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Introduction:

What are shapes, why are they interesting, and

how are they arranged in shape spaces.

























































Shape spaces of plane curves:

Some spaces:

Diff(S1) a regular Lie group, = Diff+(S1)⊔Diff−(S1).

Emb = Emb(S1, R2), the manifold of all smooth

embeddings S1 → R2.

T Emb(S1, R2) = Emb(S1, R2) × C∞(S1, R2).

Imm = Imm(S1, R2), the manifold of all smooth

immersions S1 → R2.

T Imm(S1, R2) = Imm(S1, R2) × C∞(S1, R2).

Immfree = Immfree(S
1, R2), the manifold of all free

smooth immersions S1 → R2, i.e., those with triv-

ial isotropy group for the right action of Diff(S1)

on Imm(S1, R2).



Be = Be(S1, R2) = Emb(S1, R2)/Diff(S1), the man-

ifold of 1-dimensional connected

submanifolds of R2,

Bi = Bi(S
1, R2) = Imm(S1, R2)/Diff(S1), an infi-

nite dimensional ‘orbifold’

Bi,free = Immfree(S
1, R2)/Diff(S1), a manifold, the

base of a principal fiber bundle,



Notation. We work mostly with arclength ds, ar-

clength derivative Ds and the unit tangent vector

v to the curve:

ds = |cθ|dθ

Ds = ∂θ/|cθ|
v = cθ/|cθ|

Attention: Given a family of curves c(θ, t), then

∂θ and ∂t commute but Ds and ∂t don’t. Rota-

tion through 90 degrees (complex multiplication by√−1) will be denoted by:

J =

(
0 −1
1 0

)
.

The unit normal vector to the image curve is thus

n = Jv.



Curvature and length on Imm(S1, R2)

κ : Imm(S1, R2) → C∞(S1, R),

κ(c) =
det(cθ, cθθ)

|cθ|3
= 〈n, Dsv〉

dκ(c)(h) =
〈Jhθ, cθθ〉

|cθ|3
+

〈Jcθ, hθθ〉
|cθ|3

− 3κ(c)
〈hθ, cθ〉
|cθ|2

.

= 〈D2
s (h), n〉 − 2κ〈Ds(h), v〉

The length function

ℓ : Imm(S1, R2) → R, ℓ(c) =
∫

S1
|cθ| dθ

dℓc(h) =
∫

S1

〈hθ, cθ〉
|cθ|

dθ =
∫

S1
〈Ds(h), v〉ds

= −
∫

S1
〈h, Ds(v)〉ds = −

∫

S1
κ(c)〈h, n〉ds



The degree of immersions. The degree or rota-

tion degree of an immersion c : S1 → R2 is the wind-

ing number around 0 of the tangent c′ : S1 → R2.

Imm(S1, R2) decomposes into the disjoint

union of the open submanifolds Immk(S1, R2) for

k ∈ Z according to the degree k. These are con-

nected according to a theorem of Whitney and

Graustein (1931-32)



Theorem. The manifold Immk(S1, R2) of immersed

curves of degree k contains S1 as a strong smooth

deformation retract.

For k 6= 0 the manifold

Bk
i (S

1, R2) := Immk(S1, R2)/Diff+(S1)

is contractible.

For k = 0 we have (surprise, Kodama-M.)

π1(B
0(S1, R2)) = Z,

π2(B
0(S1, R2)) = Z,

πk(B
0(S1, R2)) = 0 for k > 2.



The tangent bundle is

T Imm(S1, R2) = Imm(S1, R2) × C∞(S1, R2), the

cotangent bundle is

T ∗ Imm(S1, R2) = Imm(S1, R2) ×D(S1)2

where the second factor consists of periodic distri-

butions.



We consider smooth Riemannian metrics

on Imm(S1, R2), i.e., smooth mappings

G : Imm(S1, R2) × C∞(S1, R2) × C∞(S1, R2) → R

(c, h, k) 7→ Gc(h, k), bilinear in h, k

Gc(h, h) > 0 for h 6= 0.

Each such metric is weak in the sense that Gc,

viewed as bounded linear mapping

Gc : Tc Imm(S1, R2) = C∞(S1, R2) →
→ T ∗

c Imm(S1, R2) = D(S1)2

G : T Imm(S1, R2) → T ∗ Imm(S1, R2)

G(c, h) = (c, Gc(h, ))

is injective, but can never be surjective.



In the sequel we shall further assume that that

the weak Riemannian metric G itself admits G-

gradients with respect to the variable c in the fol-

lowing sense:

dGc(m)(h, k) = Gc(m, Hc(h, k)) = Gc(Kc(m, h), k)

H, K : Imm×C∞ × C∞ → C∞

(c, h, k) 7→ Hc(h, k), Kc(h, k)

smooth and bilinear in h, k.

We will check and compute these gradients for sev-

eral concrete metrics below.



The fundamental symplectic form on

T Imm(S1, R2) pulled back from the canonical sym-

plectic form on the contangent bundle via the map-

ping G : T Imm(S1, R2) → T ∗ Imm(S1, R2) is then:

ω(c,h)((k1, ℓ1), (k2, ℓ2)) =

= −dGc(k1)(h, k2) − Gc(ℓ1, k2)

+ dGc(k2)(h, k1) + Gc(ℓ2, k1)

= Gc(k2, Hc(h, k1) − Kc(k1, h))

+ Gc(ℓ2, k1) − Gc(ℓ1, k2)



The geodesic equation. The Hamiltonian vector

field of the Riemann energy function

E(c, h) =
1

2
Gc(h, h), E : T Imm(S1, R2) → R

is the geodesic vector field:

gradω
1(E)(c, h) = h

gradω
2(E)(c, h) = 1

2Hc(h, h) − Kc(h, h)

and the geodesic equation becomes:




ct = h

ht = 1
2Hc(h, h) − Kc(h, h)

ctt = 1
2Hc(ct, ct) − Kc(ct, ct)



The momentum mapping for a G-isometric group

action. Consider a (possibly infinite dimensional

regular) Lie group with Lie algebra g with a right

action g 7→ rg by isometries on Imm(S1, R2). Fun-

damental vector field mapping ζ : g → X(Imm(S1, R2)),

a bounded Lie algebra homomorphism, given by

ζX(c) = ∂t|0rexp(tX)(c).

momentum map j : g → C∞
G (T Imm(S1, R2), R):

jX(c, h) = Gc(ζX(c), h).

J : T Imm(S1, R2) → g′, 〈J (c, h), X〉 = jX(c, h).



It fits into the following commmutative diagram

and is a homomorphism of Lie algebras:

0 // H0 i // C∞
G

gradω
// Xω

// H1 // 0

g
j

iiR
R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

ζT Imm
OO

J is equivariant for the group action. Along any

geodesic t 7→ c(t, ) this momentum mapping is

constant, thus for any X ∈ g

〈J (c, ct), X〉 = jX(c, ct) = Gc(ζX(c), ct)

is constant in t.



We can apply this construction to the following

group actions on Imm(S1, R2).

• The smooth right action of the group Diff(S1) on

Imm(S1, R2), given by composition from the right:

c 7→ c ◦ ϕ for ϕ ∈ Diff(S1). For X ∈ X(S1) the

fundamental vector field is then given by

ζDiff
X (c) = ζX(c) = ∂t|0(c ◦ FlXt ) = cθ.X.

The reparametrization momentum, for any vector

field X on S1 is thus:

jX(c, h) = Gc(cθ.X, h).

Assuming the metric is reparametrization invariant,

it follows that on any geodesic c(θ, t), the expres-

sion Gc(cθ.X, ct) is constant for all X.



• The left action of the Euclidean motion group

M(2) = R2 ⋊ SO(2) on Imm(S1, R2) given by c 7→
eaJc+B for (B, eaJ) ∈ R2×SO(2). The fundamental

vector field mapping is

ζ(B,a)(c) = aJc + B

The linear momentum is thus Gc(B, h), B ∈ R2 and

if the metric is translation invariant, Gc(B, ct) will

be constant along geodesics. The angular momen-

tum is similarly Gc(Jc, h) and if the metric is rota-

tion invariant, then Gc(Jc, ct) will be constant along

geodesics.



• The action of the scaling group of R given by

c 7→ erc, with fundamental vector field ζa(c) = a.c.

If the metric is scale invariant, then the scaling

momentum Gc(c, ct) will also be invariant along

geodesics.



If the Riemannian metric G on Imm is invariant

under the action of Diff(S1) it induces a metric on

the quotient Bi as follows. For any C0, C1 ∈ Bi,

consider all liftings c0, c1 ∈ Imm such that π(c0) =

C0, π(c1) = C1 and all smooth curves t 7→ (θ 7→
c(t, θ)) in Imm(S1, R2) with c(0, ·) = c0 and c(1, ·) =

c1. Since the metric G is invariant under the action

of Diff(S1) the arc-length of the curve t 7→ π(c(t, ·))
in Bi(S

1, R2) is given by

Lhor
G (c) := LG(π(c(t, ·)))

=
∫ 1

0

√
Gπ(c)(Tcπ.ct, Tcπ.ct) dt

=
∫ 1

0

√
Gc(c

⊥
t , c⊥t ) dt

dist
Bi(S

1,R2)
G (C1, C2) = inf

c
Lhor

G (c).



The simplest (L2-) metric.

G0
c (h, k) =

∫

S1
〈h, k〉ds =

∫

S1
〈h, k〉|cθ| dθ

We compute the G0-gradients of c 7→ G0
c (h, k):

dG0(c)(m)(h, k) = G0
c (K

0
c (m, h), k) = G0

c

(
m, H0

c (h, k)
)
,

K0
c (m, h) = 〈Ds(m), v〉h, Ds =

∂θ

|cθ|
, v =

cθ

|cθ|
.

H0
c (h, k) = −Ds

(
〈h, k〉v

)

Geodesic equation

ctt = − 1

2|cθ|
∂θ

(|ct|2 cθ

|cθ|

)
− 1

|cθ|2
〈ctθ, cθ〉ct.



Horizontal Geodesics for G0

〈ct, cθ〉 = 0 and ct = an = aJ cθ
|cθ| for a ∈ C∞(S1, R).

We use functions a, s = |cθ|, and κ, only holonomic

derivatives:

st = −aκs, at = 1
2κa2,

κt = aκ2 +
1

s

(
aθ

s

)

θ
= aκ2 +

aθθ

s2
− aθsθ

s3
.

We may assume s|t=0 ≡ 1. Let v(θ) = a(0, θ), the

initial value for a. Then
st
s = −aκ = −2at

a , so log(sa2)t = 0, thus

s(t, θ)a(t, θ)2 = s(0, θ)a(0, θ)2 = v(θ)2,

a conserved quantity along the geodesic. We sub-

stitute s = v2

a2 and κ = 2 at
a2 to get



att − 4
a2

t

a
− a6aθθ

2v4
+

a6aθvθ

v5
− a5a2

θ

v4
= 0,

a(0, θ) = v(θ),

a nonlinear hyperbolic second order equation. Note

that wherever v = 0 then also a = 0 for all t. So

substitute a = vb. The outcome is

(b−3)tt = −v2

2
(b3)θθ − 2vvθ(b

3)θ − 3vvθθ

2
b3,

b(0, θ) = 1.

This is the codimension 1 version where

Burgers’ equation is the codimension 0 version.



Now the big surprise for the L2-metric:

Theorem. For c0, c1 ∈ Imm(S1, R2) there exists

always a variation through immersions t 7→ c(t, ·)
with c(0, ·) = c0 and π(c(1, ·)) = π(c1) for any given

immersions c0 and c1 such that Lhor
G0 (c) is arbitrarily

small.

Thus the distance dist
Bi
G0 on Bi(S

1, R2) vanishes.

The simplest (L2-) metric G0 is useless on shape

space.



The general almost local metric GΦ.

GΦ
c (h, k) :=

∫

S1
Φ(ℓc, κc(θ))〈h(θ), k(θ)〉ds.

The metric GΦ is invariant under the reparame-

tization group Diff(S1) and under the Euclidean

motion group.



We compute the GΦ-gradients of c 7→ GΦ
c (h, k):

dGΦ(c)(m)(h, k) = GΦ
c (KΦ

c (m, h), k)

= GΦ
c

(
m, HΦ

c (h, k)
)
,

KΦ
c (m, h) = −

( ∫

S1
κc〈m, n〉ds

)
∂1Φ(ℓ, κ)

Φ(ℓ, κ)
h

+
∂2Φ(ℓ, κ)

Φ(ℓ, κ)

(
〈D2

s (m), n〉 − 2κ〈Ds(m), v〉
)
h

+ 〈Ds(m), v〉h

HΦ
c (h, k) =

1

Φ(ℓ, κ)

(
−

(
κc

∫
∂1Φ(ℓ, κ)〈h, k〉ds

)
n

+ D2
s

(
∂2Φ(ℓ, κ)〈h, k〉n

)
+

+ 2Ds

(
∂2Φ(ℓ, κ)κ〈h, k〉v

)
− Ds

(
Φ(ℓ, κ)〈h, k〉v

))



Conserved momenta for GΦ along any geodesic

t 7→ c( , t):

Φ(ℓc, κc)〈v, ct〉|cθ|2 ∈ X(S1) reparam. mom.∫

S1
Φ(ℓc, κc)ctds ∈ R

2 linear moment.
∫

S1
Φ(ℓc, κc)〈Jc, ct〉ds ∈ R angular moment.

