q_{k}\right) K^{-1}(q)_{k l}\left\langle P_{j}, Q_{l}\right\rangle
\end{aligned}
$$

So the metric is given by:

$$
g_{q}^{L}(P, Q)=\sum_{k, l} K^{-1}(q)_{k l}\left\langle P_{k}, Q_{l}\right\rangle .
$$

Recall: $K^{-1}(q)_{k i}$ is the inverse of the $(N \times N)$ matrix $K(q)_{i j}=K\left(q_{i}-q_{j}\right)$.

Lemma Let $X, Y \in \mathfrak{X}_{\mathcal{S}}\left(\mathbb{R}^{n}\right)$ be a vector fields with support in a compact box $B \subset \mathbb{R}^{n}$. Let $q_{1}, q_{2}, q_{3}, \ldots$ be an equidistributed sequence in B : For each Bore subset $U \subset B$ we require

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{i \leq N: q_{i} \in U\right\}}{N}=\frac{\operatorname{Vol}(U)}{\operatorname{Vol}(B)}
$$

For each N consider the initial part $q^{N}=\left(q_{1}, \ldots, q_{N}\right)$ as a point in the landmark space Land ${ }^{N}$ of N points in \mathbb{R}^{n}. Then we have

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\operatorname{Vol}(B)^{2}}{N^{2}} \sum_{i, j=1}^{N} K^{-1}(q)_{i, j}\left\langle X\left(q_{i}\right), Y\left(q_{j}\right)\right\rangle= \\
& =\int_{\mathbb{R}^{n}}\langle L X, Y\rangle d x
\end{aligned}
$$

The geodesic equation on $T^{*} \operatorname{Land}^{N}\left(\mathbb{R}^{n}\right)$.

Elements of the cotangent bundle $T^{*} \operatorname{Land}^{N}\left(\mathbb{R}^{n}\right)=\operatorname{Land}^{N}\left(\mathbb{R}^{n}\right) \times\left(\left(\mathbb{R}^{n}\right)^{N}\right)^{*}$ are denoted by

$$
\begin{aligned}
(q, \alpha) & =\left(\left(q_{1}, \ldots, q_{N}\right),\left(\begin{array}{c}
\alpha^{1} \\
\vdots \\
\alpha^{N}
\end{array}\right)\right) \\
& =\left(\left(\begin{array}{ccc}
q_{1}^{1} & \ldots & q_{N}^{1} \\
\ldots & & \\
q_{1}^{n} & \ldots & q_{N}^{n}
\end{array}\right),\left(\begin{array}{ccc}
\alpha_{1}^{1} & \ldots & \alpha_{n}^{1} \\
\ldots & & \\
\alpha_{1}^{N} & \ldots & \alpha_{n}^{N}
\end{array}\right)\right)
\end{aligned}
$$

and we shall use this as global coordinates.
The metric looks like

$$
\begin{aligned}
\left(g^{L}\right)_{q}^{-1}(\alpha, \beta) & =\sum_{i, j} K(q)_{i j}\left\langle\alpha_{i}, \beta_{j}\right\rangle \\
K(q)_{i j} & =K\left(q_{i}-q_{j}\right)
\end{aligned}
$$

We consider the the energy function

$$
\begin{aligned}
E(q, \alpha) & =\frac{1}{2}\left(g^{L}\right)_{q}^{-1}(\alpha, \alpha)=\frac{1}{2} \sum_{i, j} K(q)_{i j}\left\langle\alpha_{i}, \beta_{j}\right\rangle \\
& =\frac{1}{2} \sum_{i, j} K(q)_{i j}\left\langle\alpha_{i}, \beta_{j}\right\rangle
\end{aligned}
$$

and its Hamiltonian vector field (using \mathbb{R}^{n}-valued derivatives to save notation)

$$
\begin{aligned}
H_{E}(q, \alpha) & =\frac{1}{2} \sum_{i, j, k=1}^{N}\left(\frac{\partial K(q)_{i j}\left\langle\alpha_{i}, \alpha_{j}\right\rangle}{\partial \alpha^{k}} \frac{\partial}{\partial q_{k}}-\frac{\partial K(q)_{i j}\left\langle\alpha_{i}, \alpha_{j}\right\rangle}{\partial q_{k}} \frac{\partial}{\partial \alpha^{k}}\right) . \\
& =\sum_{i, k=1}^{N}\left(K\left(q_{k}-q_{i}\right) \alpha_{i} \frac{\partial}{\partial q_{k}}+\operatorname{grad} K\left(q_{i}-q_{k}\right)\left\langle\alpha_{i}, \alpha_{k}\right\rangle \frac{\partial}{\partial \alpha^{k}}\right) .
\end{aligned}
$$

So the geodesic equation is the flow of this vector
field:

$$
\begin{aligned}
\dot{q}_{k} & =\sum_{i} K\left(q_{i}-q_{k}\right) \alpha^{i} \\
\dot{\alpha}^{k} & =\sum_{i}\left\langle\alpha^{k}, \alpha^{i}\right\rangle \operatorname{grad} K\left(q_{i}-q_{k}\right)
\end{aligned}
$$

A covariant formula for curvature and its relations to O'Neill's curvature formulas.
Mario Micheli in his 2008 thesis derived the the coordinate version of the following formula for the sectional curvature expression, which is valid for closed 1-forms α, β on a Riemannian manifold (M, g), where we view $g: T M \rightarrow T^{*} M$ and so g^{-1} is the
dual inner product on $T^{*} M$. Here $\alpha^{\sharp}=g^{-1}(\alpha)$.

$$
\begin{aligned}
& g^{L}\left(R\left(\alpha^{\sharp}, \beta^{\sharp}\right) \alpha^{\sharp}, \beta^{\sharp}\right)=-\frac{1}{4}\left\|d\left(g^{-1}(\alpha, \beta)\right)\right\|^{2} \\
& \quad+\frac{1}{4} g^{-1}\left(d\left(\|\alpha\|^{2}\right), d\left(\|\beta\|^{2}\right)\right) \\
& \quad+\frac{3}{4} g\left(\left[\alpha^{\sharp}, \beta^{\sharp}\right],\left[\alpha^{\sharp}, \beta^{\sharp}\right]\right) \\
& \quad-\frac{1}{2} \alpha^{\sharp} \alpha^{\sharp}\left(\|\beta\|^{2}\right)-\frac{1}{2} \beta^{\sharp} \beta^{\sharp}\left(\|\alpha\|^{2}\right) \\
& \quad+\frac{1}{2}\left(\alpha^{\sharp} \beta^{\sharp}+\beta^{\sharp} \alpha^{\sharp}\right) g^{-1}(\alpha, \beta) \\
& \hline
\end{aligned}
$$

Mario's formula in coordinates.

Assume that $\alpha=\alpha_{i} d x^{i}, \beta=\beta_{i} d x^{i}$ where the coefficients α_{i}, β_{i} are constants, hence α, β are closed. Then $\alpha^{\sharp}=g^{i j} \alpha_{i} \partial_{j}, \beta^{\sharp}=g^{i j} \beta_{i} \partial_{j}$ and we have:

$$
\begin{aligned}
& 4 g\left(R\left(\alpha^{\sharp}, \beta^{\sharp}\right) \beta^{\sharp}, \alpha^{\sharp}\right) \\
& =\left(\alpha_{i} \beta_{k}-\alpha_{k} \beta_{i}\right) \cdot\left(\alpha_{j} \beta_{l}-\alpha_{l} \beta_{j}\right) \cdot \\
& \cdot\left(2 g^{i s}\left(g^{j t} g_{, t}^{k l}\right)_{, s}-\frac{1}{2} g_{, s}^{i j} g^{s t} g_{, t}^{k l}-3 g^{i s} g_{, s}^{k p} g_{p q} g^{j t} g_{, t}^{l q}\right)
\end{aligned}
$$

Covariant curvature and O'Neill's formula,

 finite dimensional.Let $p:\left(E, g_{E}\right) \rightarrow\left(B, g_{B}\right)$ be a Riemannian submersion between finite dimensional manifolds, i.e., for each $b \in B$ and $x \in E_{b}:=p^{-1}(b)$ the g_{E}-orthogonal splitting
$T_{x} E=T_{x}\left(E_{p(x)}\right) \oplus T_{x}\left(E_{p(x)}\right)^{\perp}=: T_{x}\left(E_{p(x)}\right) \oplus \operatorname{Hor}_{x}(p)$ has the property that $T_{x} p:\left(\operatorname{Hor}_{x}(p), g_{E}\right) \rightarrow\left(T_{b} B, g_{B}\right)$ is an isometry. Each vector field $X \in \mathfrak{X}(E)$ is decomposed as $X=X^{\text {hor }}+X^{\text {ver }}$ into horizontal and vertical parts. Each vector field $\xi \in \mathfrak{X}(B)$ can be uniquely lifted to a smooth horizontal field $\xi^{\text {hor }} \in \Gamma(\operatorname{Hor}(p)) \subset \mathfrak{X}(E)$.

