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Introduction:
What are shapes, why are they interesting, and
how are they arranged in shape spaces.



Albrecht Durer was the first to look at the
effect of diffeomorphisms on shape

Fig. 139, (A%er Abrecht Darer.)

Treatise on Proportion, 1523




A modern view: geodesics between faces

Shortest paths in the space of diffeos carrying one face to the
other (Vaillant, Trouve, Younes)

dédées




D’Arcy Thompson: Growth and Form, 1917,
was the first to systematically study the
forms of homologous biological shapes

“The study of form may be descriptive merely or 1t may
become analytical. We begin by describing the shape of an
object 1n the simple words of common speech: we end by
defining 1t in the precise language of mathematics. ... The
mathematical description of a “form” has a quality of precision
that 1s quite lacking in our earlier stage of mere description ...
We are brought in touch with Galileo’s aphonism that ‘the

Book of Nature is written in the characters of Geometry™.”, p.
269.




“In a very large part of morphology. our essential task lies in the
comparison of related forms rather than in the precise definition
of each; and the deformation of a complicated figure may be a

phenomenon easy of comprehension, though the figure itself have
to be left unanalyzed and undefined. ... This method 1s the

Theory of Transformations.” p.271
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Primate skulls are of particular interest

To right: named ‘landmark points' on skulls &7~ ™ *f::
Below: D'Arcy Thompson's skulls g%ga ) p /?;‘r . /L
; i

Below right: Bookstein’s deformations "%f,/\w B
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Medical Scans require shape
analysis to detect defects — cortex
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Medical scans |l — heart defects
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« All vertebrates with their internal structures are
3D diffeomorphic (more or less); all healthy
male (e.g. without tumors) and all healthy
female humans are really clearly diffeomorphic
with only moderate distortion.

» Can you, then, form an ideal 3D computer
model of a male human and female human
including all organs/bones/vessels etc.?

» THEN: for each MRI or other scan of each
patient, find an optimal diffeomorphism of the
scanned region with the ideal model, revealing
individual differences.




A hippopotamus and a giraffe are indeed
diffeomorphicl (2D matching of outlines
with surface markings carried over)

A hippopotaffe and a girotamus

Matching by
landmark
points: J.
Glaunes




Fish — can we classify them by their shape
or by diffeomorphism to a prototype?
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Clustering of shapes (and a well-
know Boa Constrictor)
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What mathematics can we bring to this?

People find it natural to judge whether two shapes
are ‘similar’. We should seek a metric on the set of

shapes to describe this

It is natural to compare two shapes by warping one
to the other. We should look for geodesics, shortest
paths between shapes

People will cluster shapes into different categories.
We need to study datasets of shapes with various
statistical algorithms.

People will say that shape looked more like a dog
than a cat. We need to put probability measures on
shape space and take their ratios.




There are many possible metrics!

The central shape is
similar in various
respects to all 5 of the
shapes around it —
but in different
metrics!

We can adapt function theory ideas —
LP-norms on k derivatives

a) In L7, distances are:
A<BC<D,E
b) In L=, distances are:
B<CD=<AE
c) In L* with 1-jets:
D=<B,C<AE
d) In L with 2-jets:
D=<=AB<CE
e) To make E close, need
‘robust’ non-convex metrics
that discard outliers.
d) To make D far, qualitative
ideas of ‘paris’ are needed —
as it doesn't break into 2
parts.




Advantages of Riemannian metrics

Have gradients of functionals, gradient flow

Can expect, at least locally, to have unique
geodesics, hence optimal paths from one shape
to another

Can analyze departure from flatness via
Riemann curvature tensor

Can carry over classical statistical data analysis
via the exponential map

Can expect to have diffusion, Brownian motion,
hence base probability measures

Let me go into some detall here.




First we need to make the set of
‘shapes’ into a manifold so we can do
differential geometry on it

Riemann introduced the idea of manifolds in his

Habilitation Lecture in 1854. He also imagined
the infinite dimensional version:

“There are however manifolds in which the fixing of
position requires not a finite number but either
an infinite series or a continuous manifold of

determinations of quantity. Such manifolds are
constituted for example by ... the possible

shapes of a figure in space, etc.”




The idea of an “atlas” — some illustrations off
the webl

The abstract idea: many pieces,
on each have coordinates x,, ..., x, |

In dimension two, there are ton, HEF
pretzels, surfaces with handles.
Can (with some pain) make an
atlas for each.

¢ex




The set S of all smooth plane curves forms a manifold!