Setting the reparametrization momentum to 0 and

doing symplectic reduction amounts exactly to in-

vestigating the quotient space

Bi(S
1, R2) = Imm(S1, R2)/Diff(S1)

and using horizontal geodesics for doing so; a hori-

zontal geodesic is GΦ-normal to the Diff(S1)-orbits.

If it is normal at one time it is normal forever (since

the reparametrization momentum is conserved).



Horizontality for GΦ.

Tc(c ◦ Diff(S1)) = {X.cθ : X ∈ C∞(S1, R)}. Thus

the bundle of horizontal vectors is

Nc = {h ∈ C∞(S1, R2) : 〈h, v〉 = 0}
= {a.n ∈ C∞(S1, R2) : a ∈ C∞(S1, R)}

A tangent vector h ∈ Tc Imm(S1, R2) = C∞(S1, R2)

has an orthonormal decomposition

h = h⊤ + h⊥ ∈ Tc(c ◦ Diff+(S1)) ⊕Nc

h⊤ = 〈h, v〉v ∈ Tc(c ◦ Diff+(S1)),

h⊥ = 〈h, n〉n ∈ Nc,

into smooth tangential and normal components,

independent of the choice of Φ(ℓ, κ).



Consider a path t 7→ c(·, t) in the manifold Imm(S1, R2).

It projects to a path π◦c in Bi(S
1, R2) whose energy

is called the horizontal energy of c:

Ehor
GΦ(c) = 1

2

∫ b

a

∫

S1
Φ(ℓc, κc)〈ct, n〉2 dθdt

= 1
2

∫

[a,b]×S1
Φ(ℓc, κc)

|n0
S|2√

1 − |n0
S|2

dµS

Here the final expression is only in terms of the

surface S and its fibration over the time axis, and

is valid for any path c. This anisotropic area func-

tional has to be minimized in order to prove that

geodesics exists between arbitrary curves (of the

same degree) in Bi(S
1, R2).



The horizontal geodesic equation.

Let c(θ, t) be a horizontal geodesic for the metric

GΦ. Then ct(θ, t) = a(θ, t).n(θ, t). Denote the in-

tegral of a function over the curve with respect to

arclength by a bar. Then the geodesic equation for

horizontal geodesics is:

at =
1

2Φ

( (
−κΦ + κ2∂2Φ

)
a2

− D2
s

(
∂2Φ · a2

)
+ 2∂2Φ · aD2

s (a)

− 2∂1Φ · (κa) · a + (∂1Φ · a2) · κ
)



Curvature on Bi for GΦ.

Let W (θ1, θ2) = h(θ1)m(θ2) − h(θ2)m(θ1)

so that its second derivative

∂2W (θ1, θ1) = W2(θ1, θ1) = h(θ1)m
′(θ1)−h′(θ1)m(θ1)

is the Wronskian of h and m.



RΦ
0 (m, h, m, h) = GΦ

0 (R0(m, h)m, h) =

=

∫ (
κ.Φ2 − Φ

2
+

Φ2.Φ′′
2 − 2(Φ′

2)
2 − (Φ2κ)2

2Φ

)
(θ1)W2(θ1, θ1)

2 dθ1

+

∫
Φ22(θ1)

2
W22(θ1, θ1)

2 dθ1

+

∫∫ (Φ′
1Φ2

Φ
− Φ1Φ2Φ′

1

Φ2

)
(θ1)W2(θ1, θ1)

∫
W (θ1, θ2)κ(θ2) dθ2 dθ1

+

∫∫ (Φ1Φ2

Φ
− Φ12

)
(θ1)W22(θ1, θ1)

∫
W (θ1, θ2)κ(θ2) dθ2 dθ1

+

∫∫
Φ1(θ1)

2

(
1 − Φ2.κ

Φ
(θ2)

)
W1(θ1, θ2)

2 dθ2 dθ1

+

∫∫ (Φ2.κ3 − Φ′′
2.κ

4Φ
− κ2

4
+

(Φ′
2.κ

2Φ

)′
+

( κ2

8Φ

)
.Φ1

)
(θ1)

Φ1(θ2)W (θ1, θ2)
2 dθ2 dθ1

+

∫∫∫ (Φ11

2
− Φ2

1

4Φ

)
(θ1) − Φ1(θ1)

Φ1

2Φ
(θ2)

)

κ(θ2)κ(θ3)W (θ1, θ2)W (θ1, θ3) dθ2 dθ1 dθ3



Special case: the metric GA.

If we choose Φ(ℓc, κc) = 1 + Aκ2
c then we obtain

the metric we have investigated before:

GA
c (h, k) =

∫

S1
(1 + Aκc(θ)

2)〈h(θ), k(θ)〉ds.

The horizontal geodesic equation for the GA-metric

reduces to

at =
1

1 + Aκ2
c

(
− 1

2κca
2

+ A
(
a2(−D2

s (κc) + 1
2κ3

c )

− 4Ds(κc)aDs(a) − 2κcDs(a)
2
))



Along a geodesic t 7→ c(t, ) we have the following

conserved quantities:

(1 + Aκ2
c )〈v, ct〉|cθ|2 ∈ X(S1) reparam. mom.∫

S1
(1 + Aκ2

c )ctds ∈ R
2 linear momentum

∫

S1
(1 + Aκ2

c )〈Jc, ct〉ds ∈ R angular momentum

Lipschitz continuity of
√

ℓ : Bi → R≥0.

For C0 and C1 in Bi = Imm /Diff(S1) we have for

A > 0:
√

ℓ(C1) −
√

ℓ(C0) ≤ 1

2
√

A
dist

Bi(S
1,R2)

GA (C1, C2).



Area swept out bound.

If c is any path from C0 to C1, then


area of the region
swept out by the

variation c


 ≤ max

t

√
ℓ(c(t, ·)) · Lhor

GA(c).

Maximum distance bound.

Consider ǫ < min{
√

Aℓ/4, ℓ3/4/
√

8} and let

η = 4(ℓ3/4A−1/4 + ℓ1/4)
√

ǫ. Then for any path c

starting at C0 whose length Lhor
GA is ǫ, the final curve

lies in the tubular neighborhood of C0 of width η.

More precisely, if we choose the path c(t, θ) to be

horizontal, then

maxθ |c(0, θ) − c(1, θ)| < η.



Corollary.

For any A > 0, the map from Bi(S
1, R2) in the GA

metric to the space Bcont
i (S1, R2) in the Frechet

metric is continuous, and, in fact, uniformly contin-

uous on every subset where the length ℓ is bounded.

In particular, GA is a separating metric on Bi(S
1, R2).

Moreover, the completion Bi(S
1, R2) of Bi(S

1, R2)

in this metric can be identified with a subset of

B
lip
i (S1, R2).



Explicit equicontinuity bounds, under appropriate

parameterization.

Corollary.

If a path c(θ, t),0 ≤ t ≤ 1 satisfies:

• |cθ(θ, t)| ≡ ℓ(t)/2π for all θ, t,

• 〈ct, cθ〉(0, t) ≡ 0 in a base point 0 for all t

• ∫
Ct

(1 + Aκ2
Ct

)|〈ct, icθ〉|2dθ/|cθ| ≡ L2 for all t,

then

|c(θ1, t1) − c(θ2, t2)| ≤
ℓmax

2π
|θ1 − θ2|+

+ 7(ℓ
3/4
max/A

1/4 + ℓ
1/4
max)

√
L(t1 − t2) (1)

whenever |t1 − t2| ≤ min(2
√

Aℓmin, ℓ
3/2
min)/(8L).



A numerical simulation of the geodesic connect-

ing two circles. Minimize Ehor
G1 (c) for variations c

with initial and end curves unit circles at distance

3 produced the following image for the geodesic:

The geodesic joining 2 ‘random’ shapes of size

about 1 at distance 5 apart with A = .25 (using

20 time samples and a 48-gon approximation for

all curves).



The forward integration of the geodesic equation

when A = 0, starting from a straight line in the

direction given by a smooth bump-like vector field.

Note that two corner like singularities with curva-

ture going to ∞ are about to form.



Top Row: Geodesics in 3 metrics joining the same two ellipses. Ellipses
have eccentricity 3, same center and are rotated at 60◦ degree.

A = 1; A = 0.1; A = 0.01.

Bottom Row: Geodesic triangles in Be formed by joining three ellipses at
angles 0, 60 and 120 degrees, for the same three values of A. Here the
intermediate shapes are just rotated versions of the geodesic in the top
row but are laid out on a plane triangle for visualization purposes.



The sectional curvature on Bi

R0(a, b, a, b) = GA
0 (R0(a, b)a, b) =

=
∫

S1

(
1
2(Aκ2 − 1)(ab′ − a′b)2 + A(ab′′ − a′′b)2

)
dθ

+
∫

S1

Aκ2 − A2κ4 + 2A2κκ′′ − 4A2κ′2

1 + Aκ2
(ab′ − a′b)2dθ

=
∫

S1

−(Aκ2 − 1)2 + 4A2κκ′′ − 8A2κ′2

2(1 + Aκ2)
W (a, b)2 dθ

+
∫

S1
A W (a, b)′2 dθ

where W (a, b) = ab′− a′b is the Wronskian of a and

b.



Special case: the conformal metrics

Φ(ℓ(c), κ(c)) = Φ(ℓ(c)), metric proposed by Menucci

and Yezzi and, for Φ linear, independently by Shah:

GΦ
c (h, k) = Φ(ℓc)

∫

S1
〈h, k〉ds = Φ(ℓc)G

0
c (h, k).

All these metrics are conformally equivalent to the

basic L2-metric G0.

As they show, the infimum of path lengths in this

metric is positive so long as Φ satifies an inequality

Φ(ℓ) ≥ C.ℓ for some C > 0.



More precisely (Shah), if Area(c) is area swept over

by the path c,

distGℓ(C0, C1) = inf
c

Area(c)
√

Ae. inf
c

Area(c) ≤ dist
GeAℓ(C0, C1) ≤

≤
√

Ae.eAℓmax inf
c

Area(c)



The horizontal geodesic equation reduces to:

at = −κ

2
a2 +

∂1Φ

Φ
·
(

1
2

(∫
a2.ds

)
κ −

(∫
κ.a.ds

)
a

)

If we change variables and write

b(s, t) = Φ(ℓ(t)).a(s, t), then this equation simpli-

fies to:

bt = − κ

2Φ

(
b2 − ∂1Φ

Φ

∫
b2 ds

)



Along a geodesic t 7→ c(t, ) we have the following

conserved quantities:

Φ(ℓc)〈v, ct〉|c′(θ)|2 ∈ X(S1) reparam. moment.

Φ(ℓc)
∫

S1
ctds ∈ R

2 linear moment.

Φ(ℓc)
∫

S1
〈Jc, ct〉ds ∈ R angular moment.



Curvature on Bi for the conformal metrics.

Sectional curvature has been computed by J. Shah.

Let g, h be orthonomal, then

Curv. in plane 〈g.h〉

=
Φ

2
· (g.Ds(h) − h.Ds(g))2 +

∂1Φ

4Φ
·
(
g2.κ2 + h2.κ2

)

+
3∂1Φ

2 − 2Φ.∂2
1Φ

4Φ2
·
(
(g.κ)

2
+ (h.κ)

2
)

− ∂1Φ

2Φ
·
(
Ds(g)2 + Ds(h)2 +

∂1Φ

2Φ2
· κ2

)

Note that the first two lines are positive while the

last line is negative. The first term is the curvature

term for the H0-metric. The key point about this

formula is how many positive terms it has.



Special case: the smooth scale invariant met-

ric GSI

Φ(ℓ, κ) = ℓ−3 + Aκ2

ℓ gives the metric:

GSI
c (h, k) =

∫

S1

(
1

ℓ3c
+ A

κ2
c

ℓc

)
〈h, k〉ds.

The beauty of this metric is that (a) it is scale

invariant and (b) log(ℓ) is Lipschitz, hence the in-

fimum of path lengths is always positive.



Horizontal geodesics in this metric as special case

of the equation for GΦ:

at =
1

1 + A(ℓκ)2

( (
−1 + A(ℓκ)2

) κa2

2

− 2Aℓ2κDs(a)
2 − 4Aℓ2Ds(κ)aDs(a)

+
(
3 + A(ℓκ)2

)
(aκ) · a − 3

2
(a2) · κ

− Aℓ2

2
(κa)2 · κ

)

where the “overline” stands now for the average of

a function over the curve, i.e.
∫ · · · ds/ℓ.



Since this metric is scale invariant, there are now

four conserved quantities, instead of three:

Φ(ℓ, κ)〈v, ct〉|c′(θ)|2 ∈ X(S1) reparam. mom.∫

S1
Φ(ℓ, κ)ctds ∈ R

2 linear moment.
∫

S1
Φ(ℓ, κ)〈Jc, ct〉ds ∈ R angular moment.

∫

S1
Φ(ℓ, κ)〈c, ct〉ds ∈ R scaling moment.



The Wasserstein metric and a related GΦ-metric.