O'Neill's formula says that for any two horizontal vector fields X, Y on M and any $x \in E$, the sectional curvatures of E and B are related by:

$$
\begin{aligned}
& g_{p(x)}\left(R^{B}\left(p_{*}\left(X_{x}\right), p_{*}\left(Y_{x}\right)\right) p_{*}\left(Y_{x}\right), p_{*}\left(X_{x}\right)\right) \\
& =g_{x}\left(R^{E}\left(X_{x}, Y_{x}\right) Y_{x}, X_{x}\right)+\frac{3}{4}\left\|[X, Y]^{v e r}\right\|_{x}^{2} .
\end{aligned}
$$

Comparing Mario's formula on E and B gives an immediate proof of this fact. Namely: If $\alpha \in$ $\Omega^{1}(B)$, then the vector field $\left(p^{*} \alpha\right)^{\sharp}$ is horizontal and we have $T p \circ\left(p^{*} \alpha\right)^{\sharp}=\alpha^{\sharp} \circ p$. Therefore $\left(p^{*} \alpha\right)^{\sharp}$ equals the horizontal lift ($\left.\alpha^{\sharp}\right)^{\text {hor }}$. For each $x \in E$ the mapping $\left(T_{x} p\right)^{*}:\left(T_{p(x)}^{*} B, g_{B}^{-1}\right) \rightarrow\left(T_{x}^{*} E, g_{E}^{-1}\right)$ is an isometry. We also use:

$$
\left\|\left[\left(p^{*} \alpha\right)^{\sharp},\left(p^{*} \beta\right)^{\sharp}\right]^{\mathrm{hor}}\right\|_{g_{E}}^{2}=p^{*}\left\|\left[\alpha^{\sharp}, \beta^{\sharp}\right]\right\|_{g_{B}}^{2}
$$

Curvature via the cotangent bundle Mario's formula for closed 1 -forms α, β on landmark space, where $\alpha_{k}^{\sharp}=\sum_{i} K\left(q_{k}-q_{i}\right) \alpha^{i}$. We shall use constant 1-forms below.

$$
\begin{aligned}
& 4 g^{L}\left(R\left(\alpha^{\sharp}, \beta^{\sharp}\right) \alpha^{\sharp}, \beta^{\sharp}\right)= \\
& =-2 \alpha^{\sharp} \alpha^{\sharp}\left(\|\beta\|^{2}\right)-2 \beta^{\sharp} \beta^{\sharp}\left(\|\alpha\|^{2}\right)+2\left(\alpha^{\sharp} \beta^{\sharp}+\beta^{\sharp} \alpha^{\sharp}\right) g^{-1}(\alpha, \beta) \\
& \quad-\left\|d\left(g^{-1}(\alpha, \beta)\right)\right\|^{2}+g^{-1}\left(d\left(\|\alpha\|^{2}\right), d\left(\|\beta\|^{2}\right)\right)+3 g\left(\left[\alpha^{\sharp}, \beta^{\sharp}\right],\left[\alpha^{\sharp}, \beta^{\sharp}\right]\right) \\
& =\left(-2 \sum_{i, j, k, l}\left\langled q _ { j } \cdot \left(d^{2} K\left(q_{i}-q_{j}\right)\left(d q_{l}, d q_{k}\right)\left(K(q)_{i l}-K(q)_{j l}\right)\left(K(q)_{i k}-K(q)_{j k}\right)\right.\right.\right. \\
& \quad+d K\left(q_{i}-q_{j}\right)\left(d q_{k}\right)\left(d K\left(q_{i}-q_{k}\right)\left(d q_{l}\right)\left(K(q)_{i l}-K(q)_{k l}\right)\right. \\
& \left.\left.\quad-d K\left(q_{j}-q_{k}\right)\left(d q_{l}\right)\left(K(q)_{j l}-K(q)_{k l}\right)\right), d q_{i}\right\rangle \\
& \quad+\sum_{i, j, k, l} K(q)_{i k}\left\langle d K\left(q_{i}-q_{j}\right), d K\left(q_{k}-q_{l}\right)\right\rangle\left\langle d q_{i}, d q_{j}\right\rangle\left\langle d q_{k}, d q_{l}\right\rangle\left(R_{3124}+R_{1324}\right) \\
& \quad+3 \sum_{k, l, i, j, m, n} K^{-1}(q)_{k l}\left(K(q)_{k j}-K(q)_{i j}\right) d K\left(q_{k}-q_{i}\right)\left(d q_{j}\right)
\end{aligned}
$$

$$
\left.\left(K(q)_{k n}-K(q)_{m n}\right)\left\langle d q_{i}, d K\left(q_{k}-q_{m}\right)\left(d q_{n}\right) d q_{m}\right\rangle\right)((\alpha \wedge \beta) \otimes(\alpha \wedge \beta))
$$

Notation for the coordinate formula:

$A=$ indices of landmark points in \mathbb{R}^{n}
$a, b, c, \cdots=$ elements of A
$\alpha, \beta=\left\{\alpha_{a} \mid a \in A\right\},\left\{\beta_{a} \mid a \in A\right\}$, cotangent vectors to \mathcal{L} $\alpha^{\sharp}, \beta^{\sharp}=$ the dual tangent vectors, e.g.

$$
\alpha_{a}^{\sharp}=\sum_{b} K\left(P_{a}-P_{b}\right) \alpha_{b}
$$

$K(\vec{x})=k(\|\vec{x}\|)$, the kernel defining the metric

$$
\begin{aligned}
& \text { note: } \nabla K(\vec{x})=k^{\prime}(\|\vec{x}\|) \frac{\vec{x}}{\|\vec{x}\|} \\
& d_{a b}=\left\|P_{a}-P_{b}\right\|, \vec{u}_{a b}=\left(P_{a}-P_{b}\right) / d_{a b}, \\
& \text { the unit vector between landmarks } \\
& K_{a b}= k\left(d_{a b}\right), \nabla K_{a b}=D K\left(P_{a}-P_{b}\right)=k^{\prime}\left(d_{a b}\right) \vec{u}_{a b} \\
& \widetilde{K}_{a b}^{\prime \prime}= \frac{k^{\prime \prime}\left(d_{a b}\right)}{k^{\prime 2}\left(d_{a b}\right)}-\frac{1}{d_{a b} k^{\prime}\left(d_{a b}\right)}
\end{aligned}
$$

Four expressions in the skew form $\alpha \wedge \beta$:

$$
\begin{aligned}
& \sigma_{a b, c d}(\alpha, \beta)=\left\langle\alpha_{a}, \nabla K_{c d}\right\rangle \beta_{b}-\left\langle\beta_{a}, \nabla K_{c d}\right\rangle \alpha_{b} \\
& \sigma_{b c d}^{*}(\alpha, \beta)=\sum_{a}\left(K_{a c}-K_{a d}\right) \sigma_{a b, c d}(\alpha, \beta) \\
& \quad=\left\langle\alpha_{c}^{\sharp}-\alpha_{d}^{\sharp}, \nabla K_{c d}\right\rangle \beta_{b}-\left\langle\beta_{c}^{\sharp}-\beta_{d}^{\sharp}, \nabla K_{c d}\right\rangle \alpha_{b}
\end{aligned}
$$

(Note that the terms in angle brackets are discrete strains)
$\tau_{a b, c d}(\alpha, \beta)=\left\langle\left(\alpha_{a} \otimes \beta_{c}\right)-\left(\beta_{a} \otimes \alpha_{c}\right),\left(\alpha_{b} \otimes \beta_{d}\right)-\left(\beta_{c} \otimes \alpha_{d}\right)\right\rangle$,
(Bracket in $\mathbb{R}^{n} \otimes \mathbb{R}^{n}$, points a, b on left, c, d on right)
$\tau_{b d}^{*}(\alpha, \beta)=\left\langle\left(\alpha_{b}^{\sharp}-\alpha_{d}^{\sharp}\right) \otimes\left(\beta_{b}^{\sharp}-\beta_{d}^{\sharp}\right)-\left(\beta_{b}^{\sharp}-\beta_{d}^{\sharp}\right) \otimes\left(\alpha_{b}^{\sharp}-\alpha_{d}^{\sharp}\right)\right.$,

$$
\left.\alpha_{b} \otimes \beta_{d}-\beta_{b} \otimes \alpha_{d}\right\rangle
$$

With these notations, we get the following formula:

$$
\begin{aligned}
& R(\alpha, \beta, \alpha, \beta)=\frac{1}{2} \sum_{b d} \widetilde{K}_{b d}^{\prime \prime}\left\langle\sigma_{b b d}^{*}(\alpha, \beta), \sigma_{d b d}^{*}(\alpha, \beta)\right\rangle \\
& \quad+\frac{1}{2} \sum_{b c d}\left\langle\left(\sigma_{b c b}^{*}(\alpha, \beta)-\sigma_{b c d}^{*}(\alpha, \beta)\right), \sigma_{c d, b d}(\alpha, \beta)\right\rangle \\
& \quad-\frac{3}{4}\left\|\sum_{b} \sigma_{b b \cdot}^{*}(\alpha, \beta)\right\|_{K^{-1}}^{2}+\frac{1}{2} \sum_{c d} \frac{k_{b d}^{\prime}}{d_{a b}} \cdot \tau_{c d}^{*}(\alpha, \beta) \\
& \quad-\frac{1}{8} \sum_{a b c d}\left(K_{a b}-K_{a d}-K_{c b}+K_{c d}\right)\left\langle\nabla K_{a c}, \nabla K_{b d}\right\rangle \cdot \tau_{a b, c d}(\alpha, \beta)
\end{aligned}
$$

Sobolev metrics on $\operatorname{Diff}\left(\mathbb{R}^{2}\right)$ and its quotients $\operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right)$ and $B_{e}\left(S^{1}, \mathbb{R}^{2}\right)$
Right invariant metric on the Lie group $\operatorname{Diff}\left(\mathbb{R}^{2}\right)$ induced by the inner product
$H^{n}(X, Y)=\int_{\mathbb{R}^{2}}\langle L X, Y\rangle d x \quad$ where

$$
L=L_{A, n}=(1-A \Delta)^{n}, \quad \Delta=\partial_{x^{1}}^{2}+\partial_{x^{2}}^{2}
$$

with fundamental solution $L_{A, n}\left(K_{A, n}\right)=\delta_{0}$ given by

$$
\begin{aligned}
K_{A, n}(x) & =\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} e^{i\langle x, \xi\rangle} \frac{1}{\left(1+A|\xi|^{2}\right)^{n}} d \xi \\
& =\frac{C}{A^{(n-1) / 2} \cdot|x|^{n-1} \cdot K_{n-1}\left(\frac{|x|}{\sqrt{A}}\right)} .
\end{aligned}
$$

for the classical modified Bessel functions K_{r}.