Start with a fixed curve C € &
parametrized by 5 — ¢(s)
Define a local chart near ¢ :
v (5)=ao(s)+a(s)n(s),
7(5) = unit normal to C,
C, = 1mage of v,
Uu,= {a|u‘»‘a smooth}

C (v.sp.of fens. a)
a + C, 1s the chart,
a(s) the local linear coord.
= U U,. gives the atlas




An abstract view of what we are doing

*This whole blob represents the space of all plane curves
*Each curve represents a single point in the space

*The dotted lines represents paris which can be represented as
deformations of the central shape — forming a coordinate chart

*The sequence of shapes A,B.C,D,E are points along a curve in the
space of shapes cogaectmg a cu“Te1oa banana to a new moon.
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SIX ingredients of differential geometry

1. Charts/local coordinates at every pomnt P M :
P55 (x@.x®).-xP)

2. A tangent space T, M to M. which in coordinates 1s the vector space
of infimtesimal changes (b, dx,.---,dx, ). We can associate to every
curve v :[0.1] — Mits tangents

YO =(--.d/dt D). ) ET M.

3. A way of measuning size i 7, M. a Riemanman metric"

|(.---.dx, \/Zg,,(P)drdx

tj—

4. Integrating this, we get the length of paths: £(+) = f"ﬁ.(r)" dt

All this will carry over to infinite dimensional manifolds




Ingredient 5.

Geodesics : . e
Navigating the earth, a " ‘
shortest path is seldom 3 :

a straight line: you -,

must weave to avoid
hills and valleys.

- : 1 V ) .
Sttvamihe , O| path length = I «@ di |=0
variational principle: = ) t
On a manifold with X'
coordinates x!, ....x® get: —= (D= Zrﬁr(") (’ ) ( ) |

This too will work in infinite dimensional manifolds




Exploratory data analysis can be done geodesics

Start with a dataset of points {R} mR"
)

2. Form their covariance matrx C=

1. Form their mean P =

Z(E—P)'@(P,—P)l/N
\ /
3. Take its eigenvectors with large eigenvalues:
principal components of the dataset

4. In other cases, seek first to break the dataset into clusters

a. k-means

b. nearest neighbor clustering

with distinct means and principal components

These are the standard work horses for data in linear
spaces. On a manifold, we use geodesics.




Data analysis via geodesics

» Given a dataset { P; } on a manifold M, its Karcher
mean is a point Q minimizing

> (length of geodesics P, to Q)
1

* Once you have the mean, take the shortest geodesics
from each P;to Q and let ¢, € T,M be the tangent vector
to this geodesic at Q.

» Then take the principal components via the linear theory
on{t}

* k-means can also be done via Karcher means.

This approach has been applied, e.g. to the shape of the
hippocampus and the diagnosis of schizophrenia and
Alzeimer’s; to the shape of the heart in various
conditions; to the shape of the prostate; efc.




Ingredient 6. Geodesics are not always act
like straight lines: curvature

The idea of curvature: [Negetive curviture ol sadde — |
QOoCesics Averge

Euclid: parallel lines stay the ) N N
same distance apart; ZERO

CURVATURE

Non-Euclidean geometry
(Bolyai, Gauss): geodesics
diverge exponentially, e.g. at
mountain passes;
NEGATIVE CURVATURE

Spherical geometry: great
circles come together at

antipodes; similar thing at :
mountain peaks or valleys. it o
POSITIVE CURVATURE e —— R




Gravitational lensing: positive curvature in our
space-time. What you see is not what is out
therel




Curvature also carries over to infinite

dimensional spaces

Geodesic triangles in the
space of plane curves
(Michor-M metric):

There is more than one
way to rotate an ellipse!

For small shapes,
curvature is negative and
the path nearly goes back
to the circle (= the
‘origin’). Angle sum = 102
degrees.

For large shapes,
curvature is positive, 2
protrusions grow while 2
shrink. Angle sum = 207
degrees.




Geometry behind curvature

« Get curvature at each point in each 2-
plane: Riemann’s sectional curvature and
curvature tensor R, Ricci and scalar
curvatures.

« When positive, beyond cut locus,
geodesics are not unique. Datasets may
not have means.

« When negative, easy to get lost, space is
big — but datasets do have means,
geodesics are unique.




What will we look at in this course?

There are three very different mathematical
approaches to putting Riemannian metrics on
the space of shapes

a. Metrics on the group of diffeomorphisms and its
quotients, e.g. N-tuples of pts.

b. Local metrics on the nonlinear Grassmannian of
submfds {N cM|M ﬁxed}

c. Conformal approaches for plane domains and
their boundaries QcCC. C=82 and, esp.:

Diff(S)/SL, = {a} [transl..scalings




Shape spaces of plane curves:

Some spaces:
Diff(S1) a regular Lie group, = Diff t(SHuDiff~(S1).