The Wasserstein metric (also known as the Monge-

Kantorovich metric) is a metric between probability

measures on a common metric space. Let µ and ν

be 2 probability measures on a metric space (X, d).

Consider all measures ρ on X ×X whose marginals

under the 2 projections are µ and ν. Then:

dwass(µ, ν) = inf
ρ

∫∫

X×X
d(x, y)dρ(x, y).

where inf is over all ρ with pr1,∗(ρ) = µ and pr2,∗(ρ) =

ν.

The Wasserstein norm is sandwiched between Gℓ−1

and GΦW for ΦW = 1
ℓ + 1

12ℓκ2.



Immersion-Sobolev metrics on Imm(S1, R2) and

on Bi

Note that Ds =
∂θ
|cθ| is anti self-adjoint for the metric

G0, i.e., for all h, k ∈ C∞(S1.R2) we have
∫

S1

〈
Ds(h), k

〉
ds =

∫

S1

〈
h,−Ds(k)

〉
ds

The metric:

Gimm,n
c (h, k) =

∫

S1
(〈h, k〉 + A.〈Dn

s h, Dn
s k〉) .ds

=
∫

S1
〈Ln(h), k〉ds where

Ln(h) or Ln,c(h) = I + (−1)nA.D2n
s (h)



Geodesics in the H imm,n-metric

(Ln(ct))t = −〈Ln(ct), Ds(ct)〉v

− |ct|2κ(c)

2
n − 〈Ds(ct), v〉Lnct

+
A

2
.
2n−1∑

j=1

(−1)n+j〈D2n−j
s ct, D

j
sct〉κ(c)n



Existence of geodesics. Theorem

Let n ≥ 1. For each k ≥ 2n +1 the geodesic equa-

tion has unique local solutions in the Sobolev space

of Hk-immersions. The solutions depend C∞ on t

and on the initial conditions c(0, . ) and ct(0, . ).

The domain of existence (in t) is uniform in k and

thus this also holds in Imm(S1, R2).

Sketch of Proof Flow equation of a smooth (C∞)

vector field on the H2-open set Uk × Hk(S1, R2) in

the Sobolev space Hk(S1, R2) × Hk(S1, R2) where

Uk = {c ∈ Hk : |cθ| > 0} ⊂ Hk is H2-open.



ct = u =: X1(c, u)

ut = L−1
n,c

(
− 〈Ln,c(u), Ds(u)〉Ds(c)

− |ct|2κ(c)

2
JDs(c) − 〈Ds(u), Dsc〉u

+
A

2
.
2n−1∑

j=1

(−1)n+j〈D2n−j
s u, Dj

su〉κ(c)JDs(c)

+ (−1)nA.
2n−1∑

j=1

Dj
s

(
〈Ds(u), Ds(c)〉D2n−j

s (u)
) )

=: X2(c, u)



The conserved momenta of Gimm,n along any

geodesic t 7→ c(t, ):

〈cθ, Ln,c(ct)〉|c′(θ)| ∈ X(S1) repar. moment.∫

S1
Ln,c(ct) ds ∈ R

2 linear moment.
∫

S1
〈Jc, Ln,c(ct)〉 ds ∈ R angular moment.



Horizontality for Gimm,n h ∈ Tc Imm(S1, R2) is

G
imm,n
c -orthogonal to the Diff(S1)-orbit through c

if and only if

0 = Gimm,n
c (h, ζX(c)) =

∫

S1
X.〈Ln,c(h), cθ〉 ds

for all X ∈ X(S1). So the Gimm,n-normal bundle is

given by

Nn
c = {h ∈ C∞(S, R2) : 〈Ln,c(h), v〉 = 0}.

The Gn-orthonormal projection Tc Imm → Nn
c , de-

noted by h 7→ h⊥ = h⊥,Gn
and the complemen-

tary projection h 7→ h⊤ ∈ Tc(c ◦ Diff(S1)) are 1-

dimensional pseudo-differential operators.



They are determined as follows:

h⊤ = X(h).v where 〈Ln,c(h), v〉 = 〈Ln,c(X(h).v), v〉
Thus we are led to consider the linear differential

operators associated to Ln.c

L⊤
c , L⊥

c : C∞(S1) → C∞(S1),

L⊤
c (f) = 〈Ln,c(f.v), v〉 = 〈Ln,c(f.n), n〉,

L⊥
c (f) = 〈Ln,c(f.v), n〉 = −〈Ln,c(f.n), v〉.

The operator L⊤
c is of order 2n and also unbounded,

self-adjoint and positive on L2(S1, |cθ| dθ). In par-

ticular, L⊤
c is injective. L⊥

c , on the other hand is of

order 2n − 1 and is skew-adjoint. For example, if

n = 1, then one finds that:

L⊤
c = −A.D2

s + (1 + A.κ2).I

L⊥
c = −2A.κ.Ds − A.Ds(κ).I



The operator L⊤
c : C∞(S1) → C∞(S1) is invertible.

This is by deformation invariance of the index.

We want to go back and forth between the ‘natural’

horizontal space of vector fields a.n and the Gimm,n-

horizontal vector fields {h | 〈Lh, v〉 = 0}: We use

Cc : C∞(S1, R2) → C∞(S1) given by

Cc(h) := (L⊤
c )−1 ◦ L⊥

c ,

a pseudo-differential operator of order -1 so that

a.n + C(a).v is H imm,n-horizontal



The restriction of the metric Gimm,n to horizontal

vector fields hi = ai.n + bi.v can be computed like

this:

Gimm,n
c (h1, h2) =

∫

S1
〈Lh1, h2〉.ds

=
∫

S1

(
L⊤ + L⊥ ◦ C

)
a1.a2.ds.

Thus the metric restricted to horizontal vector fields

is given by the pseudo differential operator Lred =

L⊤ + L⊥ ◦ (L⊤)−1 ◦ L⊥.



The metric on the cotangent space to Bi, is simple.

On the smooth cotangent space

C∞(S1, R2) ∼= G0
c (Tc Imm(S1, R2)) ⊂ D(S1)2

the dual metric is given by convolution with the

elementary kernel Kn.

Ǧn
c (a1, a2) =

∫∫

S1×S1
Kn(s1 − s2).

.〈nc(s1), nc(s2)〉.a1(s1).a2(s2).ds1ds2.



Horizontal geodesics

For any smooth path c in Imm(S1, R2) there exists

a smooth path ϕ in Diff(S1) with ϕ(t, ) = IdS1

depending smoothly on c such that the path e given

by e(t, θ) = c(t, ϕ(t, θ)) is horizontal: 〈Ln,c(et), eθ〉 =

0.

We may specialize the general geodesic equation to

horizontal paths and then take the v and n parts

of the geodesic equation. For a horizontal path we

may write Ln,c(ct) = ãn for ã(t, θ) = 〈Ln,c(ct), n〉.
The v part of the equation turns out to vanish



identically and then n part gives us

ãt = −|ct|2κ(c)

2
− 〈Dsct, v〉ã+

+
κ(c)

2

2n−1∑

j=1

(−1)n+j〈D2n−j
s ct, D

j
sct〉

A Lipschitz bound for arclength in Gimm,n

|
√

ℓ(C1) −
√

ℓ(C0)| ≤
C(A, n)

2
dist

Bi
Gn(C1, C0)



The scale invariant Sobolov H1-metric and its

relation to the Grassmannian of 2-planes in an in-

finite dimensional space, and Neretin geodesics.

Gc(h, k) = lim
A→∞

1

A
Gimm,scal,1

c (h, k)

=
1

ℓ(c)

∫

S1
〈Dsh, Dsk〉 ds

=
1

ℓ(c)

∫

S1
〈h,−D2

s k〉 ds

on Imm /translations or {c ∈ Imm : c(1) = 0}.



Geodesics in this metric

ctt = −1
2D−2

s

(
κcnc

)
‖ct‖2Gc

− 1
2D−1

s

(
|Dsct|2vc

)

− 1

ℓc

∫
κc〈ct, nc〉 ds · ct − D−1

s

(
〈Dsct, vc〉Dsct

)

The conserved momenta of Gimm,n along any
geodesic t 7→ c(t, ):

−1

ℓ(c)
〈cθ, D

2
s (ct)〉|c′(θ)| ∈ X(S1) repar. moment.

−1

ℓ(c)

∫

S1
D2

s (ct) ds = 0 ∈ R
2 linear moment.

−1

ℓ(c)

∫

S1
〈ic, D2

s (ct)〉 ds ∈ R angular moment.

−1

ℓ(c)

∫

S1
〈c, D2

s (ct)〉 ds = ∂t log(ℓ(t)) scaling moment.



Thm. For each k ≥ 3/2 this geodesic equation

has unique local solutions in the Sobolev space of

Hk-immersions. The solutions depend C∞ on t and

on the initial conditions c(0, . ) and ct(0, . ). The

domain of existence (in t)

is uniform in k and thus this also holds in Imm∗ :=

{c ∈ Imm(S1, R2) : c(1) = 0}.



Sphere, Stiefel, and Grassmannian

V := {f ∈ C∞(R, R) : f(x + 2π) = ∓f(x)}
below only −: odd case. +: even case.

‖f‖2 =
∫ 2π
0 f2 dx weak inner product on V .

Gr(2, V ) Grassmannian of oriented 2-planes.

TW Gr = L(W, W⊥) with metric

‖v‖2 = tr(v⊤ ◦ v) = ‖v(e)‖2 + ‖v(f)‖2,
e, f orthonormal basis of W .

For W ∈ Gr(2, V ) let

Z(V ) = {x : f(x) = 0∀f ∈ W}.
Gr

0(2, V ) = {W ∈ Gr(2, V ) : Z(W ) = ∅} open in

Gr(2, V ).



The Stiefel manifold St(2, V ) of orthonormal pairs

in V .

St
0(2, V ) = {(e, f) ∈ St : Z(e, f) = ∅} open in St.

T(e,f) St = {(δe, δf) ∈ V 2 : 0 = 〈e, de〉 = 〈f, δf〉 =

〈e, δf〉 + 〈f, δe〉}
Metric ‖(δe, δf)‖2 = ‖δe‖2 + ‖δf‖2.

St(2, V ) ⊂ S(V 2
open) sphere of radius 2.

Vopen = C∞([0,2π], R).



The basic bijection

Φ(e, f) = c(θ) =
1

2

∫ θ

0
(e + if)2 dx

Φ : S
0 2−fold // Immopen

transl.,scalings

Φ : St
0 2−fold //

²²

OO

Immodd
transl.,scalings

²²

OO

Φ : Gr
0 ≈ //

²²

Immodd
transl.,rot.,scalings

²²

Φ : Gr
0 /U(V )

≈ //
Bi,odd

transl.,rot.,scalings



Thm. Φ is an isometry from the natural metric on

St
0 to Immodd /translations with the metric G.

Proof. cθ = 1
2(e + if)2, ds = 1

2|e + if |2dθ.

δc = T(e,f)Φ.(δe, δf) =
∫ θ(δe + iδf)(e + if)dx

Ds(δc) = 2(δe+iδf)(e+if)
|e+if |2

|Ds(δc)|2 ds = (|δe|2 + |δf |2)dθ.



The dictionary between pairs (e, f) and immersions

c connects many properties. Curvature κ works out

especially nicely. We list here some of the connec-

tions:

ds

dθ
= |cθ| = 1

2(e
2 + f2)

v = Ds(c) =
(e + if)2

e2 + f2

and if Wθ(e, f) = efθ − feθ is the Wronskian, then:

vθ =

(
(e + if)2

e2 + f2

)

θ

= 2
Wθ(e, f)

(e2 + f2)
iv, hence

κ = 2
Wθ(e, f)

(e2 + f2)2
for the curvature of c.



Reparameterizations

Let U(V ) be the group of all unitary operators on V

of the form f 7→
√

ϕ′(f ◦ϕ) for all smooth ϕ : R → R

with ϕ′(x) > 0 and ϕ(x +2π) = ϕ(x)+ 2π, i.e. lifts

of ϕ̄ ∈ Diff+(S1).

The infinitesimal action on V of a periodic vector

field X on R is f 7→ 1
2Xθ.f + X.fθ.

Prop. Φ(e, f) ◦ ϕ̄ = Φ
(√

ϕ′(e ◦ ϕ),
√

ϕ′(f ◦ ϕ)
)
.

A tangent vector (δe, δf) ∈ T(e,f) St is

perpendicular to the rotation orbits iff

〈e, df〉V = 〈f, de〉V = 0.

It is perpendicular to the reparameterization orbit

iff Wθ(e, δe) + Wθ(f, δf) = 0

where Wθ(a, b) = a.bθ − aθ.b is the Wronskian.



Neretin geodesics on Gr(2, V )
Y.A.Neretin: On Jordan angles and the triangle inequality in Grassmann
manifolds, Geom. Dedicata 86 (2001)

If W0, W1 ∈ Gr(2, V ), use the singular value decom-

position of the orthonormal projection p : W0 →
W1. This gives ONB (e0, f0) of W0 and (e1, f1) of

W1 such that p(e0) = cos(ϕ)e1, p(f0) = cos(ψ)f1,

e0⊥f1 and f0⊥e1 for

0 ≤ ϕ, ψ ≤ π/2 — the Jordan angles.