The geodesic equation on $\operatorname{Diff}\left(\mathbb{R}^{2}\right)$ is V.Arno'ld's equation EPDiff:

$t \mapsto \varphi(t, \quad) \in \operatorname{Diff}\left(\mathbb{R}^{2}\right)$

$v(t)=\left(\partial_{t} \varphi\right) \circ \varphi^{-1} \in \mathfrak{X}\left(\mathbb{R}^{2}\right), \quad u(t)=L(v(t))$,
$\frac{\partial u_{i}}{\partial t}+\sum_{j}\left(v^{j} \cdot \frac{\partial u_{i}}{\partial x^{j}}+u^{j} \cdot \frac{\partial v^{j}}{\partial x^{i}}\right)+\operatorname{div} v \cdot u_{i}=0$.

The quotient $\operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right)$.
$\operatorname{Diff}\left(\mathbb{R}^{2}\right) \rightarrow \operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right)$
$\varphi \mapsto \varphi \circ i$, where $i: S^{1} \subset \mathbb{R}^{2}$.
If $c=\varphi \circ i$, the fiber through φ is
$\varphi \cdot\{\psi: \psi \circ i=i\}=\{\psi: \psi \circ c=c\} . \varphi$.
The tangent space to the fiber is (right translated by φ)
$\left\{X \in X\left(\mathbb{R}^{2}\right): X \circ c=0\right\}$.
The horizontal subspace is the translate by φ of $\left\{Y: \int_{\mathbb{R}^{2}}\langle L Y, X\rangle d x=0\right.$, if $\left.X \circ c=0\right\}$.
If Y is C^{∞} then $Y=0$. So we need
$L Y=c_{*}(p(\theta) . d s)$ for $p \in C^{\infty}\left(S^{1}, \mathbb{R}^{2}\right)$, a distribution carried by c. Thus
$Y(x)=\int_{S^{1}} K(x-c(\theta)) p(\theta) d s$
$Y(x)=\int_{S^{1}} K(x-c(\theta)) p(\theta) d s$
Mapped to T_{c} Emb we get

$$
\begin{aligned}
(Y \circ c)(\theta) & =\int_{S^{1}} K\left(c(\theta)-c\left(\theta_{1}\right)\right) \cdot p\left(\theta_{1}\right) \cdot\left|c^{\prime}\left(\theta_{1}\right)\right| d \theta_{1} \\
& =:\left(K_{c} * p\right)(\theta) \quad \text { where } \\
K_{c}\left(\theta_{1}, \theta_{2}\right) & :=K\left(c\left(\theta_{1}\right)-c\left(\theta_{2}\right)\right)
\end{aligned}
$$

is an elliptic pseudo differential operator kernel of order $-2 n+1$ which is real and positive, so the operator $p \mapsto K_{c} * p$ is self-adjoint and positive, so injective, and by index deformation it is bijective between the Sobolev spaces on S^{1}. The inverse operator $\left(K_{c} * \quad\right)^{-1}$ has kernel $L_{c}\left(\theta, \theta_{1}\right)$ which is a pseudo differential operator kernel of order $2 n-1$.

Write $h=Y \circ c \in T_{c} \operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right)$ and express the horizontal lift $Y=Y_{h}$ in terms of h :
$h=Y_{h} \circ c=K *\left(c_{*}(p . d s)\right)=K_{c} * p$ so $p=L_{c} * h$
$Y=Y_{h}=K *\left(c_{*}\left(\left(L_{c} * h\right) \cdot d s\right)\right)$
$Y_{h}(x)=$
$=\int_{S^{1}} K(x-c(\theta)) \cdot \int_{S^{1}} L_{c}\left(\theta, \theta_{1}\right) h\left(\theta_{1}\right)\left|c^{\prime}\left(\theta_{1}\right)\right| d \theta_{1}\left|c^{\prime}(\theta)\right| d \theta$
Finally the metric:

$$
\begin{aligned}
& G_{c}^{\text {diff }, n}(h, k)=\int_{\mathbb{R}^{2}}\left\langle L Y_{h}, Y_{k}\right\rangle d x \\
& =\iint_{S^{1} \times S^{1}} L_{c}\left(\theta, \theta_{1}\right)\left\langle h\left(\theta_{1}\right), k(\theta)\right\rangle d s_{1} d s
\end{aligned}
$$

This formula looks innocent, but there is an inversion of the (nice) operator $K_{c^{*}}$ in it to get $L_{c^{*}}=\left(K_{c^{*}} \quad\right)^{-1}$

We can now compute K and H and the geodesic equation. It becomes simpler if written for the 1current $L_{c} * c_{t}=p .\left|c_{\theta}\right|=: \alpha$:

$$
\alpha_{t}\left(\theta_{0}\right)=-\int_{S^{1}} K_{c}^{\prime}\left(\theta_{0}, \theta_{1}\right)\left\langle\alpha\left(\theta_{0}\right), \alpha\left(\theta_{1}\right)\right\rangle d \theta_{1}
$$

where $K_{c}^{\prime}\left(\theta_{1}, \theta_{2}\right)=\operatorname{grad} K\left(c\left(\theta_{1}\right)-c\left(\theta_{2}\right)\right)$.

Existence of geodesics. Theorem.

Let $n \geq 1$. For each $k>2 n-\frac{1}{2}$ the geodesic equation has unique local solutions in the Sobolev space of H^{k}-embeddings. The solutions are C^{∞} in t and in the initial conditions $c(0,$.$) and c_{t}(0,$.$) . The$ domain of existence (in t) is uniform in k and thus this also holds in $\operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right)$.

Conserved momenta: Along a geodesic c,

$$
\begin{aligned}
& G_{c}^{\text {diff }, n}\left(c_{\theta} \cdot X, c_{t}\right)= \\
& =\iint_{S^{1} \times S^{1}} L_{c}\left(\theta, \theta_{1}\right)\left\langle c_{\theta}\left(\theta_{1}\right) X\left(\theta_{1}\right), c_{t}(\theta)\right\rangle d s_{1} d s
\end{aligned}
$$

is conserved for every vector field X on S^{1}; the conserved reparametrization momentum is
$\left\langle c_{\theta}, L_{c} * c_{t}\right\rangle=\left\langle c_{\theta}, \alpha\right\rangle$.
Also $\left.\iint_{\left(S^{1}\right)^{2}} L_{c}\left(\theta, \theta_{1}\right) c_{t}(\theta)\right\rangle d s_{1} d s=\int_{S^{1}} \alpha(\theta) d s$ is the conserved linear momentum.

$$
\begin{aligned}
\iint_{S^{1} \times S^{1}} L_{c}\left(\theta, \theta_{1}\right)\left\langle J c\left(\theta_{1}\right), c_{t}(\theta)\right\rangle & d s_{1} d s= \\
& =\int_{S^{1}}\langle J c(\theta), \alpha(\theta)\rangle d s
\end{aligned}
$$

is the conserved angular momentum.

Horizontal geodesics.

A field h along c is horizontal if $\left\langle L_{c} * h, c_{\theta}\right\rangle=0$. For a horizontal path we have $\left\langle\alpha, c_{\theta}\right\rangle=0$, so let $\alpha=\tilde{a} . n$. Then the horizontal geodesic equation is

$$
\begin{aligned}
& \tilde{a}_{t}(\theta)=\left\langle\alpha_{t}, n\right\rangle(\theta)= \\
& =-\int_{S^{1}}\left\langle K_{c}^{\prime}\left(\theta, \theta_{1}\right), n(\theta)\right\rangle \tilde{a}(\theta) \tilde{a}\left(\theta_{1}\right)\left\langle n(\theta), n\left(\theta_{1}\right)\right\rangle d \theta_{1}
\end{aligned}
$$

Note that also $n=J c_{\theta} /\left|c_{\theta}\right|$ appears. It is a strange equation, but it is well-posed by the theorem above.

Requirements for infinite dimensional manifolds

 Let (M, g) be a weak Riemannian manifold modelled on convenient locally convex vector spaces. For $x \in M$ the metric $g_{x}: T_{x} M \rightarrow T_{x}^{*} M$ is usually only injective (weak metric). The image $g(T M) \subset$ $T^{*} M$ is called the smooth cotangent bundle associated to g. Now $\Omega_{g}^{1}(M):=\Gamma(g(T M))$ and $\alpha^{\sharp}=$ $g^{-1} \alpha \in \mathfrak{X}(M), X^{b}=g X$ are as above. The exterior derivative restricts to$d: \Omega_{g}^{1}(M) \rightarrow \Omega^{2}(M)=\Gamma\left(L_{\text {skew }}^{2}(T M ; \mathbb{R})\right)$
since the embedding $g(T M) \subset T^{*} M$ is a smooth fiber linear mapping.