Emb = Emb(S1,R?), the manifold of all smooth
embeddings S1 — R2.
T Emb(S1,R2) = Emb(SL,R?) x C°(S1, R?).

Imm = Imm(S1, R?), the manifold of all smooth
immersions S1 — R2.
TImm(S1, R2) = Imm(S1,R2) x C>°(S1, R?).

IMM free = IMMeree (S, R?), the manifold of all free
smooth immersions S1 — R2 i.e., those with triv-
ial isotropy group for the right action of Diff(Sl)
on Imm(S1, R2).



Be = Be(S1,R?) = Emb(S1,R?)/ Diff(S1), the man-
ifold of 1-dimensional connected
submanifolds of R2,

B; = B;(S1,R?2) = Imm(S1,R2)/Diff(S1), an infi-
nite dimensional ‘orbifold’

B; free = IMMgee(S1,R?)/ Diff(S1), a manifold, the
base of a principal fiber bundle,



Notation. We work mostly with arclength ds, ar-
clength derivative Ds and the unit tangent vector
v to the curve:

ds = |cy|db
Ds = 9g/|cy
v = cp/|cy

Attention: Given a family of curves c(6,t), then
Op and 0y commute but Ds and 0; don't. Rota-
tion through 90 degrees (complex multiplication by
v/—1) will be denoted by:

0 —1
J= ( 0~ ) ]
The unit normal vector to the image curve is thus

n = Jo.



Curvature and length on Imm(S1, R?)

k:Imm(St, R?) — (St R),

3 < 7DSU>
[

(&) (h) = <Jh9,§99> n <J097299> B 3,€(C)<h97029>
[ [ [

— <D§(h)7n> o 2H<D3(h),’l)>

The length function
0 Imm(SLR?) SR,  £(c) = /Sl cg| dO
_ [ (hg,cq) .,
d0.(h) _/Sl - dH_/S (Ds(h), v)ds

:_/ (h, Ds(v))d —/ k(c)(h,n)ds



The degree of immersions. The degree or rota-
tion degree of an immersion ¢ : S — R2 is the wind-
ing number around 0 of the tangent ¢ : S1 — R2.
Imm(S!,R?) decomposes into the disjoint

union of the open submanifolds Imm¥*(S! R2) for
k € Z according to the degree k. These are con-
nected according to a theorem of Whitney and
Graustein (1931-32)



Theorem. The manifold Imm¥*(St,R?) of immersed

curves of degree k contains Sl as a strong smooth
deformation retract.

For k #= O the manifold

BF(SY,R?) := ImmF (S, R?)/ Diff T (S1)

is contractible.

For k = 0 we have (surprise, Kodama-M.)

m1(BY(S1,R?)) =7,
m2(BY(S1,R?)) = 7,
. (BY(SL,R%) =0 fork> 2.



The tangent bundle is

TImm(S1,R2) = Imm(S1,R?) x C>®°(S1,R?), the
cotangent bundle is

T*Imm(S1, R2) = Imm(SL, R?2) x D(S1)2

where the second factor consists of periodic distri-
butions.



We consider smooth Riemannian metrics
on Imm(S1,R?), i.e., smooth mappings

G Imm(St,R?) x C®(S1,R?) x C®(S1,R?) - R
(c,h,k) — Ge(h, k),  bilinear in h, k
Ge(h,h) >0  for h #= 0.

Each such metric is weak in the sense that G,
viewed as bounded linear mapping

Ge: T.Imm(S1, R?) = c=°(S1, R?) —
— TFImm(S, R?) = D(51)?

G : TImm(St,R?) — T*Imm(St, R?)

G(c,h) = (¢,Ge(h, )

IS injective, but can never be surjective.



In the sequel we shall further assume that that
the weak Riemannian metric G itself admits G-

gradients with respect to the variable ¢ in the fol-
lowing sense:

dGc(m)(h, k) = Ge(m, He(h, k)) = Ge(Ke(m, h), k)
H, K :ImmxC® x C*° — C™

(c,h,k) — He(h, k), Kc(h, k)

smooth and bilinear in h, k.

We will check and compute these gradients for sev-
eral concrete metrics below.