The metric is then given by

dist(W0, W1) =

√
ϕ2 + ψ2



and the geodesic by

W (t) =





e(t) =
sin((1 − t)ϕ)

sin(ϕ)
.e0 +

sin(tϕ)

sin(ϕ)
.e1

f(t) =
sin((1 − t)ψ)

sin(ϕ)
.f0 +

sin(tϕ)

sin(ϕ)
.f1







We apply this to compute the distance between

curves in Immod /(sim) and Bi,od/(sim). We write

∂θc
0 = r0(θ)e

iα0(θ) and ∂θc
1 = r1(θ)e

iα1(θ). We put

ē0 =
√

2r0 cos α0

2 f̄0 =
√

2r0 sin α0

2 ,

ē1 =
√

2r1 cos α1

2 f̄1 =
√

2r1 sin α1

2 ,

lifting the curves to 2-planes in the Grassmannian.
The 2 × 2 matrix M(c0, c1) of the orthogonal pro-
jection from the space {ē0, f̄0} to {ē1, f̄1} in these
bases is:




∫
S1 2

√
r0.r1. cos α0

2
cos α1

2
dθ

∫
S1 2

√
r0.r1. cos α0

2
sin α1

2
dθ

∫
S1 2

√
r0.r1. sin α0

2
cos α1

2
dθ

∫
S1 2

√
r0.r1. sin α0

2
sin α1

2
dθ






Notations:

C± :=
∫

S1

√
r0.r1 cos α0±α1

2 dθ

= 1
2

(
M(c0, c1)11) ∓ M(c0, c1)22

)

S± :=
∫

S1

√
r0.r1 sin α0±α1

2 dθ

= 1
2

(
M(c0, c1)21 ± M(c0, c1)12

)

We have to diagonalize this matrix by rotating the
curve c0 by a constant angle β0, i.e., the basis
{ē0, f̄0} by the angle β0/2; and similarly c1 by a
constant angle β1. So replace α0 by α0 − β0 and
α1 by α1 − β1 such that (for both signs)

0 =
∫

S1

√
r0.r1 sin

(
(α0 − β0) ± (α1 − β1)

2

)
dθ

= S±. cos β0±β1

2 − C±. sin β0±β1

2



Thus

β0 ± β1 = 2arctan (S±/C±) .

In the newly aligned bases, the diagonal elements of

the matrix will be the cosines of the Jordan angles.

The following lemma gives you a formula for them:

If M =

(
a b
c d

)
, C± = 1

2(a ∓ d), S± = 1
2(c ± b), then

the singular values of M are:
√

C2
− + S2

− ±
√

C2
+ + S2

+.



This gives the formula

Dod,rot(c
0, c1)2 =

= arccos2
(√

S2
+ + C2

+ +
√

S2
− + C2

−
)

+ arccos2
(√

S2
− + C2

− −
√

S2
+ + C2

+

)
.

This is the distance in the space

Immod(S
1, C)/(transl, rot., scalings).



Horizontal Neretin distances.

If we want the distance in the quotient space

Bi,od/(transl, rot., scalings) by the group

Diff(S1) we have to take the infimum of this dis-

tance over all reparametrizations.

To simplify, we assume that the initial curves c0, c1

are parametrized by arc length so that r0 ≡ r1 ≡
1/2π.



Then consider a reparametrization φ ∈ Diff(S1) of

one of the two curves, say c0 ◦ φ:

Dsim,diff(c0, c1)2 = inf
φ

(
arccos2(λe(c

0 ◦ φ, c1))

+ arccos2(λf(c
0 ◦ φ, c1))

)

where now

λe(c
0 ◦ φ, c1) =

√
S2
−(φ) + C2

−(φ) +
√

S2
+(φ) + C2

+(φ)

λf(c
0 ◦ φ, c1) =

√
S2
−(φ) + C2

−(φ) −
√

S2
+(φ) + C2

+(φ)

S±(φ) :=
1

2π

∫

S1

√
φθ sin (α0◦φ)±α1

2 dθ,

C±(φ) :=
1

2π

∫

S1

√
φθ cos (α0◦φ)±α1

2 dθ.



To describe the inf, we can use that geodesics in

Bi are horizontal geodesics in Imm.

Consider the Neretin geodesic t 7→ {e(t), f(t)} in

Gr(2, V ) described above

W (t) =





e(t) =
sin((1 − t)ϕ)

sin(ϕ)
.e0 +

sin(tϕ)

sin(ϕ)
.e1

f(t) =
sin((1 − t)ψ)

sin(ϕ)
.f0 +

sin(tϕ)

sin(ϕ)
.f1





for

e0 =

√
φθ
π cos (α0◦φ)−β0

2 e1 = 1√
π
cos α1−β1

2 ,

f0 =

√
φθ
π sin (α0◦φ)−β0

2 f1 = 1√
π
sin α1−β1

2 ,

where the rotations β0 and β1 must be computed

from c0 ◦ φ and c1.



The geodesic is perpendicular to all Diff(S1)-orbits

if and only if the sum of Wronskians vanishes:

0 = Wθ(e
0, et(0)) + Wθ(f

0, ft(0)) =

= − 1
√

φθ

{
φθθ

(
ψe

sinψe
cos (α0◦φ)−β0

2 cos α1−β1

2

+
ψf

sinψf
sin (α0◦φ)−β0

2 sin α1−β1

2

)

− φθα
1
θ

(
ψe

sinψe
cos (α0◦φ)−β0

2 sin α1−β1

2

− ψf

sinψf
sin (α0◦φ)−β0

2 cos α1−β1

2

)

+ φ2
θ(α

0
θ ◦ φ)

(
ψe

sinψe
sin (α0◦φ)−β0

2 cos α1−β1

2

− ψf

sinψf
cos (α0◦φ)−β0

2 sin α1−β1

2

)}



This is an ordinary differential equation for φ which

is coupled to the (integral) equations for calculat-

ing the β’s as functions of φ. If it is non-singular

(i.e., the coefficient function of φθθ does not van-

ish for any θ) then there is a solution φ, at least

locally. But the non-existence of the inf described

for open curves above will also affect closed curves

and global solutions may actually not exist. How-

ever, for closed curves that do not double back on

themselves too much geodesics do seem to usually

exist.



The generic way in which a family of open immersions crosses

the hypersurface where Z 6= ∅. The parametrized straight line

in the middle of the family has velocity with a double zero at

the black dot, hence is not an immersion.



100−fold blow−up in middle

This is a geodesic of open curves running from the curve with the kink
at the top left to the straight line on the bottom right. A blow up of the
next to last curve is shown to reveal that the kink never goes away – it
merely shrinks. Thus this geodesic is not continuous in the C1-topology
on Bopen. The straight line is parametrized so that it stops for a whole
interval of time when it hits the middle point and thus it is C1-continuous
in Immopen.



A great circle geodesic on Bod. The geodesic begins at the circle at the
top left, runs from left to right, then to the second row and finally the
third. It leaves Bod twice: at the top right and bottom left, in both of
which the singularity of the first figure occurs in 2 places. The index of
the curve changes from +1 to −3 in the middle row.



Curvature. Let W ∈ Gr(2, V ) be a fixed 2-plane.

Let η : V → V be the isomorphism which equals

−1 on W and 1 on W⊥ satisfying η = η−1. Then

Gr is the symmetric space O(V )/(O(W )×O(W⊥))

with involutive automorphism σ : O(V ) → O(V )

given by σ(U) = η.Uη. For the Lie algebra in the

V = W ⊕ W⊥-decomposition we have
(
−1 0
0 1

) (
x −yT

y U

) (
−1 0
0 1

)
=

(
x yT

y U

)

Here x ∈ L(W, W ), y ∈ L(W, W⊥). The fixed point

group is O(V )σ = O(W ) × O(W⊥).



The reductive decomposition g = k + p is given by
{(

x −yT

y U

)}
=

{(
x 0
0 U

)
, x ∈ so(2)

}

+

{(
0 −yT

y 0

)
, y ∈ L(W, W⊥)

}

For the sectional curvature we have (where we as-

sume that Y1, Y2 is orthonormal):

kspan(Y1,Y2)
= −B(Y2, [[Y1, Y2], Y1])

= trW (yT
2 y2yT

1 y1 + yT
2 y1yT

1 y2 − 2yT
2 y1yT

2 y1)

= 1
2‖y

T
2 y1 − yT

1 y2‖2L2(W,W )

+ 1
2‖y2yT

1 − y1yT
2 ‖2L2(W⊥,W⊥)

≥ 0.

where L2 stands for the space of Hilbert-Schmidt

operators. Note that there are many orthonormal



pairs Y1, Y2 on which sectional curvature vanishes

and that its maximum value 2 is attained when yi

are isometries and y2 = Jy1 where J is rotation

through angle π/2 in the image plane of y1.



We obtain the expression of the curvature in Imm/(sim)

k
Imm,sim
span(h1,h2)

=

( ∫

C
det(Dsh1, Dsh2)ds

)2

+
∫∫

C×C

1 + cos(α(x) − α(y))

2
·

·
(

〈Dsh1(x), Dsh2(y)〉
−〈Dsh2(x), Dsh1(y)〉

)2

ds(x)ds(y)

+
∫∫

C×C

1 − cos(α(x) − α(y))

2
·

·
(

det(Dsh1(x), Dsh2(y))
−det(Dsh2(x), Dsh1(y))

)2

ds(x)ds(y)



A major consequence of the calculation for the cur-

vature on the Grassmannian is:

Thm. The sectional curvature

on Bi/(sim) is ≥ 0.

Proof. We apply O’Neill’s formula to the Rieman-

nian submersion

π : Gr
0 → Gr

0 /U(V ) ∼= Bi/Diff+(S1)

k
Gr

0 /U(V )
π(W )

(X, Y ) = kGr
0

W (Xhor, Y hor)

+ 3
4‖[X

hor, Xhor]ver|W‖2 ≥ 0

where Xhor is a horizontal vector field projecting to

X at π(W ). The horizontal and vertical projections

exist and are pseudo differential operators.



We have explicit formulas for the O’Neill term and

thus for the sectional curvature k
Bi/(sim)
span(h1,h2)

at a

curve C ∈ Bi/(sim) and tangent vector hi. We also

have an explicit upper bound for this as a function

of h1. This shows that geodesics have at least a

small interval before they meet another geodesic.

The size of this interval can be controlled by an

upper bound that involves the supremum norm of

the first two derivatives of h1.

See the paper for this.



Some numerical experiments:

Curve evolution with and without the closedness

constraint. Lower and upper bounds for the geodesic

distance: 0.443 and 0.444



Curve evolution with and without the closedness

constraint. Lower and upper bounds for the geodesic

distance: 0.462 and 0.464



Curve evolution with and without the closedness

constraint. Lower and upper bounds for the geodesic

distance: 0.433 and 0.439



Curve evolution with and without the closedness

constraint. Lower and upper bounds for the geodesic

distance: 0.498 and 0.532



Curve evolution with and without the closedness

constraint. Lower and upper bounds for the geodesic

distance: 0.513 and 0.528



Shape spaces as quotients of diffeo-
morphism groups.

Sobolev metrics on Diff(R2) and its quotients

Emb(S1, R2) and Be(S1, R2)

Right invariant metric on the Lie group Diff(R2)

induced by the inner product

Hn(X, Y ) =
∫

R2
〈LX, Y 〉 dx where

L = LA,n = (1 − A∆)n, ∆ = ∂2
x1 + ∂2

x2.

with fundamental solution LA,n(FA,n) = δ0 given

by

FA,n(x) =
1

2π

∫

R2
ei〈x,ξ〉 1

(1 + A|ξ|2)n
dξ

=
c

A(n−1)/2
.|x|n−1.Kn−1(

|x|√
A

),



for the classical modified Bessel functions Kr.



The geodesic equation on Diff(R2) is V.Arno’ld’s

equation EPDiff:

t 7→ ϕ(t, ) ∈ Diff(R2)

v(t) = (∂tϕ) ◦ ϕ−1 ∈ X(R2), u(t) = L(v(t)),

∂ui

∂t
+

∑

j

(
vj.

∂ui

∂xj
+ uj.

∂vj

∂xi

)
+ div v.ui = 0.



The quotient Emb(S1, R2).

Diff(R2) → Emb(S1, R2)

ϕ 7→ ϕ ◦ i, where i : S1 ⊂ R2.

If c = ϕ ◦ i, the fiber through ϕ is

ϕ.{ψ : ψ ◦ i = i} = {ψ : ψ ◦ c = c}.ϕ.

The tangent space to the fiber is (right translated

by ϕ)

{X ∈ X(R2) : X ◦ c = 0}.
The horizontal subspace is the translate by ϕ of

{Y :
∫
R2〈LY, X〉 dx = 0, if X ◦ c = 0}.