Further requirements need to be imposed on (M, g). $g: T M \rightarrow T^{*} M$ is only injective in general, so the Levi-Civita covariant derivative might not exist in $T M$. Existence of ∇^{g} is equivalent to: The metric itself admits gradients with respect to itself: We express this is locally. So let for the moment M be a c^{∞}-open subset of a convenient vector space V_{M}. Then we assume that we can write

$$
\begin{aligned}
D_{x, Z} g_{x}(X, Y) & =g_{x}\left(Z, \operatorname{grad}_{1} g(x)(X, Y)\right) \\
& =g_{x}\left(\operatorname{grad}_{2} g(x)(Z, X), Y\right)
\end{aligned}
$$

where $\operatorname{grad}_{1} g, \operatorname{grad}_{2} g: M \times V_{M} \times V_{M} \rightarrow V_{M}$, $(x, X, Y) \mapsto \operatorname{grad}_{1,2} g(x)(X, Y)$, are smooth and bilinear in $X, Y \in V_{M}$.
Then the derivation of Mario's formula goes through and the final formula for curvature holds in both the finite and infinite dimensional cases.

Some constructions above encountered a second problem: they lead to vector fields whose values do not lie in $T_{x} M$, but in the Hilbert space completion $\overline{T_{x} M}$ with respect to $\left\|\| g_{x}\right.$. To manipulate these as in the finite dimensional case, we need to know that $\cup_{x \in M} \overline{T_{x} M}$ forms a smooth vector bundle over M. In other words, in each coordinate chart on an open subset $U \subset M,\left.T M\right|_{U}$ is a trivial bundle $U \times V$ and all the inner products $g_{x}, x \in U$ define inner products on one and the same topological vector space V. We assume that they are all bounded with respect to each other, so that the completion \bar{V} of V with respect to g_{x} does not depend on x and $\bigcup_{x \in U} \overline{T_{x} M} \cong U \times \bar{V}$.

This means that $\cup_{x \in M} \overline{T_{x} M}$ forms a smooth vector bundle over M with trivialisations the linear extensions of the trivialisations of the bundle $T M \rightarrow M$. These two properties will be sufficient for all the constructions we need so we make them into a definition:

Definition. A convenient weak Riemannian manifold (M, g) will be called a robust Riemannian manifold if
(1) The metric g_{x} admits gradients in the above two senses,
(2) The completions $\overline{T_{x} M}$ form a vector bundle as above.

Covariant curvature and O'Neill's formula in infinite dimensions. Let $p:\left(E, g_{E}\right) \rightarrow\left(B, g_{B}\right)$ be a Riemann submersion between infinite dimensional robust Riemann manifolds; i.e., for each $b \in B$ and $x \in E_{b}:=p^{-1}(b)$ the tangent mapping $T_{x} p:$ $\left(T_{x} E, g_{E}\right) \rightarrow\left(T_{b} B, g_{B}\right)$ is a surjective metric quotient map so that

$$
\left\|\xi_{b}\right\|_{g_{B}}:=\inf \left\{X_{x} \in T_{x} E: T_{x} p \cdot X_{x}=\xi_{b}\right\}
$$

The infinimum need not be attained in $T_{x} E$ but will be in the completion $\overline{T_{x} E}$. The orthogonal subspace $\left\{Y_{x}: g_{E}\left(Y_{x}, T_{x}\left(E_{b}\right)\right)=0\right\}$ will therefore be taken in $\overline{T_{x}\left(E_{b}\right)}$ in $T_{x} E$.

If $\alpha_{b}=g_{B}\left(\alpha_{b}^{\sharp}, \quad\right) \in g_{B}\left(T_{b} B\right) \subset T_{b}^{*} B$ is an element in the g_{B}-smooth dual,
then $p^{*} \alpha_{b}:=\left(T_{x} p\right)^{*}\left(\alpha_{b}\right)=g_{B}\left(\alpha_{b}^{\sharp}, T_{x} p \quad\right): T_{x} E \rightarrow$ \mathbb{R} is in $T_{x}^{*} M$ but in general it is not an element in the smooth dual $g_{E}\left(T_{x} E\right)$. It is, however, an element of the Hilbert space completion $\overline{g_{E}\left(T_{x} E\right)}$ of the g_{E}-smooth dual $g_{E}\left(T_{x} E\right)$ with respect to the norm \| $\|_{g_{E}^{-1}}$, and the element
$g_{E}^{-1}\left(p^{*} \alpha_{b}\right)=:\left(p^{*} \alpha_{b}\right){ }^{\#}$ is in the $\left\|\|_{g_{E}}\right.$-completion $\overline{T_{x} E}$ of $T_{x} E$. We can call $g_{E}^{-1}\left(p^{*} \alpha_{b}\right)=:\left(p^{*} \alpha_{b}\right)^{\#}$ the horizontal lift of $\alpha_{b}^{\sharp}=g_{B}^{-1}\left(\alpha_{b}\right) \in T_{b} B$.

The metric $\left(g_{E}\right)_{x}$ can be evaluated at elements in the completion $\overline{T_{x} E}$. Moreover, for any smooth sections $X, Y \in \Gamma(\overline{T E})$ the mapping

$$
g_{E}(X, Y): M \rightarrow \mathbb{R}
$$

is still smooth, by the smooth uniform boundedness theorem.

Lemma. If α is a smooth 1-form on an open subset U of B with values in the g_{B}-smooth dual $g_{B}(T B)$, then $p^{*} \alpha$ is a smooth 1-form on $p^{-1}(U) \subset E$ with values in the $\|\quad\|_{g_{E}^{-1}}$-completion of the g_{E}-smooth dual $g_{E}(T E)$. Thus also $\left(p^{*} \alpha\right)^{\sharp}$ is smooth from E into the g_{E}-completion of $T E$, and it has values in the g_{E}-orthogonal subbundle to the vertical bundle in the g_{E}-completion. We may continuously extend $T_{x} p$ to the $\|\quad\|_{g_{E}}$-completion, and then we have $T p \circ\left(p^{*} \alpha\right)^{\sharp}=\alpha^{\sharp} \circ p$. Moreover, the Lie bracket of two such forms, $\left[\left(p^{*} \alpha\right)^{\sharp},\left(p^{*} \beta\right)^{\sharp}\right]$, is defined. The exterior derivative $d\left(p^{*} \alpha\right)$ is defined and is applicable to vector fields with values in the completion like $\left(p^{*} \beta\right)^{\sharp}$.
That the Lie bracket is defined, is also a non-trivial
statement: We have to differentiate in directions which are not tangent to the manifold.

Theorem. Let $p:\left(E, g_{E}\right) \rightarrow\left(B, g_{B}\right)$ be a Riemann submersion between infinite dimensional robust Riemann manifolds. Then for 1-forms $\alpha, \beta \in \Omega_{g}^{1}(B)$ O'Neill's formula holds in the form:

$$
\begin{aligned}
& g_{B}\left(R^{B}\left(\alpha^{\sharp}, \beta^{\sharp}\right) \beta^{\sharp}, \alpha^{\sharp}\right)= \\
& \quad=g_{E}\left(R^{E}\left(\left(p^{*} \alpha\right)^{\sharp},\left(p^{*} \beta\right)^{\sharp}\right)\left(p^{*} \beta\right)^{\sharp},\left(p^{*} \alpha\right)^{\sharp}\right) \\
& \quad+\frac{3}{4}\left\|\left[\left(p^{*} \alpha\right)^{\sharp},\left(p^{*} \beta\right)^{\sharp}\right]^{v e r}\right\|_{g_{E}}^{2}
\end{aligned}
$$

Curvature computations

In terms of the dual momenta
$\alpha=\left(L_{c} * h\right) d s=\left(L_{c} * h\right)\left|c_{\theta}\right| d \theta$
in $L_{c} * T_{c} \operatorname{Emb}\left(S^{1}, \mathbb{R}^{2}\right) \subset \mathcal{D}^{\prime}\left(S^{1}\right)^{2} \otimes \mathbb{R}^{2}$, the metric looks particularly simple:

$$
\left(G^{\mathrm{diff}, n}\right)_{c}^{-1}(\alpha, \beta)=\iint_{S^{1} \times S^{1}} K_{c}\left(\theta, \theta_{1}\right)\left\langle\alpha\left(\theta_{1}\right), \beta(\theta)\right\rangle
$$

We use again the cotangent expression of curvature for constant (not depending on c) 1-forms α, β in $L_{c} * C^{\infty}\left(S^{1}, \mathbb{R}^{2}\right) \subset \mathcal{D}^{\prime}\left(S^{1}\right)^{2} \otimes \mathbb{R}^{2}$, where $\alpha^{\sharp}=K_{c} * \alpha$, etc

$$
\begin{aligned}
& 4 G^{\text {diff }, n}\left(R\left(\alpha^{\sharp}, \beta^{\sharp}\right) \alpha^{\sharp}, \beta^{\sharp}\right)= \\
& =G^{-1}\left(d\left(\|\alpha\|^{2}\right), d\left(\|\beta\|^{2}\right)\right)-\left\|d\left(G^{-1}(\alpha, \beta)\right)\right\|^{2}+3 G\left(\left[\alpha^{\sharp}, \beta^{\sharp}\right],\left[\alpha^{\sharp}, \beta^{\sharp}\right]\right) \\
& \quad-2 \alpha^{\sharp} \alpha^{\sharp}\left(\|\beta\|^{2}\right)-2 \beta^{\sharp} \beta^{\sharp}\left(\|\alpha\|^{2}\right)+2\left(\alpha^{\sharp} \beta^{\sharp}+\beta^{\sharp} \alpha^{\sharp}\right) G^{-1}(\alpha, \beta)
\end{aligned}
$$