If Y is C∞ then Y = 0. So we need

LY = c∗(p(θ).ds) for p ∈ C∞(S1, R2), a distribution

carried by c. Thus

Y (x) =
∫
S1 F (x − c(θ))p(θ) ds



Y (x) =
∫
S1 F (x − c(θ))p(θ) ds

Mapped to Tc Emb we get

(Y ◦ c)(θ) =
∫

S1
F (c(θ) − c(θ1)).p(θ1).|c′(θ1)|dθ1

=: (Fc ∗ p)(θ) where

Fc(θ1, θ2) := F (c(θ1) − c(θ2))

is an elliptic pseudo differential operator kernel of

order −2n + 1 which is real and positive, so the

operator p 7→ Fc ∗ p is self-adjoint and positive, so

injective, and by index deformation it is bijective

between the Sobolev spaces on S1. The inverse

operator (Fc∗ )−1 has kernel Lc(θ, θ1) which is a

pseudo differential operator kernel of order 2n − 1.



Write h = Y ◦c ∈ Tc Emb and express the horizontal

lift Y = Yh in terms of h:

h = Yh ◦ c = F ∗ (c∗(p.ds)) = Fc ∗ p so p = Lc ∗ h

Y = Yh = F ∗ (c∗((Lc ∗ h).ds))

Yh(x) =
∫

S1
F (x − c(θ)).

.
∫

S1
Lc(θ, θ1)h(θ1)|c′(θ1)|dθ1|c′(θ)|dθ

Finally the metric:

Gdiff,n
c (h, k) =

∫

R2
〈LYh, Yk〉dx

=
∫∫

S1×S1
Lc(θ, θ1)〈h(θ1), k(θ)〉ds1 ds.



We can now compute K and H and the geodesic

equation. It becomes simpler if written for the 1-

current Lc ∗ ct = p.|cθ| =: q:

qt(θ0) = −
∫

S1
F ′

c(θ0, θ1)〈q(θ0), q(θ1)〉 dθ1

where F ′
c(θ1, θ2) = gradF (c(θ1) − c(θ2)).

Existence of geodesics. Theorem.

Let n ≥ 1. For each k > 2n − 1
2 the geodesic equa-

tion has unique local solutions in the Sobolev space

of Hk-embeddings. The solutions are C∞ in t and

in the initial conditions c(0, . ) and ct(0, . ). The

domain of existence (in t) is uniform in k and thus

this also holds in Emb(S1, R2).



Conserved momenta: Along a geodesic c,

Gdiff,n
c (cθ.X, ct) =

=
∫∫

S1×S1
Lc(θ, θ1)〈cθ(θ1)X(θ1), ct(θ)〉ds1 ds

is conserved for every vector field X on S1; the

conserved reparametrization momentum is

〈cθ, Lc ∗ ct〉 = 〈cθ, q〉.
Also

∫∫
(S1)2 Lc(θ, θ1)ct(θ)〉ds1 ds =

∫
S1 q(θ) ds is the

conserved linear momentum.
∫∫

S1×S1
Lc(θ, θ1)〈Jc(θ1), ct(θ)〉ds1 ds =

=
∫

S1
〈Jc(θ), q(θ)〉ds

is the conserved angular momentum.



Horizontal geodesics.

A field h along c is horizontal if 〈Lc ∗h, cθ〉 = 0. For

a horizontal path we have 〈q, cθ〉 = 0, so let q = ã.n.

Then the horizontal geodesic equation is

ãt(θ) = 〈qt, n〉(θ) =

= −
∫

S1
〈F ′

c(θ, θ1), n(θ)〉ã(θ)ã(θ1)〈n(θ), n(θ1)〉 dθ1

Note that also n = Jcθ/|cθ| appears. It is a strange

equation, but it is well-posed byt the theorem above.



Geometry of landmark space
and of spaces of currents



The diffeomorphism group

Diff = DiffS(Rn): the regular Lie group of all dif-

feomorphisms which are rapidly falling towards the

identity.

Its Lie algebra is the space XS(Rn) of all smooth

vector fields which decrease rapidly, with the neg-

ative of the usual bracket as Lie bracket.

We consider XS(Rn) as pre Hilbert space HL with

inner product

〈X, Y 〉HL =
∫

Rn
〈LX, Y 〉 dx

where L : XS(Rn) → XS(Rn) is an invertible lin-

ear (elliptic) scalar differential operator or pseudo-

differential operator which is self-adjoint with re-

spect to the weak inner product

G0(X, Y ) =
∫

Rn
〈X, Y 〉 dx



on XS(Rn) and which is applied to each component

of a vector field separately.



For example:

For the Laplacian ∆ =
∑

∂2
i and constant A, let

L = (1 − A∆)l =
∑

|α|≤l

(−A)|α|l!
α! (l − α)!

∂2α

=
∑

α1+···+αn≤l

(−A)α1+···+αn l!

α1! . . . αn! (l − α1)! . . . (l − αn)!
∂
2α1
x1 . . . ∂2αn

xn

The Fourier transform is L̂u = (1 + A|ξ|2)lû(ξ).

Thus the fundamental solution K of LK = δ in the

space S ′(Rn) of tempered distributions is

K(x) =
1

(2π)n

∫

Rn
ei〈x,ξ〉 1

(1 + |ξ|2)l
dnξ

which can be expressed in terms of the classical

modified Bessel functions Kl−1(|x|/
√

A). It satisfies



(L−1u)(x) =
∫
Rn K(x−y)u(y)dny for each tempered

distribution u.



Or:

We consider a kernel function K : Rn×Rn → R with

good properties (for example smooth and rapidly

decreasing off the diagonal) and its associated op-

erator K(f)(x) =
∫
Rn K(x, y)f(y) dy which we as-

sume to be invertible on C∞
S (Rn) on the space of

of smooth functions with compact support, and

then we put L = K−1.



Landmark space as homogeneus space

A landmark q = (q1, . . . , qN): N-tuple of distinct

points in Rn.

LandN ⊂ (Rn)N : the open subset of all landmarks.

q0 = (q01, . . . , q0N) a fixed standard template land-

mark.

Then we have the the surjective mapping

evq0 : Diff(Rn) → LandN ,

ϕ 7→ evq0(ϕ) = ϕ(q0) = (ϕ(q01), . . . , ϕ(q0N)).

The fiber of evq0 over a landmark q = ϕ0(q
0) is

{ϕ ∈Diff(Rn) : ϕ(q0) = q} =

= ϕ0 ◦ {ϕ ∈ Diff(Rn) : ϕ(q0) = q0}
= {ϕ ∈ Diff(Rn) : ϕ(q) = q} ◦ ϕ0;

We shall use the latter representation.



The tangent space to the fiber is

{X ◦ ϕ0 : X ∈ XS(Rn), X(qi) = 0 for all i}.
A tangent vector Y ◦ ϕ0 ∈ Tϕ0 DiffS(Rn) is GL

ϕ0
-

perpendicular to the fiber over q if
∫

Rn
〈LY, X〉 dx = 0 ∀X with X(q) = 0.

If we require Y to be smooth then Y = 0. So we

assume that LY =
∑

i Pi.δqi, a distributional vector

field (current) with support in q. Here Pi ∈ TqiR
n.

But then

Y (x) = L−1
( ∑

i

Pi.δqi

)
=

∫

Rn
K(x − y)

∑

i

Pi.δqi(y) dy

=
∑

i

K(x − qi).Pi



Tϕ0 evq0 .(Y ◦ ϕ0) = Y (qk)k =
∑

i

(K(qk − qi).Pi)k



Consider a tangent vector P = (Pk) ∈ Tq LandN .

Its horizontal lift with footpoint ϕ0 is Phor ◦ ϕ0

where the vector field Phor on Rn is given as follows:

Let K−1(q)ki be the inverse of the (N ×N)-matrix

K(q)ij = K(qi − qj). Then

Phor(x) =
∑

i,j

K(x − qi)K
−1(q)ijPj

L(Phor(x)) =
∑

i,j

δ(x − qi)K
−1(q)ijPj

Note that Phor is a vector field of class H2l−1.



The Riemannian metric on LandN induced by the
gL-metric on DiffS(Rn) is

gL
q (P, Q) = GL

ϕ0
(P hor, Qhor) =

∫

Rn

〈L(P hor), Qhor〉 dx

=

∫

Rn

〈∑

i,j

δ(x − qi)K
−1(q)ijPj,

∑

k,l

K(x − qk)K
−1(q)klQl

〉
dx

=
∑

i,j,k,l

K−1(q)ijK(qi − qk)K
−1(q)kl〈Pj, Ql〉

So the metric is given by:

gL
q (P, Q) =

∑

k,l

K−1(q)kl〈Pk, Ql〉.

Recall: K−1(q)ki is the inverse of the (N × N)-

matrix K(q)ij = K(qi − qj).



Lemma Let X, Y ∈ XS(Rn) be a vector fields with

support in a compact box B ⊂ Rn. Let q1, q2, q3, . . .

be an equidistributed sequence in B: For each

Borel subset U ⊂ B we require

lim
N→∞

#{i ≤ N : qi ∈ U}
N

=
Vol(U)

Vol(B)
.

For each N consider the initial part qN = (q1, . . . , qN)

as a point in the landmark space LandN of N points

in Rn. Then we have

lim
N→∞

Vol(B)2

N2

N∑

i,j=1

K−1(q)i,j〈X(qi), Y (qj)〉 =

=
∫

Rn
〈LX, Y 〉 dx.



The geodesic equation on T ∗LandN(Rn).

Elements of the cotangent bundle

T ∗LandN(Rn) = LandN(Rn) × ((Rn)N)∗
are denoted by

(q, α) =


(q1, . . . , qN),




α1

...

αN







=







q11 . . . q1N
. . .
qn
1 . . . qn

N


 ,




α1
1 . . . α1

n
. . .

αN
1 . . . αN

n







and we shall use this as global coordinates.

The metric looks like

(gL)−1
q (α, β) =

∑

i,j

K(q)ij〈αi, βj〉,

K(q)ij = K(qi − qj).



We consider the the energy function

E(q, α) = 1
2(g

L)−1
q (α, α) = 1

2

∑

i,j

K(q)ij〈αi, βj〉

= 1
2

∑

i,j

K(q)ij〈αi, βj〉

and its Hamiltonian vector field (using Rn-valued
derivatives to save notation)

HE(q, α) =
1

2

N∑

i,j,k=1

(∂K(q)ij〈αi, αj〉
∂αk

∂

∂qk

− ∂K(q)ij〈αi, αj〉
∂qk

∂

∂αk

)
.

=

N∑

i,k=1

(
K(qk − qi)αi

∂

∂qk

+ gradK(qi − qk)〈αi, αk〉
∂

∂αk

)
.

So the geodesic equation is the flow of this vector



field:

q̇k =
∑

i

K(qi − qk)α
i

α̇k =
∑

i

〈αk, αi〉gradK(qi − qk)

A covariant formula for curvature and its rela-

tions to O’Neill’s curvature formulas.

Mario Micheli in his 2008 thesis derived the the

coordinate version of the following formula for the

sectional curvature expression, which is valid for

closed 1-forms α, β on a Riemannian manifold (M, g),

where we view g : TM → T ∗M and so g−1 is the



dual inner product on T ∗M . Here α♯ = g−1(α).

gL
(
R(α♯, β♯)α♯, β♯

)
= −1

4‖d(g
−1(α, β))‖2

+ 1
4g−1

(
d(‖α‖2), d(‖β‖2)

)

+ 3
4g

(
[α♯, β♯], [α♯, β♯]

)

− 1
2α♯α♯(‖β‖2) − 1

2β♯β♯(‖α‖2)
+ 1

2(α
♯β♯ + β♯α♯)g−1(α, β)



Mario’s formula in coordinates.

Assume that α = αidxi, β = βidxi where the coeffi-

cients αi, βi are constants, hence α, β are closed.

Then α♯ = gijαi∂j, β
♯ = gijβi∂j and we have:

4g
(
R(α♯, β♯)β♯, α♯

)

= (αiβk − αkβi) · (αjβl − αlβj)·
·
(
2gis(gjtgkl

,t ),s − 1
2gij

,sgstgkl
,t − 3gisgkp

,s gpqg
jtg

lq
,t

)



Covariant curvature and O’Neill’s formula,

finite dimensional.

Let p : (E, gE) → (B, gB) be a Riemannian submer-

sion between finite dimensional manifolds, i.e., for

each b ∈ B and x ∈ Eb := p−1(b) the gE-orthogonal

splitting

TxE = Tx(Ep(x))⊕Tx(Ep(x))
⊥ =: Tx(Ep(x))⊕Horx(p)

has the property that Txp : (Horx(p), gE) → (TbB, gB)

is an isometry. Each vector field X ∈ X(E) is

decomposed as X = Xhor + Xver into horizontal

and vertical parts. Each vector field ξ ∈ X(B)

can be uniquely lifted to a smooth horizontal field

ξhor ∈ Γ(Hor(p)) ⊂ X(E).



O’Neill’s formula says that for any two horizontal

vector fields X, Y on M and any x ∈ E, the sectional

curvatures of E and B are related by:

gp(x)(R
B(p∗(Xx), p∗(Yx))p∗(Yx), p∗(Xx))

= gx(R
E(Xx, Yx)Yx, Xx) + 3

4‖[X, Y ]ver‖2x.

Comparing Mario’s formula on E and B gives an

immediate proof of this fact. Namely: If α ∈
Ω1(B), then the vector field (p∗α)♯ is horizontal

and we have Tp ◦ (p∗α)♯ = α♯ ◦ p. Therefore (p∗α)♯

equals the horizontal lift (α♯)hor. For each x ∈ E

the mapping (Txp)∗ : (T ∗
p(x)

B, g−1
B ) → (T ∗

xE, g−1
E ) is

an isometry. We also use:

‖[(p∗α)♯, (p∗β)♯]hor‖2gE
= p∗‖[α♯, β♯]‖2gB



Curvature via the cotangent bundle Mario’s for-

mula for closed 1-forms α, β on landmark space,

where α
♯
k =

∑
i K(qk − qi)α

i. We shall use constant

1-forms below.

4gL
(
R(α♯, β♯)α♯, β♯

)
=

= −2α♯α♯(‖β‖2) − 2β♯β♯(‖α‖2) + 2(α♯β♯ + β♯α♯)g−1(α, β)

− ‖d(g−1(α, β))‖2 + g−1
(
d(‖α‖2), d(‖β‖2)

)
+ 3g

(
[α♯, β♯], [α♯, β♯]

)

=

(
− 2

∑

i,j,k,l

〈
dqj ·

(
d2K(qi − qj)(dql, dqk)(K(q)il − K(q)jl)(K(q)ik − K(q)jk)

+ dK(qi − qj)(dqk)

(
dK(qi − qk)(dql)(K(q)il − K(q)kl)

− dK(qj − qk)(dql)(K(q)jl − K(q)kl)

)
, dqi

〉

+
∑

i,j,k,l

K(q)ik〈dK(qi − qj), dK(qk − ql)〉〈dqi, dqj〉〈dqk, dql〉(R3124 + R1324)

+ 3
∑

k,l,i,j,m,n

K−1(q)kl

(
K(q)kj − K(q)ij

)
dK(qk − qi)(dqj)



(
K(q)kn − K(q)mn

)〈
dqi, dK(qk − qm)(dqn) dqm

〉)(
(α ∧ β) ⊗ (α ∧ β)

)



Notation for the coordinate formula:

A = indices of landmark points in R
n

a, b, c, · · · = elements of A

α, β = {αa|a ∈ A}, {βa|a ∈ A}, cotangent vectors to L
α♯, β♯ = the dual tangent vectors, e.g.

α♯
a =

∑

b

K(Pa − Pb)αb

K(~x) = k(‖~x‖), the kernel defining the metric

note: ∇K(~x) = k′(‖~x‖) ~x

‖~x‖
dab = ‖Pa − Pb‖, ~uab = (Pa − Pb)/dab,

the unit vector between landmarks

Kab = k(dab),∇Kab = DK(Pa − Pb) = k′(dab)~uab

K̃ ′′
ab =

k′′(dab)

k′2(dab)
− 1

dabk′(dab)



Four expressions in the skew form α ∧ β:

σab,cd(α, β) = 〈αa,∇Kcd〉βb − 〈βa,∇Kcd〉αb

σ∗
bcd(α, β) =

∑

a

(Kac − Kad)σab,cd(α, β)

= 〈α♯
c − α♯

d,∇Kcd〉βb − 〈β♯
c − β♯

d,∇Kcd〉αb

(Note that the terms in angle brackets are discrete strains)

τab,cd(α, β) = 〈(αa ⊗ βc) − (βa ⊗ αc), (αb ⊗ βd) − (βc ⊗ αd)〉,
(Bracket in R

n ⊗ R
n, points a, b on left, c, d on right)

τ∗
bd(α, β) =

〈
(α♯

b − α♯
d) ⊗ (β♯

b − β♯
d) − (β♯

b − β♯
d) ⊗ (α♯

b − α♯
d),

αb ⊗ βd − βb ⊗ αd

〉



With these notations, we get the following formula:

R(α, β, α, β) = 1
2

∑

bd

K̃ ′′
bd〈σ∗

bbd(α, β), σ∗
dbd(α, β)〉

+ 1
2

∑

bcd

〈(σ∗
bcb(α, β) − σ∗

bcd(α, β)) , σcd,bd(α, β)〉

− 3
4
‖

∑

b

σ∗
bb·(α, β)‖2

K−1 + 1
2

∑

cd

k′
bd

dab

· τ∗
cd(α, β)

− 1
8

∑

abcd

(Kab − Kad − Kcb + Kcd)〈∇Kac,∇Kbd〉 · τab,cd(α, β).



Sobolev metrics on Diff(R2) and its quotients

Emb(S1, R2) and Be(S1, R2)

Right invariant metric on the Lie group Diff(R2)

induced by the inner product

Hn(X, Y ) =
∫

R2
〈LX, Y 〉 dx where

L = LA,n = (1 − A∆)n, ∆ = ∂2
x1 + ∂2

x2.

with fundamental solution LA,n(KA,n) = δ0 given

by

KA,n(x) =
1

2π

∫

R2
ei〈x,ξ〉 1

(1 + A|ξ|2)n
dξ

=
C

A(n−1)/2
.|x|n−1.Kn−1(

|x|√
A

),

for the classical modified Bessel functions Kr.



The geodesic equation on Diff(R2) is V.Arno’ld’s

equation EPDiff:

t 7→ ϕ(t, ) ∈ Diff(R2)

v(t) = (∂tϕ) ◦ ϕ−1 ∈ X(R2), u(t) = L(v(t)),

∂ui

∂t
+

∑

j

(
vj.

∂ui

∂xj
+ uj.

∂vj

∂xi

)
+ div v.ui = 0.



The quotient Emb(S1, R2).

Diff(R2) → Emb(S1, R2)

ϕ 7→ ϕ ◦ i, where i : S1 ⊂ R2.

If c = ϕ ◦ i, the fiber through ϕ is

ϕ.{ψ : ψ ◦ i = i} = {ψ : ψ ◦ c = c}.ϕ.

The tangent space to the fiber is (right translated

by ϕ)

{X ∈ X(R2) : X ◦ c = 0}.
The horizontal subspace is the translate by ϕ of

{Y :
∫
R2〈LY, X〉 dx = 0, if X ◦ c = 0}.

If Y is C∞ then Y = 0. So we need

LY = c∗(p(θ).ds) for p ∈ C∞(S1, R2), a distribution

carried by c. Thus

Y (x) =
∫
S1 K(x − c(θ))p(θ) ds



Y (x) =
∫
S1 K(x − c(θ))p(θ) ds

Mapped to Tc Emb we get

(Y ◦ c)(θ) =
∫

S1
K(c(θ) − c(θ1)).p(θ1).|c′(θ1)|dθ1

=: (Kc ∗ p)(θ) where

Kc(θ1, θ2) := K(c(θ1) − c(θ2))

is an elliptic pseudo differential operator kernel of

order −2n + 1 which is real and positive, so the

operator p 7→ Kc ∗ p is self-adjoint and positive, so

injective, and by index deformation it is bijective

between the Sobolev spaces on S1. The inverse

operator (Kc∗ )−1 has kernel Lc(θ, θ1) which is a

pseudo differential operator kernel of order 2n − 1.



Write h = Y ◦ c ∈ Tc Emb(S1, R2) and express the

horizontal lift Y = Yh in terms of h:

h = Yh ◦ c = K ∗ (c∗(p.ds)) = Kc ∗ p so p = Lc ∗ h

Y = Yh = K ∗ (c∗((Lc ∗ h).ds))

Yh(x) =

=
∫

S1
K(x − c(θ)).

∫

S1
Lc(θ, θ1)h(θ1)|c′(θ1)|dθ1|c′(θ)|dθ

Finally the metric:

Gdiff,n
c (h, k) =

∫

R2
〈LYh, Yk〉dx

=
∫∫

S1×S1
Lc(θ, θ1)〈h(θ1), k(θ)〉ds1 ds.

This formula looks innocent, but there is an in-

version of the (nice) operator Kc∗ in it to get

Lc∗ = (Kc∗ )−1



We can now compute K and H and the geodesic

equation. It becomes simpler if written for the 1-

current Lc ∗ ct = p.|cθ| =: α:

αt(θ0) = −
∫

S1
K′

c(θ0, θ1)〈α(θ0), α(θ1)〉 dθ1

where K′
c(θ1, θ2) = gradK(c(θ1) − c(θ2)).

Existence of geodesics. Theorem.

Let n ≥ 1. For each k > 2n − 1
2 the geodesic equa-

tion has unique local solutions in the Sobolev space

of Hk-embeddings. The solutions are C∞ in t and

in the initial conditions c(0, . ) and ct(0, . ). The

domain of existence (in t) is uniform in k and thus

this also holds in Emb(S1, R2).



Conserved momenta: Along a geodesic c,

Gdiff,n
c (cθ.X, ct) =

=
∫∫

S1×S1
Lc(θ, θ1)〈cθ(θ1)X(θ1), ct(θ)〉ds1 ds

is conserved for every vector field X on S1; the

conserved reparametrization momentum is

〈cθ, Lc ∗ ct〉 = 〈cθ, α〉.
Also

∫∫
(S1)2 Lc(θ, θ1)ct(θ)〉ds1 ds =

∫
S1 α(θ) ds is the

conserved linear momentum.
∫∫

S1×S1
Lc(θ, θ1)〈Jc(θ1), ct(θ)〉ds1 ds =

=
∫

S1
〈Jc(θ), α(θ)〉ds

is the conserved angular momentum.



Horizontal geodesics.

A field h along c is horizontal if 〈Lc ∗ h, cθ〉 = 0.

For a horizontal path we have 〈α, cθ〉 = 0, so let

α = ã.n. Then the horizontal geodesic equation is

ãt(θ) = 〈αt, n〉(θ) =

= −
∫

S1
〈K′

c(θ, θ1), n(θ)〉ã(θ)ã(θ1)〈n(θ), n(θ1)〉 dθ1

Note that also n = Jcθ/|cθ| appears. It is a strange

equation, but it is well-posed by the theorem above.



Requirements for infinite dimensional manifolds

Let (M, g) be a weak Riemannian manifold mod-

elled on convenient locally convex vector spaces.

For x ∈ M the metric gx : TxM → T ∗
xM is usually

only injective (weak metric). The image g(TM) ⊂
T ∗M is called the smooth cotangent bundle asso-

ciated to g. Now Ω1
g(M) := Γ(g(TM)) and α♯ =

g−1α ∈ X(M), X♭ = gX are as above. The exterior

derivative restricts to

d : Ω1
g(M) → Ω2(M) = Γ(L2

skew(TM ;R))

since the embedding g(TM) ⊂ T ∗M is a smooth

fiber linear mapping.



Further requirements need to be imposed on (M, g).
g : TM → T ∗M is only injective in general, so the
Levi-Civita covariant derivative might not exist in
TM . Existence of ∇g is equivalent to: The metric
itself admits gradients with respect to itself: We
express this is locally. So let for the moment M
be a c∞-open subset of a convenient vector space
VM . Then we assume that we can write

Dx,Zgx(X, Y ) = gx(Z,grad1 g(x)(X, Y ))

= gx(grad2 g(x)(Z, X), Y )

where grad1 g,grad2 g : M × VM × VM → VM ,
(x, X, Y ) 7→ grad1,2 g(x)(X, Y ),
are smooth and bilinear in X, Y ∈ VM .
Then the derivation of Mario’s formula goes through
and the final formula for curvature holds in both the
finite and infinite dimensional cases.



Some constructions above encountered a second

problem: they lead to vector fields whose values do

not lie in TxM , but in the Hilbert space completion

TxM with respect to ‖ ‖gx. To manipulate these

as in the finite dimensional case, we need to know

that
⋃

x∈M TxM forms a smooth vector bundle over

M . In other words, in each coordinate chart on an

open subset U ⊂ M , TM |U is a trivial bundle U ×V

and all the inner products gx, x ∈ U define inner

products on one and the same topological vector

space V . We assume that they are all bounded

with respect to each other, so that the completion

V of V with respect to gx does not depend on x

and
⋃

x∈U TxM ∼= U × V .



This means that
⋃

x∈M TxM forms a smooth vector

bundle over M with trivialisations the linear exten-

sions of the trivialisations of the bundle TM → M .

These two properties will be sufficient for all the

constructions we need so we make them into a def-

inition:

Definition. A convenient weak Riemannian mani-

fold (M, g) will be called a robust Riemannian man-

ifold if

(1) The metric gx admits gradients in the above

two senses,

(2) The completions TxM form a vector bundle as

above.



Covariant curvature and O’Neill’s formula in

infinite dimensions. Let p : (E, gE) → (B, gB) be a

Riemann submersion between infinite dimensional

robust Riemann manifolds; i.e., for each b ∈ B

and x ∈ Eb := p−1(b) the tangent mapping Txp :

(TxE, gE) → (TbB, gB) is a surjective metric quo-

tient map so that

‖ξb‖gB := inf
{
Xx ∈ TxE : Txp.Xx = ξb

}
.

The infinimum need not be attained in TxE but

will be in the completion TxE. The orthogonal

subspace {Yx : gE(Yx, Tx(Eb)) = 0} will therefore

be taken in Tx(Eb) in TxE.