$4 G^{\text {diff, } n}\left(R\left(\alpha^{\sharp}, \beta^{\sharp}\right) \alpha^{\sharp}, \beta^{\sharp}\right)=$
$=\iiint \int_{\left(S^{1}\right)^{4}}\left(\operatorname{det}\left(\begin{array}{ll}\left\langle\alpha\left(\theta_{1}\right), \alpha\left(\theta_{2}\right)\right\rangle & \left\langle\alpha\left(\theta_{1}\right), \beta\left(\theta_{2}\right)\right\rangle \\ \left\langle\alpha\left(\theta_{3}\right), \beta\left(\theta_{4}\right)\right\rangle & \left\langle\beta\left(\theta_{3}\right), \beta\left(\theta_{4}\right)\right\rangle\end{array}\right)\right.$
$\left\langle\operatorname{grad} K\left(c\left(\theta_{1}\right)-c\left(\theta_{2}\right)\right), \operatorname{grad} K\left(c\left(\theta_{3}\right)-c\left(\theta_{4}\right)\right)\right\rangle$

- $\left(K_{c}\left(\theta_{1}, \theta_{3}\right)-2 K_{c}\left(\theta_{1}, \theta_{4}\right)+K_{c}\left(\theta_{2}, \theta_{4}\right)\right)$
$+3 \iint\left(S^{1}\right)^{2} L_{c}\left(\theta_{3}, \theta_{4}\right)$
$\left\langle\int_{S^{1}}\left(\left\langle\operatorname{grad} K\left(c\left(\theta_{3}\right)-c\left(\theta_{1}\right)\right), \alpha^{\sharp}\left(\theta_{3}\right)-\alpha^{\sharp}\left(\theta_{1}\right)\right\rangle \beta\left(\theta_{1}\right)\right.\right.$ $\left.-\left\langle\operatorname{grad} K\left(c\left(\theta_{3}\right)-c\left(\theta_{1}\right)\right), \beta^{\sharp}\left(\theta_{3}\right)-\beta^{\sharp}\left(\theta_{1}\right)\right\rangle \alpha\left(\theta_{1}\right)\right)$,
$\int_{S^{1}}\left(\left\langle\operatorname{grad} K\left(c\left(\theta_{4}\right)-c\left(\theta_{2}\right)\right), \alpha^{\sharp}\left(\theta_{4}\right)-\alpha^{\sharp}\left(\theta_{2}\right)\right\rangle \beta\left(\theta_{2}\right)\right.$ $\left.\left.-\left\langle\operatorname{grad} K\left(c\left(\theta_{3}\right)-c\left(\theta_{1}\right)\right), \beta^{\sharp}\left(\theta_{3}\right)-\beta^{\sharp}\left(\theta_{1}\right)\right\rangle \alpha\left(\theta_{1}\right)\right)\right\rangle$
$+\iint_{\left(S^{1}\right)^{2}}\left(-2\left\langle\beta\left(\theta_{1}\right), \beta\left(\theta_{2}\right)\right\rangle d^{2} K\left(c\left(\theta_{1}\right)-c\left(\theta_{2}\right)\right)\right.$

$$
\left(\alpha^{\sharp}\left(\theta_{1}\right)-\alpha^{\sharp}\left(\theta_{2}\right), \alpha^{\sharp}\left(\theta_{1}\right)-\alpha^{\sharp}\left(\theta_{2}\right)\right)
$$

$$
\begin{aligned}
& -2\left\langle\alpha\left(\theta_{1}\right), \alpha\left(\theta_{2}\right)\right\rangle d^{2} K\left(c\left(\theta_{1}\right)-c\left(\theta_{2}\right)\right)\left(\beta^{\sharp}\left(\theta_{1}\right)-\beta^{\sharp}\left(\theta_{2}\right), \beta^{\sharp}\left(\theta_{1}\right)-\beta^{\sharp}\left(\theta_{2}\right.\right. \\
& +4\left\langle\alpha\left(\theta_{1}\right), \beta\left(\theta_{2}\right)\right\rangle d^{2} K\left(c\left(\theta_{1}\right)-c\left(\theta_{2}\right)\right)\left(\alpha^{\sharp}\left(\theta_{1}\right)-\alpha^{\sharp}\left(\theta_{2}\right), \beta^{\sharp}\left(\theta_{1}\right)-\beta^{\sharp}\left(\theta_{2}\right.\right.
\end{aligned}
$$

High dimensional shape space $\operatorname{Imm}(M, N) / \operatorname{Diff}(M)$.

M, a compact smooth connected manifold of dimension $m \geq 1$.
(N, g) a connected Riemannian manifold of dimension $n>m$.
$\operatorname{Diff}(M)$, the regular Lie group of all diffeomorphisms of M.

Diff $x_{0}(M)$, the subgroup of diffeomorphisms fixing $x_{0} \in M$.

Emb $=\operatorname{Emb}(M, N)$, the manifold of all smooth embeddings $M \rightarrow N$.
$\operatorname{Imm}=\operatorname{Imm}(M, N)$, the manifold of all smooth immersions $M \rightarrow N$.
$\operatorname{Imm}_{\text {free }}=\operatorname{Imm}_{\text {free }}(M, N)$, the manifold of all smooth free immersions $M \rightarrow N$ (those with trivial isotropy group for the right action of $\operatorname{Diff}(M)$ on $\operatorname{Imm}(M, N)$).
$B_{e}=B_{e}(M, N)=\operatorname{Emb}(M, N) / \operatorname{Diff}(M)$, the manifold of submanifolds of type M in N, base of a smooth principal bundle.
$B_{i}=B_{i}(M, N)=\operatorname{Imm}(M, N) / \operatorname{Diff}(M)$, an infinite dimensional 'orbifold'.
$B_{i, f}=B_{i}(M, N)=\operatorname{Imm}_{f}\left(M, \mathbb{R}^{2}\right) / \operatorname{Diff}(M)$, a manifold, the base of a principal fiber bundle.

Free immersions

An immersion $f: M \rightarrow N$ is called free if $\operatorname{Diff}(M)$ acts freely on it, i.e., $f \circ \varphi=f$ for $\varphi \in \operatorname{Diff}(M)$ implies $\varphi=\mathrm{Id}$. We have the following results:

- If $\varphi \in \operatorname{Diff}(M)$ has a fixed point and if
$f \circ \varphi=f$ for any immersion f then $\varphi=$ Id.
- If for $f \in \operatorname{Imm}(M, N)$ there is a point $x \in c(M)$ with only one preimage then f is a free immersion. There exist free immersions without such points.

We might view $\operatorname{Imm}_{f}(M, N)$ as the nonlinear Stiefel manifold of parametrized submanifolds of type M in N and consequently $B_{i, f}(M, N)$ as the nonlinear Grassmannian of unparametrized submanifolds of type M.

Non free immersions. Since M is compact, the orbit space $B_{i}(M, N)=\operatorname{Imm}(M, N) / \operatorname{Diff}(M)$ is Hausdorff. For any immersion f the isotropy group $\operatorname{Diff}(M)_{f}$ is a finite group which acts as group of covering transformations for a finite covering $q_{f}: M \rightarrow \bar{M}$ such that f factors over q_{f} to a free immersion $\bar{f}: \bar{M} \rightarrow N$ with $\bar{f} \circ q_{f}=f$.
For each $f \in \operatorname{Imm}$ there exist a slice $\mathcal{Q}(f)$ in a strong sense:

- $\mathcal{Q}(f)$ is invariant under the isotropy group $\operatorname{Diff}(M)_{f}$. - If $(Q(f) \circ \varphi) \cap \mathcal{Q}(f) \neq \emptyset$ for $\varphi \in \operatorname{Diff}(M)$ then φ is in the isotropy group $\varphi \in \operatorname{Diff}(M)_{f}$.
- $\mathcal{Q}(f) \circ \operatorname{Diff}(M)$ is an invariant open neighbourhood of the orbit $f \circ \operatorname{Diff}(M)$ in $\operatorname{Imm}(M, N)$ admitting a smooth retraction r onto the orbit. The fiber $r^{-1}(f \circ \varphi)$ equals $\mathcal{Q}(f \circ \varphi)$.

We do not have a principal bundle and thus no principal connections, but we can prove the main consequence, the existence of horizontal paths, directly:

Lemma. For any smooth path f in $\operatorname{Imm}(M, N)$ there exists a smooth path φ in $\operatorname{Diff}(M)$ with $\varphi(t, \quad)=\operatorname{Id}_{M}$ depending smoothly on f such that the path h given by $h(t, \theta)=c(t, \varphi(t, \theta))$ is horizontal: $g\left(h_{t}, T h\right)=0$.

Volumes of an immersion. For an immersion $f \in \operatorname{Imm}(M, N)$, we consider the volume density $\operatorname{vol}^{g}(f)=\operatorname{vol}\left(f^{*} g\right) \in \operatorname{Vol}(M)$ on M given by $\left.\operatorname{vol}^{g}(f)\right|_{U}=\sqrt{\operatorname{det}\left(\left(f^{*} g\right)_{i j}\right)}\left|d u^{1} \wedge \cdots \wedge d u^{m}\right|$ for any chart $\left(U, u: U \rightarrow \mathbb{R}^{m}\right)$ of M.