If αb = gB(α
♯
b, ) ∈ gB(TbB) ⊂ T ∗

b B is an element

in the gB-smooth dual,

then p∗αb := (Txp)∗(αb) = gB(α
♯
b, Txp ) : TxE →

R is in T ∗
xM but in general it is not an element

in the smooth dual gE(TxE). It is, however, an

element of the Hilbert space completion gE(TxE)

of the gE-smooth dual gE(TxE) with respect to the

norm ‖ ‖
g−1
E

, and the element

g−1
E (p∗αb) =: (p∗αb)

♯ is in the ‖ ‖gE-completion

TxE of TxE. We can call g−1
E (p∗αb) =: (p∗αb)

♯ the

horizontal lift of α
♯
b = g−1

B (αb) ∈ TbB.



The metric (gE)x can be evaluated at elements in

the completion TxE. Moreover, for any smooth

sections X, Y ∈ Γ(TE) the mapping

gE(X, Y ) : M → R

is still smooth, by the smooth uniform boundedness

theorem.



Lemma. If α is a smooth 1-form on an open subset

U of B with values in the gB-smooth dual gB(TB),

then p∗α is a smooth 1-form on p−1(U) ⊂ E with

values in the ‖ ‖
g−1
E

-completion of the gE-smooth

dual gE(TE). Thus also (p∗α)♯ is smooth from E

into the gE-completion of TE, and it has values in

the gE-orthogonal subbundle to the vertical bundle

in the gE-completion. We may continuously ex-

tend Txp to the ‖ ‖gE-completion, and then we

have Tp◦(p∗α)♯ = α♯ ◦p. Moreover, the Lie bracket

of two such forms, [(p∗α)♯, (p∗β)♯], is defined. The

exterior derivative d(p∗α) is defined and is applica-

ble to vector fields with values in the completion

like (p∗β)♯.

That the Lie bracket is defined, is also a non-trivial



statement: We have to differentiate in directions

which are not tangent to the manifold.



Theorem. Let p : (E, gE) → (B, gB) be a Riemann

submersion between infinite dimensional

robust Riemann manifolds. Then for 1-forms

α, β ∈ Ω1
g(B) O’Neill’s formula holds in the form:

gB

(
RB(α♯, β♯)β♯, α♯

)
=

= gE

(
RE((p∗α)♯, (p∗β)♯)(p∗β)♯, (p∗α)♯

)

+ 3
4‖[(p

∗α)♯, (p∗β)♯]ver‖2gE



Curvature computations

In terms of the dual momenta

α = (Lc ∗ h) ds = (Lc ∗ h)|cθ| dθ

in Lc ∗ Tc Emb(S1, R2) ⊂ D′(S1)2 ⊗ R2, the metric

looks particularly simple:

(Gdiff,n)−1
c (α, β) =

∫∫

S1×S1
Kc(θ, θ1)〈α(θ1), β(θ)〉

We use again the cotangent expression of curvature

for constant (not depending on c) 1-forms α, β in

Lc ∗ C∞(S1, R2) ⊂ D′(S1)2 ⊗ R2, where α♯ = Kc ∗ α,

etc

4Gdiff,n
(
R(α♯, β♯)α♯, β♯

)
=

= G−1
(
d(‖α‖2), d(‖β‖2)

)
− ‖d(G−1(α, β))‖2 + 3G

(
[α♯, β♯], [α♯, β♯]

)

− 2α♯α♯(‖β‖2) − 2β♯β♯(‖α‖2) + 2(α♯β♯ + β♯α♯)G−1(α, β)



4Gdiff,n
(
R(α♯, β♯)α♯, β♯

)
=

=

∫∫∫∫

(S1)4

(
det

(
〈α(θ1), α(θ2)〉 〈α(θ1), β(θ2)〉
〈α(θ3), β(θ4)〉 〈β(θ3), β(θ4)〉

)

〈
gradK(c(θ1) − c(θ2)),gradK(c(θ3) − c(θ4))

〉

·
(
Kc(θ1, θ3) − 2Kc(θ1, θ4) + Kc(θ2, θ4)

)

+ 3

∫∫
(S1)2Lc(θ3, θ4)

〈 ∫

S1

(〈
gradK(c(θ3) − c(θ1)), α

♯(θ3) − α♯(θ1)
〉
β(θ1)

−
〈
gradK(c(θ3) − c(θ1)), β

♯(θ3) − β♯(θ1)
〉
α(θ1)

)
,∫

S1

(〈
gradK(c(θ4) − c(θ2)), α

♯(θ4) − α♯(θ2)
〉
β(θ2)

−
〈
gradK(c(θ3) − c(θ1)), β

♯(θ3) − β♯(θ1)
〉
α(θ1)

)〉

+

∫∫

(S1)2

(
− 2〈β(θ1), β(θ2)〉 d2K(c(θ1) − c(θ2))

(
α♯(θ1) − α♯(θ2), α

♯(θ1) − α♯(θ2)
)



− 2〈α(θ1), α(θ2)〉 d2K(c(θ1) − c(θ2))
(
β♯(θ1) − β♯(θ2), β

♯(θ1) − β♯(θ2)

+ 4〈α(θ1), β(θ2)〉 d2K(c(θ1) − c(θ2))
(
α♯(θ1) − α♯(θ2), β

♯(θ1) − β♯(θ2



High dimensional shape space
Imm(M, N)/Diff(M).

M , a compact smooth connected manifold of di-

mension m ≥ 1.

(N, g) a connected Riemannian manifold of dimen-

sion n > m.

Diff(M), the regular Lie group of all diffeomor-

phisms of M .

Diffx0(M), the subgroup of diffeomorphisms fixing

x0 ∈ M .

Emb = Emb(M, N), the manifold of all smooth

embeddings M → N .



Imm = Imm(M, N), the manifold of all smooth im-

mersions M → N .



Immfree = Immfree(M, N), the manifold of all smooth

free immersions M → N (those with trivial

isotropy group for the right action of Diff(M)

on Imm(M, N)).

Be = Be(M, N) = Emb(M, N)/Diff(M), the mani-

fold of submanifolds of type M in N , base of

a smooth principal bundle.

Bi = Bi(M, N) = Imm(M, N)/Diff(M), an infinite

dimensional ‘orbifold’.

Bi,f = Bi,(M, N) = Immf(M, R2)/Diff(M), a man-

ifold, the base of a principal fiber bundle.



Free immersions

An immersion f : M → N is called free if Diff(M)

acts freely on it, i.e., f ◦ ϕ = f for ϕ ∈ Diff(M)

implies ϕ = Id. We have the following results:

• If ϕ ∈ Diff(M) has a fixed point and if

f ◦ ϕ = f for any immersion f then ϕ = Id.

• If for f ∈ Imm(M, N) there is a point x ∈ c(M)

with only one preimage then f is a free immersion.

There exist free immersions without such points.

We might view Immf(M, N) as the nonlinear Stiefel

manifold of parametrized submanifolds of type M

in N and consequently Bi,f(M, N) as the nonlinear

Grassmannian of unparametrized submanifolds of

type M .



Non free immersions. Since M is compact, the

orbit space Bi(M, N) = Imm(M, N)/Diff(M) is Haus-

dorff. For any immersion f the isotropy group

Diff(M)f is a finite group which acts as group

of covering transformations for a finite covering

qf : M → M̄ such that f factors over qf to a free

immersion f̄ : M̄ → N with f̄ ◦ qf = f .

For each f ∈ Imm there exist a slice Q(f) in a

strong sense:

• Q(f) is invariant under the isotropy group Diff(M)f .

• If (Q(f) ◦ϕ)∩Q(f) 6= ∅ for ϕ ∈ Diff(M) then ϕ is

in the isotropy group ϕ ∈ Diff(M)f .

• Q(f) ◦ Diff(M) is an invariant open neighbour-

hood of the orbit f ◦ Diff(M) in Imm(M, N) ad-

mitting a smooth retraction r onto the orbit. The

fiber r−1(f ◦ ϕ) equals Q(f ◦ ϕ).



We do not have a principal bundle and thus no

principal connections, but we can prove the main

consequence, the existence of horizontal paths, di-

rectly:

Lemma. For any smooth path f in

Imm(M, N) there exists a smooth path ϕ in Diff(M)

with ϕ(t, ) = IdM depending smoothly on f such

that the path h given by h(t, θ) = c(t, ϕ(t, θ)) is

horizontal: g(ht, Th) = 0.



Volumes of an immersion. For an immersion

f ∈ Imm(M, N), we consider the volume density

volg(f) = vol(f∗g) ∈ Vol(M) on M given by

volg(f)|U =
√

det((f∗g)ij)|du1 ∧ · · · ∧ dum|
for any chart (U, u : U → Rm) of M .

Lemma. The derivative of volg : Imm(M, N) →
Vol(M) is

d volg(f)(h) = −Trf
∗g(g(Sf , h⊥)) vol(f∗g)+
+ divf∗g(h⊤)(f∗g)) vol(f∗g).

The second summand vanishes when integrated

over M .



The metric on Imm. Let h, k ∈ C∞
f (M, TN) be

tangent vectors with foot point f ∈ Imm(M, N),

i.e., vector fields along f . We consider the follow-

ing weak Riemannian metric on

Imm(M, N), for a constant A ≥ 0:

GA
f (h, k) :=

=
∫

M
(1 + A‖Trf

∗g(Sf)‖2
gN(f))g(h, k) vol(f∗g)

where ‖Trf
∗g(Sf)‖

gN(f) is the norm of the mean

curvature. The metric GA is invariant for the action

of Diff(M). This makes the map π : Imm(M, N) →
Bi(M, N) into a Riemannian submersion (off the

singularities of Bi(M, N)).



The tangent vectors to the orbits are

Tf(f ◦ Diff(M)) = {Tf.ξ : ξ ∈ X(M)}. The bundle

N → Imm(M, N) of tangent vectors normal to the

Diff(M)-orbits is independent of A:

Nf = {h ∈ C∞(M, TN) : g(h, Tf) = 0}
= Γ(f∗(TN |M/Tf.TM)) = Γ(f∗TN/TM),

the space of sections of the normal bundle.

A tangent vector

h ∈ Tf Imm(M, N) = C∞
f (M, TN) = Γ(f∗TN) has

an orthonormal decomposition

h = h⊤ + h⊥ ∈ Tf(f ◦ Diff+(M)) ⊕Nf

into smooth tangential and normal components.



The metric GA on Imm(M, N) is invariant under

Diff(M) and induces a metric on the quotient Bi(M, N):

For any F0, F1 ∈ Bi, consider all liftings f0, f1 ∈ Imm

such that

π(f0) = F0, π(f1) = F1 and all smooth curves t 7→
f(t, ) in Imm(M, N) with f(0, ·) = f0 and f(1, ·) =

f1. The length of t 7→ π(f(t, ·)) in Bi(M, N) is given

by

Lhor
GA(f) := LGA(π(f(t, ·))) =

=
∫ 1

0

√
GA

π(f)(Tfπ.ft, Tfπ.ft) dt =
∫ 1

0

√
GA

f (f⊥
t , f⊥

t ) dt

=
∫ 1

0

(∫

M
(1 + A‖Trf

∗g(Sf)‖2g)g(f⊥
t , f⊥

t ) vol(f∗g)
)1

2
dt

In fact the last computation only makes sense on

Bi,f(M, N) but we take it as a motivation.



The metric on Bi(M, N) is defined by taking the

infimum of this over all paths f (and all lifts f0, f1):

dist
Bi
GA(F1, F2) = inf

f
Lhor

GA(f).

Theorem. For f0, f1 ∈ Imm(M, N) there exists al-

ways a path t 7→ f(t, ·) in Imm(M, N) with f(0, ·) =

f0 and π(f(1, ·)) = π(f1) such that Lhor
G0 (f) is arbi-

trarily small.

So the lowest order metric is not suitable for vision.

Sketch the proof!



Lipschitz continuity of
√

Volg : Bi(M, N) → R≥0.

For F0 and F1 in Bi(M, N) = Imm(M, N)/Diff(M)

we have for A > 0:
√

Volg(F1) −
√

Volg(F0) ≤ 1

2
√

A
dist

Bi
GA(F1, F2).



Area swept out bound. If f is any path from F0

to F1, then

(
(m + 1) − volume of the region swept

out by the variation f

)
≤

≤ max
t

√
Volg(f(t, )) · Lhor

GA(f).

Together with Lipschitz continuity this shows that

the geodesic distance L
Bi
GA separates points at least

on Be(M, N), if A > 0.



Horizontal energy of a path as anisotropic vol-

ume We consider a path t 7→ f(t, ) in Imm(M, N).

It projects to a path π ◦ f in Bi whose energy is:

EGA(π ◦ f) = 1
2

∫ b

a
GA

π(f)(Tπ.ft, Tπ.ft) dt =

= 1
2

∫ b

a
GA

f (f⊥
t , f⊥

t ) dt =

= 1
2

∫ b

a

∫

M
(1+A‖Trf

∗g(Sf)‖2g)g(f⊥
t , f⊥

t ) vol(f∗g) dt.

We now consider the graph γf : [a, b]×M ∋ (t, x) 7→
(t, f(t, x)) ∈ [a, b]×N of the path f and its image Γf ,

an immersed submanifold with boundary of R ×N .