Lemma. The derivative of $\mathrm{vol}^{g}: \operatorname{Imm}(M, N) \rightarrow$ $\operatorname{Vol}(M)$ is

$$
\begin{aligned}
d \operatorname{vol}^{g}(f)(h)=-\operatorname{Tr}^{f^{*}} g & \left(g\left(S^{f}, h^{\perp}\right)\right) \operatorname{vol}\left(f^{*} g\right)+ \\
& \left.+\operatorname{div}^{f^{*} g}\left(h^{\top}\right)\left(f^{*} g\right)\right) \operatorname{vol}\left(f^{*} g\right) .
\end{aligned}
$$

The second summand vanishes when integrated over M.

The metric on Imm. Let $h, k \in C_{f}^{\infty}(M, T N)$ be tangent vectors with foot point $f \in \operatorname{Imm}(M, N)$, i.e., vector fields along f. We consider the following weak Riemannian metric on $\operatorname{Imm}(M, N)$, for a constant $A \geq 0$:

$$
\begin{aligned}
& G_{f}^{A}(h, k):= \\
& \quad=\int_{M}\left(1+A\left\|\operatorname{Tr}^{f^{*} g}\left(S^{f}\right)\right\|_{g^{N(f)}}^{2}\right) g(h, k) \operatorname{vol}\left(f^{*} g\right)
\end{aligned}
$$

where $\left\|\operatorname{Tr}^{f^{*} g}\left(S^{f}\right)\right\|_{g^{N(f)}}$ is the norm of the mean curvature. The metric G^{A} is invariant for the action of $\operatorname{Diff}(M)$. This makes the map $\pi: \operatorname{Imm}(M, N) \rightarrow$ $B_{i}(M, N)$ into a Riemannian submersion (off the singularities of $B_{i}(M, N)$).

The tangent vectors to the orbits are $T_{f}(f \circ \operatorname{Diff}(M))=\{T f . \xi: \xi \in \mathfrak{X}(M)\}$. The bundle $\mathcal{N} \rightarrow \operatorname{Imm}(M, N)$ of tangent vectors normal to the $\operatorname{Diff}(M)$-orbits is independent of A :

$$
\begin{aligned}
\mathcal{N}_{f} & =\left\{h \in C^{\infty}(M, T N): g(h, T f)=0\right\} \\
& =\Gamma\left(f^{*}\left(\left.T N\right|_{M} / T f . T M\right)\right)=\Gamma\left(f^{*} T N / T M\right)
\end{aligned}
$$

the space of sections of the normal bundle.
A tangent vector
$h \in T_{f} \operatorname{Imm}(M, N)=C_{f}^{\infty}(M, T N)=\Gamma\left(f^{*} T N\right)$ has an orthonormal decomposition

$$
h=h^{\top}+h^{\perp} \in T_{f}\left(f \circ \operatorname{Diff}^{+}(M)\right) \oplus \mathcal{N}_{f}
$$

into smooth tangential and normal components.

The metric G^{A} on $\operatorname{Imm}(M, N)$ is invariant under $\operatorname{Diff}(M)$ and induces a metric on the quotient $B_{i}(M, N)$ For any $F_{0}, F_{1} \in B_{i}$, consider all liftings $f_{0}, f_{1} \in \operatorname{Imm}$ such that
$\pi\left(f_{0}\right)=F_{0}, \pi\left(f_{1}\right)=F_{1}$ and all smooth curves $t \mapsto$ $f(t, \quad)$ in $\operatorname{Imm}(M, N)$ with $f(0, \cdot)=f_{0}$ and $f(1, \cdot)=$ f_{1}. The length of $t \mapsto \pi(f(t, \cdot))$ in $B_{i}(M, N)$ is given by
$L_{G^{A}}^{\mathrm{hor}}(f):=L_{G^{A}}(\pi(f(t, \cdot)))=$
$=\int_{0}^{1} \sqrt{G_{\pi(f)}^{A}\left(T_{f} \pi \cdot f_{t}, T_{f} \pi \cdot f_{t}\right)} d t=\int_{0}^{1} \sqrt{G_{f}^{A}\left(f_{t}^{\perp}, f_{t}^{\perp}\right)} d t$
$=\int_{0}^{1}\left(\int_{M}\left(1+A\left\|\operatorname{Tr}^{f^{*} g}\left(S^{f}\right)\right\|_{g}^{2}\right) g\left(f_{t}^{\perp}, f_{t}^{\perp}\right) \operatorname{vol}\left(f^{*} g\right)\right)^{\frac{1}{2}} d t$
In fact the last computation only makes sense on $B_{i, f}(M, N)$ but we take it as a motivation.

The metric on $B_{i}(M, N)$ is defined by taking the infimum of this over all paths f (and all lifts f_{0}, f_{1}):

$$
\operatorname{dist}_{G^{A}}^{B_{i}}\left(F_{1}, F_{2}\right)=\inf _{f} L_{G^{A}}^{\mathrm{hor}}(f)
$$

Theorem. For $f_{0}, f_{1} \in \operatorname{Imm}(M, N)$ there exists always a path $t \mapsto f(t, \cdot)$ in $\operatorname{Imm}(M, N)$ with $f(0, \cdot)=$ f_{0} and $\pi(f(1, \cdot))=\pi\left(f_{1}\right)$ such that $L_{G^{0}}^{\text {hor }}(f)$ is arbitrarily small.

So the lowest order metric is not suitable for vision. Sketch the proof!

Lipschitz continuity of $\sqrt{\mathrm{Vol}^{g}}: B_{i}(M, N) \rightarrow \mathbb{R}_{\geq 0}$. For F_{0} and F_{1} in $B_{i}(M, N)=\operatorname{Imm}(M, N) / \operatorname{Diff}(M)$ we have for $A>0$:

$$
\sqrt{\operatorname{Vol}^{g}\left(F_{1}\right)}-\sqrt{\operatorname{Vol}^{g}\left(F_{0}\right)} \leq \frac{1}{2 \sqrt{A}} \operatorname{dist}_{G^{A}}^{B_{i}}\left(F_{1}, F_{2}\right) .
$$

Area swept out bound. If f is any path from F_{0} to F_{1}, then

$$
\begin{aligned}
& \binom{(m+1) \text { - volume of the region swept }}{\text { out by the variation } f} \leq \\
& \leq \max _{t} \sqrt{\operatorname{Vol}^{g}(f(t, \quad))} \cdot L_{G^{A}}^{h o r}(f)
\end{aligned}
$$

Together with Lipschitz continuity this shows that the geodesic distance $L_{G^{A}}^{B_{i}}$ separates points at least on $B_{e}(M, N)$, if $A>0$.

Horizontal energy of a path as anisotropic volume We consider a path $t \mapsto f(t, \quad)$ in $\operatorname{Imm}(M, N)$. It projects to a path $\pi \circ f$ in B_{i} whose energy is:

$$
\begin{gathered}
E_{G^{A}}(\pi \circ f)=\frac{1}{2} \int_{a}^{b} G_{\pi(f)}^{A}\left(T \pi \cdot f_{t}, T \pi \cdot f_{t}\right) d t= \\
\quad=\frac{1}{2} \int_{a}^{b} G_{f}^{A}\left(f_{t}^{\perp}, f_{t}^{\perp}\right) d t= \\
=\frac{1}{2} \int_{a}^{b} \int_{M}\left(1+A\left\|\operatorname{Tr}^{f^{*} g}\left(S^{f}\right)\right\|_{g}^{2}\right) g\left(f_{t}^{\perp}, f_{t}^{\perp}\right) \operatorname{vol}\left(f^{*} g\right) d t
\end{gathered}
$$

We now consider the graph $\gamma_{f}:[a, b] \times M \ni(t, x) \mapsto$ $(t, f(t, x)) \in[a, b] \times N$ of the path f and its image Γ_{f}, an immersed submanifold with boundary of $\mathbb{R} \times N$.

$$
\begin{aligned}
& E_{G^{A}}^{\mathrm{hor}}(\pi \circ f)= \\
& =\frac{1}{2} \int_{[a, b] \times M}\left(1+A\left\|\operatorname{Tr}^{f^{*} g}\left(S^{f}\right)\right\|_{g^{N(f)}}^{2}\right) \\
& \quad \times \frac{\left\|f_{t}^{\perp}\right\|^{2}}{\sqrt{1+\left\|f_{t}^{\perp}\right\|_{g}^{2}}} \operatorname{vol}\left(\gamma_{f}^{*}\left(d t^{2}+g\right)\right)
\end{aligned}
$$

This is intrinsic for the graph Γ_{f} and the fibration $\mathrm{pr}_{1}: \mathbb{R} \times N \rightarrow \mathbb{R}$. To find a geodesic between the shapes $\pi(f(a, \quad))$ and $\pi(f(b, \quad))$ we look for an immersed surface which is critical for $E_{G^{A}}^{\mathrm{hor}}$. This is a Plateau-problem with anisotropic volume.

The geodesic equation of G^{0} in $\operatorname{Imm}(M, N)$

$\nabla_{\partial_{t}}^{g} f_{t}+\operatorname{div}^{f^{*} g}\left(f_{t}^{\top}\right) f_{t}-g\left(f_{t}^{\perp}, \operatorname{Tr}^{f^{*} g}\left(S^{f}\right)\right) f_{t}+$ $+\frac{1}{2} T f . \operatorname{grad}^{f^{*} g}\left(\left\|f_{t}\right\|_{g}^{2}\right)+\frac{1}{2}\left\|f_{t}\right\|_{g}^{2} \operatorname{Tr}^{f^{*} g}\left(S^{f}\right)=0$

We restrict to geodesics $t \mapsto f(t, \quad)$ in $\operatorname{Imm}(M, N)$ which are horizontal: $g\left(f_{t}, T f\right)=0$. Then $f_{t}^{\top}=0$ and $f_{t}=f_{t}^{\perp}$, so the equation splits into a vertical (tangential) part which vanishes identically, and a horizontal (normal) part which is the geodesic equation in B_{i} for G^{0} :

$$
\begin{aligned}
\nabla_{\partial_{t}}^{N(f)} f_{t}-g\left(f_{t},\right. & \left.\operatorname{Tr}^{f^{*} g}\left(S^{f}\right)\right) f_{t}+ \\
& +\frac{1}{2}\left\|f_{t}\right\|_{g}^{2} \operatorname{Tr}^{f^{*} g}\left(S^{f}\right)=0 \\
g\left(T f, f_{t}\right)= & 0
\end{aligned}
$$

The sectional curvature for G^{0} in $B_{i}(M, N)$

$$
k_{f}(P(m, h))=-\frac{G_{f}^{0}(R(m, h) m, h)}{\|m\|^{2}\|h\|^{2}-G_{a}^{0}(m, h)^{2}}
$$

We get then for $x, y \in \Gamma\left(\mathcal{N}_{f}\right)$:

$$
\begin{array}{ll}
R_{f}(x, y, x, y)=G_{f}^{0}\left(R_{f}(x, y) x, y\right)= & \\
=\int_{M} \operatorname{vol}\left(f^{*} g\right)(& \\
\quad-\frac{1}{2} \widetilde{\operatorname{Tr}}\left(L^{f} \circ L^{f}\right)(x \wedge y) & \leq 0 \\
\quad-\frac{1}{4}\left\|\operatorname{Tr}\left(L_{x}^{f}\right) y-\operatorname{Tr}\left(L_{y}^{f}\right) x\right\|_{g}^{2} & \geq 0 \\
\quad+\frac{1}{4}\|x \wedge y\|^{2}\left\|\operatorname{Tr}^{g}\left(S^{f}\right)\right\|^{2} & \\
\quad+g\left(R^{g}(x, y) x, y\right) & \\
\quad+\|x \wedge y\|^{2} \operatorname{Ric}(T M, \operatorname{span}(x, y)) & \\
\quad-\frac{1}{2} \|\left(g\left(x, \nabla^{\perp} y\right)-g\left(y, \nabla^{\perp} x\right) \|_{\Omega_{M}^{1}}^{2}\right. & \leq 0
\end{array}
$$

$$
\left.+\frac{1}{2}\left\|x \wedge \nabla^{\perp} y-y \wedge \nabla^{\perp} x\right\|_{\Omega_{M}^{1} \otimes \wedge^{2} N(f)}^{2}\right) \quad \geq 0
$$

Corollary. If M has codimension 1 in N then all sectional curvatures are non-negative. For any codimension, sectional curvature in the plane spanned by x and y is non-negative if x and y are parallel, i.e., $x \wedge y=0$ in $\wedge^{2} T^{*} N$.

Vanishing geodesic distance on groups of diffeomorphisms:

(N, g) a connected Riemannian manifold.
$\operatorname{Diff}_{c}(N)$ the group of all diffeomorphisms with compact support on N,
$\operatorname{Diff}_{0}(N)$ the subgroup of those which are diffeotopic in $\operatorname{Diff}_{c}(N)$ to the identity; this is the connected component of the identity in $\operatorname{Diff}_{c}(N)$, which a regular Lie group. The Lie algebra is $\mathfrak{X}_{c}(N)$, the space of all smooth vector fields with compact support on N. Moreover, $\operatorname{Diff}_{0}(N)$ is a simple group (has no nontrivial normal subgroups).

The right invariant H^{0}-metric on $\operatorname{Diff}_{0}(N)$ is then given as follows, where $h, k: N \rightarrow T N$ are vector fields with compact support along φ and where $X=$ $h \circ \varphi^{-1}, Y=k \circ \varphi^{-1} \in \mathfrak{X}_{c}(N)$:

$$
\begin{aligned}
G_{\varphi}^{0}(h, k) & =\int_{N} g(h, k) \operatorname{vol}\left(\varphi^{*} g\right) \\
& =\int_{N} g(X \circ \varphi, Y \circ \varphi) \varphi^{*} \operatorname{vol}(g) \\
& =\int_{N} g(X, Y) \operatorname{vol}(g)
\end{aligned}
$$

Theorem. Geodesic distance on Diff $_{0}(N)$ with respect to the H^{0}-metric vanishes.

Geodesics and sectional curvature on $\operatorname{Diff}(N)$: For a right invariant weak Riemannian metric G on an (possibly infinite dimensional) Lie group the geodesic equation and the curvature are given in terms of the dual operator (if it exists) ad $(X)^{*}$ of the adjoint $\operatorname{ad}(X): \mathfrak{g} \rightarrow \mathfrak{g}$ on the Lie algebra by: following formulas:

$$
\begin{aligned}
& u_{t}=-\operatorname{ad}(u)^{*} u, \quad u=\varphi_{t} \circ \varphi^{-1} \\
& 4 G(R(X, Y) X, Y)=3 G([X, Y],[X, Y]) \\
& \quad-2 G(X,[Y,[X, Y]])-2 G(Y,[X,[Y, X]]) \\
& \quad+4 G\left(\operatorname{ad}(X)^{*} X, \operatorname{ad}(Y)^{*} Y\right) \\
& \quad-G\left(\operatorname{ad}(X)^{*} Y+\operatorname{ad}(Y)^{*} X, \operatorname{ad}(X)^{*} Y+\operatorname{ad}(Y)^{*} X\right)
\end{aligned}
$$

In our case, for $\operatorname{Diff}_{0}(N)$, we have $\operatorname{ad}(X) Y=-[X, Y]$
$G^{0}(X, Y)=\int_{N} g(X, Y) \operatorname{vol}(g)$
$G^{0}\left(\operatorname{ad}(Y)^{*} X, Z\right)=G^{0}(X,-[Y, Z])=$
$=\int_{N} g\left(\mathcal{L}_{Y} X+\left(g^{-1} \mathcal{L}_{Y} g\right) X+\operatorname{div}^{g}(Y) X, Z\right) \operatorname{vol}(g)$
$\operatorname{ad}(Y)^{*}=\mathcal{L}_{Y}+g^{-1} \mathcal{L}_{Y}(g)+\operatorname{div}^{g}(Y)=\mathcal{L}_{Y}+\beta(Y)$,
where the tensor field
$\beta(Y)=g^{-1} \mathcal{L}_{Y}(g)+\operatorname{div}^{g}(Y): T N \rightarrow T N$
is self adjoint with respect to g.

Thus the geodesic equation for G^{0} is

$$
\begin{gathered}
u_{t}=-\left(g^{-1} \mathcal{L}_{u}(g)\right)(u)-\operatorname{div}^{g}(u) u=-\beta(u) u \\
u=\varphi_{t} \circ \varphi^{-1}
\end{gathered}
$$

The main part of the sectional curvature is given by:

$$
\begin{aligned}
& 4 G(R(X, Y) X, Y)= \\
& =\int_{N}\left(-\|\beta(X) Y-\beta(Y) X+[X, Y]\|_{g}^{2}\right. \\
& \quad-4 g([\beta(X), \beta(Y)] X, Y)) \operatorname{vol}(g)
\end{aligned}
$$

So sectional curvature consists of a part which is visibly non-negative, and another part which is difficult to decompose further.

Example. For $(N, g)=(\mathbb{R}$, can $)$ or (S^{1}, can $)$ the geodesic equation is Burgers' equation, a completely integrable infinite dimensional system,

$$
u_{t}=-3 u_{x} u, \quad u=\varphi_{t} \circ \varphi^{-1}
$$

to which corresponds vanishing geodesic distance. and we get $G^{0}(R(X, Y) X, Y)=-\int[X, Y]^{2} d x$ so that all sectional curvatures are non-negative.

Example. For $(N, g)=\left(\mathbb{R}^{n}\right.$, can $)$ or $\left(\left(S^{1}\right)^{n}\right.$, can $)$:

$$
\begin{aligned}
& (\operatorname{ad}(X) Y)^{k}=\sum_{i}\left(\left(\partial_{i} X^{k}\right) Y^{i}-X^{i}\left(\partial_{i} Y^{k}\right)\right) \\
& G^{0}(\operatorname{ad}(X) Y, Z)=\int_{\mathbb{R}^{n}}\langle d X \cdot Y-d Y \cdot X, Z\rangle d x \\
& =\int_{\mathbb{R}^{n}} \sum_{i, k} Y^{k}\left(\left(\partial_{k} X^{i}\right) Z^{i}+\left(\partial_{i} X^{i}\right) Z^{k}+X^{i}\left(\partial_{i} Z^{k}\right)\right) d x \\
& \left(\operatorname{ad}(X)^{*} Z\right)^{k}= \\
& =\sum_{i}\left(\left(\partial_{k} X^{i}\right) Z^{i}+\left(\partial_{i} X^{i}\right) Z^{k}+X^{i}\left(\partial_{i} Z^{k}\right)\right),
\end{aligned}
$$

so that the geodesic equation is given by

$$
\begin{aligned}
\partial_{t} u^{k} & =-\left(\operatorname{ad}(u)^{\top} u\right)^{k}= \\
& =-\sum_{i}\left(\left(\partial_{k} u^{i}\right) u^{i}+\left(\partial_{i} u^{i}\right) u^{k}+u^{i}\left(\partial_{i} u^{k}\right)\right)
\end{aligned}
$$

the n-dimensional analogon of Burgers' equation, called the basic Euler-Poincaré equation (EPDiff)
by Holm. Also here we have vanishing geodesic distance.