Ehor
GA (π ◦ f) =

= 1
2

∫

[a,b]×M
(1 + A‖Trf

∗g(Sf)‖2
gN(f))

× ‖f⊥
t ‖2√

1 + ‖f⊥
t ‖2g

vol(γ∗
f(dt2 + g))

This is intrinsic for the graph Γf and the fibration

pr1 : R × N → R. To find a geodesic between the

shapes π(f(a, )) and π(f(b, )) we look for an

immersed surface which is critical for Ehor
GA . This is

a Plateau-problem with anisotropic volume.



The geodesic equation of G0 in Imm(M, N)

∇g
∂t

ft + divf∗g(f⊤
t )ft − g(f⊥

t ,Trf
∗g(Sf))ft+

+ 1
2Tf.gradf∗g(‖ft‖2g) + 1

2‖ft‖2g Trf
∗g(Sf) = 0



We restrict to geodesics t 7→ f(t, ) in Imm(M, N)

which are horizontal: g(ft, T f) = 0. Then f⊤
t = 0

and ft = f⊥
t , so the equation splits into a verti-

cal (tangential) part which vanishes identically, and

a horizontal (normal) part which is the geodesic

equation in Bi for G0:

∇N(f)
∂t

ft − g(ft,Trf
∗g(Sf))ft+

+ 1
2‖ft‖2g Trf

∗g(Sf) = 0.

g(Tf, ft) = 0.



The sectional curvature for G0 in Bi(M, N)

kf(P (m, h)) = −
G0

f(R(m, h)m, h)

‖m‖2‖h‖2 − G0
a(m, h)2

.

We get then for x, y ∈ Γ(Nf):

Rf(x, y, x, y) = G0
f(Rf(x, y)x, y) =

=
∫

M
vol(f∗g)

(

− 1
2T̃r(Lf ◦ Lf)(x ∧ y) ≤ 0

− 1
4‖Tr(Lf

x)y − Tr(Lf
y)x‖2g ≤ 0

+ 1
4‖x ∧ y‖2‖Trg(Sf)‖2 ≥ 0

+ g(Rg(x, y)x, y)

+ ‖x ∧ y‖2 Ric(TM, span(x, y))

− 1
2‖(g(x,∇⊥y) − g(y,∇⊥x)‖2

Ω1
M

≤ 0



+ 1
2‖x ∧∇⊥y − y ∧∇⊥x‖2

Ω1
M⊗∧2N(f)

)
≥ 0.

Corollary. If M has codimension 1 in N then

all sectional curvatures are non-negative. For any

codimension, sectional curvature in the plane spanned

by x and y is non-negative if x and y are parallel,

i.e., x ∧ y = 0 in
∧2 T ∗N .



Vanishing geodesic distance on groups
of diffeomorphisms:
(N, g) a connected Riemannian manifold.

Diffc(N) the group of all diffeomorphisms with com-

pact support on N ,

Diff0(N) the subgroup of those which are diffeotopic

in Diffc(N) to the identity; this is the connected

component of the identity in Diffc(N), which a reg-

ular Lie group. The Lie algebra is Xc(N), the space

of all smooth vector fields with compact support

on N . Moreover, Diff0(N) is a simple group (has

no nontrivial normal subgroups).



The right invariant H0-metric on Diff0(N) is then

given as follows, where h, k : N → TN are vector

fields with compact support along ϕ and where X =

h ◦ ϕ−1, Y = k ◦ ϕ−1 ∈ Xc(N):

G0
ϕ(h, k) =

∫

N
g(h, k) vol(ϕ∗g)

=
∫

N
g(X ◦ ϕ, Y ◦ ϕ)ϕ∗ vol(g)

=
∫

N
g(X, Y ) vol(g)

Theorem. Geodesic distance on Diff0(N) with

respect to the H0-metric vanishes.



x

t

ph−

3

2retr etr

ph−(x)

ph+(x)
ph(x)

x

slopea

ph

slopela

ph+



−0.5 0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time t

S
pa

ce
 x

Particle trajectories under φ, λ = 0.6



Geodesics and sectional curvature on Diff(N):

For a right invariant weak Riemannian metric G

on an (possibly infinite dimensional) Lie group the

geodesic equation and the curvature are given in

terms of the dual operator (if it exists) ad(X)∗ of

the adjoint ad(X) : g → g on the Lie algebra by:

following formulas:

ut = − ad(u)∗u, u = ϕt ◦ ϕ−1

4G(R(X, Y )X, Y ) = 3G([X, Y ], [X, Y ])

− 2G(X, [Y, [X, Y ]]) − 2G(Y, [X, [Y, X]])

+ 4G(ad(X)∗X,ad(Y )∗Y )

− G(ad(X)∗Y + ad(Y )∗X, ad(X)∗Y + ad(Y )∗X)



In our case, for Diff0(N), we have

ad(X)Y = −[X, Y ]

G0(X, Y ) =
∫

N
g(X, Y ) vol(g)

G0(ad(Y )∗X, Z) = G0(X,−[Y, Z]) =

=
∫

N
g

(
LY X + (g−1LY g)X + divg(Y )X, Z

)
vol(g)

ad(Y )∗ = LY + g−1LY (g) + divg(Y ) = LY + β(Y ),

where the tensor field

β(Y ) = g−1LY (g) + divg(Y ) : TN → TN

is self adjoint with respect to g.



Thus the geodesic equation for G0 is

ut = −(g−1Lu(g))(u) − divg(u)u = −β(u)u,

u = ϕt ◦ ϕ−1.

The main part of the sectional curvature is given

by:

4G(R(X, Y )X, Y ) =

=
∫

N

(
−‖β(X)Y − β(Y )X + [X, Y ]‖2g

− 4g([β(X), β(Y )]X, Y )

)
vol(g)

So sectional curvature consists of a part which is

visibly non-negative, and another part which is dif-

ficult to decompose further.



Example. For (N, g) = (R, can) or (S1, can) the

geodesic equation is Burgers’ equation, a com-

pletely integrable infinite dimensional system,

ut = −3ux u, u = ϕt ◦ ϕ−1,

to which corresponds vanishing geodesic distance.

and we get G0(R(X, Y )X, Y ) = − ∫
[X, Y ]2 dx so

that all sectional curvatures are non-negative.



Example. For (N, g) = (Rn, can) or ((S1)n, can):

(ad(X)Y )k =
∑

i

((∂iX
k)Y i − Xi(∂iY

k))

G0(ad(X)Y, Z) =

∫

Rn

〈dX.Y − dY.X, Z〉dx

=

∫

Rn

∑

i,k

Y k
(
(∂kX

i)Zi + (∂iX
i)Zk + Xi(∂iZ

k)
)
dx

(ad(X)∗Z)k =

=
∑

i

(
(∂kX

i)Zi + (∂iX
i)Zk + Xi(∂iZ

k)
)
,

so that the geodesic equation is given by

∂tu
k = −(ad(u)⊤u)k =

= −
∑

i

(
(∂kui)ui + (∂iu

i)uk + ui(∂iu
k)

)
,

the n-dimensional analogon of Burgers’ equation,
called the basic Euler-Poincaré equation (EPDiff)



by Holm. Also here we have vanishing geodesic

distance.



Stronger metrics on Diff0(N).

A very small strengthening of the weak Riemannian

H0-metric on Diff0(N) makes it into a true met-

ric. We define the stronger right invariant weak

Riemannian metric by the formula:

GA
ϕ(h, k) =

∫

N
(g(X, Y ) + Adivg(X).divg(Y )) vol(g).

Theorem. For any distinct diffeomorphisms ϕ0, ϕ1,

the infimum of the lengths of all paths from ϕ0 to

ϕ1 with respect to GA is positive.



Example We consider the groups Diffc(R) or Diff(S1)

with Lie algebras Xc(R) or X(S1) with Lie bracket

ad(X)Y = −[X, Y ] = X ′Y − XY ′. The GA-metric

equals the H1-metric on Xc(R), and we have:

GA(X, Y ) =
∫

R
(XY + AX ′Y ′)dx

=
∫

R
X(1 − ∂2

x)Y dx,

ad(X)∗ = (1 − ∂2
x)−1(2X ′ + X∂x)(1 − A∂2

x)

so that the geodesic equation in Eulerian represen-

tation u = (∂tϕ) ◦ ϕ−1 ∈ Xc(R) or X(S1) is

∂tu = − ad(u)∗u
= −(1 − ∂2

x)−1(3uu′ − 2Au′′u′ − Au′′′u),

ut − utxx = Auxxx.u + 2Auxx.ux − 3ux.u,



which for A = 1 is the Camassa-Holm equation,

another completely integrable infinite dimensional

Hamiltonian system. Here geodesic distance is a

metric.



Virasoro-Bott group. Let Diff denote any of the

groups Diff(S1), Diffc(R) (diffeomorphisms with

compact support), or DiffS(R). Then

c : Diff × Diff → R

c(ϕ, ψ) : =
1

2

∫
log((ϕ ◦ ψ)′)d log(ψ′)

=
1

2

∫
log(ϕ′ ◦ ψ)d log(ψ′)

satisfies c(ϕ, ϕ−1) = 0, c(Id, ψ) = 0, c(ϕ, Id) = 0,

and is a smooth Hochschild group cocycle, i.e.,

c(ϕ2, ϕ3)−c(ϕ1◦ϕ2, ϕ3)+c(ϕ1, ϕ2◦ϕ3)−c(ϕ1, ϕ2) = 0,

called the Bott cocycle.



The corresponding central extension group R ×c

Diff, called the Virasoro-Bott group, is a regular

Lie group with operations

(ϕ

α

)(ψ

β

)
=

( ϕ ◦ ψ

α + β + c(ϕ, ψ)

)
,

(ϕ

α

)−1
=

(ϕ−1

α−1

)

for ϕ, ψ ∈ Diff and α, β ∈ R.



The Lie algebra of the Virasoro-Bott Lie group is

the central extension R ×ω X of X, called the Vira-

soro Lie algebra, with bracket:
[(X

a

)
,
(Y

b

)]
=

(−[X, Y ]

ω(X, Y )

)
=

(X ′Y − XY ′

ω(X, Y )

)

ω(X, Y ) = ω(X)Y =
∫

X ′dY ′ =
∫

X ′Y ′′dx =

= 1
2

∫
det

(
X ′ Y ′
X ′′ Y ′′

)
dx,

is the Gelfand-Fuchs Lie algebra cocycle

ω : X×X → R, which is a bounded skew-symmetric

bilinear mapping satisfying the cocycle condition

ω([X, Y ], Z) + ω([Y, Z], X) + ω([Z, X], Y ) = 0.

It is a generator of the 1-dimensional bounded Cheval-

ley cohomology H2(X, R) for any of the Lie algebras



X = X(S1), Xc(R), or S(R)∂x.



We shall use the L2-inner product on R×ωX, where

X = X(S1), Xc(R),S(R)∂x:〈(
X
a

)
,
(
Y
b

)〉
0

:=
∫

XY dx + ab.

Integrating by parts we get

〈
ad

(X

a

)(Y

b

)
,
(Z

c

)〉

0
=

〈(X ′Y − XY ′

ω(X, Y )

)
,
(Z

c

)〉

0

=
∫

(X ′Y Z − XY ′Z + cX ′Y ′′) dx

=
∫

(2X ′Z + XZ′ + cX ′′′)Y dx

=

〈(Y

b

)
, ad

(X

a

)⊤(Z

c

)〉

0

, where

ad
(X

a

)⊤(Z

c

)
=

(2X ′Z + XZ′ + cX ′′′

0

)
.



The H0 geodesic equation on the Virasoro-Bott

group (Ovsienko-Khesin):

(ut

at

)
= − ad

(u

a

)⊤(u

a

)
=

(−3uxu − auxxx

0

)
where

(u(t)

a(t)

)
= ∂s

(ϕ(s)

α(s)

)
.
(ϕ(t)−1

−α(t)

)∣∣∣∣
s=t

= ∂s

( ϕ(s) ◦ ϕ(t)−1

α(s) − α(t) + c(ϕ(s), ϕ(t)−1)

)∣∣∣∣
s=t

=
( ϕt ◦ ϕ−1

αt −
∫ ϕtxϕxx

2ϕ2
x

dx

)

Thus a is a constant in time and the geodesic equa-

tion is hence the Korteweg-de Vries equation

ut + 3uxu + auxxx = 0.



with its natural companions

ϕt = u ◦ ϕ, αt = a +
∫

ϕtxϕxx

2ϕ2
x

dx.



I do not know whether the right invariant L2-metric

on the Virasoro-Bott group has vanishing geodesic

distance?

On Mondays I think: YES

On Tuesdays I think: NO

. . .



At the end of last main lecture:

Many thanks to the organizers (except one of them)

for a great conference, and for the fine weather and

great snow.


	shape-spacesI-V.pdf
	introduction
	introduction.pdf
	introduction-02
	introduction-03
	introduction-04
	introduction-05
	introduction-06
	introduction-07
	introduction-08
	introduction-09
	introduction-10
	introduction-11
	introduction-12

	introduction-13
	introduction-14
	introduction-15
	introduction-16
	introduction-17
	introduction-18
	introduction-19
	introduction-20
	introduction-21
	introduction-22
	introduction-23
	introduction-24
	introduction-25
	introduction-26
	introduction-27
	introduction-28

	shape-spacesI-V