Stronger metrics on $\operatorname{Diff}_{0}(N)$.
A very small strengthening of the weak Riemannian H^{0}-metric on $\operatorname{Diff}_{0}(N)$ makes it into a true metric. We define the stronger right invariant weak Riemannian metric by the formula:
$G_{\varphi}^{A}(h, k)=\int_{N}\left(g(X, Y)+A \operatorname{div}_{g}(X) \cdot \operatorname{div}_{g}(Y)\right) \operatorname{vol}(g)$.

Theorem. For any distinct diffeomorphisms φ_{0}, φ_{1}, the infimum of the lengths of all paths from φ_{0} to φ_{1} with respect to G^{A} is positive.

Example We consider the groups $\operatorname{Diff}_{c}(\mathbb{R})$ or $\operatorname{Diff}\left(S^{1}\right)$ with Lie algebras $\mathfrak{X}_{c}(\mathbb{R})$ or $\mathfrak{X}\left(S^{1}\right)$ with Lie bracket $\operatorname{ad}(X) Y=-[X, Y]=X^{\prime} Y-X Y^{\prime}$. The G^{A}-metric equals the H^{1}-metric on $\mathfrak{X}_{c}(\mathbb{R})$, and we have:

$$
\begin{aligned}
G^{A}(X, Y) & =\int_{\mathbb{R}}\left(X Y+A X^{\prime} Y^{\prime}\right) d x \\
& =\int_{\mathbb{R}} X\left(1-\partial_{x}^{2}\right) Y d x \\
\operatorname{ad}(X)^{*} & =\left(1-\partial_{x}^{2}\right)^{-1}\left(2 X^{\prime}+X \partial_{x}\right)\left(1-A \partial_{x}^{2}\right)
\end{aligned}
$$

so that the geodesic equation in Eulerian representation $u=\left(\partial_{t} \varphi\right) \circ \varphi^{-1} \in \mathfrak{X}_{c}(\mathbb{R})$ or $\mathfrak{X}\left(S^{1}\right)$ is

$$
\begin{aligned}
\partial_{t} u & =-\operatorname{ad}(u)^{*} u \\
& =-\left(1-\partial_{x}^{2}\right)^{-1}\left(3 u u^{\prime}-2 A u^{\prime \prime} u^{\prime}-A u^{\prime \prime \prime} u\right), \\
u_{t}-u_{t x x} & =A u_{x x x} \cdot u+2 A u_{x x} \cdot u_{x}-3 u_{x} \cdot u
\end{aligned}
$$

which for $A=1$ is the Camassa-Holm equation, another completely integrable infinite dimensional Hamiltonian system. Here geodesic distance is a metric.

Virasoro-Bott group. Let Diff denote any of the groups $\operatorname{Diff}\left(S^{1}\right), \operatorname{Diff}_{c}(\mathbb{R})$ (diffeomorphisms with compact support), or $\operatorname{Diff}_{\mathcal{S}}(\mathbb{R})$. Then

$$
\begin{aligned}
c: \text { Diff } & \times \text { Diff } \rightarrow \mathbb{R} \\
c(\varphi, \psi): & =\frac{1}{2} \int \log \left((\varphi \circ \psi)^{\prime}\right) d \log \left(\psi^{\prime}\right) \\
& =\frac{1}{2} \int \log \left(\varphi^{\prime} \circ \psi\right) d \log \left(\psi^{\prime}\right)
\end{aligned}
$$

satisfies $c\left(\varphi, \varphi^{-1}\right)=0, c(\operatorname{Id}, \psi)=0, c(\varphi, \mathrm{Id})=0$, and is a smooth Hochschild group cocycle, i.e.,
$c\left(\varphi_{2}, \varphi_{3}\right)-c\left(\varphi_{1} \circ \varphi_{2}, \varphi_{3}\right)+c\left(\varphi_{1}, \varphi_{2} \circ \varphi_{3}\right)-c\left(\varphi_{1}, \varphi_{2}\right)=0$, called the Bott cocycle.

The corresponding central extension group $\mathbb{R} \times{ }_{c}$ Diff, called the Virasoro-Bott group, is a regular Lie group with operations

$$
\binom{\varphi}{\alpha}\binom{\psi}{\beta}=\binom{\varphi \circ \psi}{\alpha+\beta+c(\varphi, \psi)}, \quad\binom{\varphi}{\alpha}^{-1}=\binom{\varphi^{-1}}{\alpha^{-1}}
$$

for $\varphi, \psi \in \operatorname{Diff}$ and $\alpha, \beta \in \mathbb{R}$.

The Lie algebra of the Virasoro-Bott Lie group is the central extension $\mathbb{R} \times_{\omega} \mathfrak{X}$ of \mathfrak{X}, called the Virasoro Lie algebra, with bracket:

$$
\begin{aligned}
{\left[\binom{X}{a},\binom{Y}{b}\right] } & =\binom{-[X, Y]}{\omega(X, Y)}=\binom{X^{\prime} Y-X Y^{\prime}}{\omega(X, Y)} \\
\omega(X, Y) & =\omega(X) Y=\int X^{\prime} d Y^{\prime}=\int X^{\prime} Y^{\prime \prime} d x= \\
& =\frac{1}{2} \int \operatorname{det}\left(\begin{array}{ll}
X^{\prime} & Y^{\prime} \\
X^{\prime \prime} & Y^{\prime \prime}
\end{array}\right) d x,
\end{aligned}
$$

is the Gelfand-Fuchs Lie algebra cocycle
$\omega: \mathfrak{X} \times \mathfrak{X} \rightarrow \mathbb{R}$, which is a bounded skew-symmetric bilinear mapping satisfying the cocycle condition

$$
\omega([X, Y], Z)+\omega([Y, Z], X)+\omega([Z, X], Y)=0
$$

It is a generator of the 1-dimensional bounded Chevalley cohomology $H^{2}(\mathfrak{X}, \mathbb{R})$ for any of the Lie algebras
$\mathfrak{X}=\mathfrak{X}\left(S^{1}\right), \mathfrak{X}_{c}(\mathbb{R})$, or $\mathcal{S}(\mathbb{R}) \partial_{x}$.

We shall use the L^{2}-inner product on $\mathbb{R} \times \omega \mathfrak{X}$, where $\mathfrak{X}=\mathfrak{X}\left(S^{1}\right), \mathfrak{X}_{c}(\mathbb{R}), \mathcal{S}(\mathbb{R}) \partial_{x}$:
$\left\langle\binom{ X}{a},\binom{Y}{b}\right\rangle_{0}:=\int X Y d x+a b$.
Integrating by parts we get

$$
\begin{aligned}
& \left\langle\operatorname{ad}\binom{X}{a}\binom{Y}{b},\binom{Z}{c}\right\rangle_{0}=\left\langle\binom{ X^{\prime} Y-X Y^{\prime}}{\omega(X, Y)},\binom{Z}{c}\right\rangle_{0} \\
& =\int\left(X^{\prime} Y Z-X Y^{\prime} Z+c X^{\prime} Y^{\prime \prime}\right) d x \\
& =\int\left(2 X^{\prime} Z+X Z^{\prime}+c X^{\prime \prime \prime}\right) Y d x \\
& =\left\langle\binom{ Y}{b}, \operatorname{ad}\binom{X}{a}^{\top}\binom{Z}{c}\right\rangle_{0}, \quad \text { where } \\
& \operatorname{ad}\binom{X}{a} \quad\binom{Z}{c}=\binom{2 X^{\prime} Z+X Z^{\prime}+c X^{\prime \prime \prime}}{0} .
\end{aligned}
$$

The H^{0} geodesic equation on the Virasoro-Bott group (Ovsienko-Khesin):

$$
\begin{aligned}
\binom{u_{t}}{a_{t}} & =-\operatorname{ad}\binom{u}{a}^{\top}\binom{u}{a}=\binom{-3 u_{x} u-a u_{x x x}}{0} \quad \text { where } \\
\binom{u(t)}{a(t)} & =\left.\partial_{s}\binom{\varphi(s)}{\alpha(s)} \cdot\binom{\varphi(t)^{-1}}{-\alpha(t)}\right|_{s=t} \\
& =\left.\partial_{s}\left(\begin{array}{c}
\varphi(s) \circ \varphi(t)^{-1} \\
\\
\alpha(s)-\alpha(t)+c\left(\varphi(s), \varphi(t)^{-1}\right)
\end{array}\right)\right|_{s=t} \\
& =\binom{\varphi_{t} \circ \varphi^{-1}}{\alpha t-\int \frac{\varphi_{t x} \varphi_{x x}}{2 \varphi_{x}^{2}} d x}
\end{aligned}
$$

Thus a is a constant in time and the geodesic equation is hence the Korteweg-de Vries equation

$$
u_{t}+3 u_{x} u+a u_{x x x}=0
$$

with its natural companions

$$
\varphi_{t}=u \circ \varphi, \quad \alpha_{t}=a+\int \frac{\varphi_{t x} \varphi_{x x}}{2 \varphi_{x}^{2}} d x
$$

I do not know whether the right invariant L^{2}-metric on the Virasoro-Bott group has vanishing geodesic distance?
On Mondays I think: YES
On Tuesdays I think: NO

At the end of last main lecture:
Many thanks to the organizers (except one of them) for a great conference, and for the fine weather and great snow.