The fundamental symplectic form on
TImm(S1, R?) pulled back from the canonical sym-
plectic form on the contangent bundle via the map-
ping G : TImm(S1, R2) — T*Imm(SL,R?) is then:

w(e,h)((k1,01), (k2,£2)) =

= —dGe(k1)(h, ko) — Ge(41, ko)
+ dGc(k2)(h, k1) + Ge(€2, k1)

= Ge(ko, Ho(h, k1) — Ke(k1, h))
-+ GC(EQ, kl) — Gc(gla k2)



The geodesic equation. The Hamiltonian vector
field of the Riemann energy function

1
E(c,h) = 5Gc(h, h), E:TImm(S1,R?) - R
IS the geodesic vector field:

grady(E)(c,h) = h
grads(E)(c, h) = 5Hc(h,h) — Kc(h, h)

and the geodesic equation becomes:

ctc =h
he = 3He(h,h) — Kc(h, h)

ctt = 5He(er, er) — Ke(e, ct)




T he momentum mapping for a G-isometric group
action. Consider a (possibly infinite dimensional
regular) Lie group with Lie algebra g with a right
action g — r9 by isometries on Imm(S1,R2). Fun-
damental vector field mapping ¢ : g — X(Imm(S1, R?))
a bounded Lie algebra homomorphism, given by

Cx(€) = Bylor®PE ().

momentum map j : g — C(TImm(St,R?),R):

ix(c,h) = Ge(Cx(c), h).

J :TImm(S',R?) — g, (J(c,h),X) = jx(c,h).



It fits into the following commmutative diagram
and is a homomorphism of Lie algebras:

oo grad¥

0— HO-Cg Xo—H1—0

\ TCTImm

g
J is equivariant for the group action. Along any
geodesic t — c¢(t, ) this momentum mapping is
constant, thus for any X € g

(J(c,e), X) = jx(c,cr) = Ge(Cx(c), )

is constant in t.




We can apply this construction to the following
group actions on Imm(S1,R?).

e The smooth right action of the group Diff(S1) on
Imm(S1, R?), given by composition from the right:
c — cop for ¢ € Diff(S1). For X e X(S1) the
fundamental vector field is then given by

C)[glﬂ:(c> = CX(C) = at|o(CO Fl%X) e C@X
The reparametrization momentum, for any vector
field X on St is thus:
jX(C, h) — GC(CQ.X, h)

Assuming the metric is reparametrization invariant,
it follows that on any geodesic ¢(0,t), the expres-
sion Ge(cg.X, ct) is constant for all X.



e [ he left action of the Euclidean motion group
M(2) = R?2 x SO(2) on Imm(S1,R?) given by ¢
et e+ B for (B, e%) € R2xSO(2). The fundamental
vector field mapping is

C(B,a)(c) =aJc+ B

The linear momentum is thus G«(B,h), B € R? and
if the metric is translation invariant, G¢(B,ct) will
be constant along geodesics. The angular momen-
tum is similarly G¢(Je, h) and if the metric is rota-
tion invariant, then G.(Je¢, ¢;) will be constant along
geodesics.



e The action of the scaling group of R given by
c — e"c, with fundamental vector field {4(c) = a.c.
If the metric is scale invariant, then the scaling
momentum Ge(c,ct) will also be invariant along
geodesics.



If the Riemannian metric G on Imm is invariant
under the action of Diff(S1) it induces a metric on
the quotient B; as follows. For any Cp,(C1 € B;,
consider all liftings cg,c1 € Imm such that n(cg) =
Co,m(c1) = C71 and all smooth curves t — (0 —
c(t,0)) in Imm(S1, R2) with ¢(0,:) = ¢g and ¢(1,-) =
c1. Since the metric GG is invariant under the action
of Diff(S1) the arc-length of the curve t — w(c(t, -))
in B;(S1,R?) is given by

L (e) := La(n(e(t,-)))
:/ \/GW(C)(TCW.Ct,TCTF.Ct) dt

—/ \/Gc(ct , CF )dt

dist’ B;(S,R? )(Cl, Cr) = mf Lhor(c)




The simplest (L2-) metric.
CO(h k) = [ (hk)ds = [ (h,k)lcg|do
We compute the GP-gradients of ¢ — Gg(h, k):

dGO(c)(m)(h, k) = GA(KQ(m, h), k) = G2(m, HY (h, k),

s)

Kg(m, h) = (Ds(m),v)h, Ds= —9, v = C—e
|co |

HO(h, k) = —DS((h, k)v)

Geodesic equation

1 lct|? co 1
Ctt = — 89< ) — (ctg, co)ct.
2|cy | |c|?



Horizontal Geodesics for G°
(ct,cp) = 0 and ¢ = an = aJ% for a € C®(S1,R).
We use functions a, s = |cg|, and &, only holonomic

derivatives:

St = —aks, a = %K,CLQ,

1l /a a aps
KJtZCLKJQ—F—(—Q) = ar? + 0o _ 2070,
0

S S 82 83
We may assume s|;—g = 1. Let v(6) = a(0,0), the
initial value for a. Then
L= —axk = —27%, sO log(sa?); = 0, thus
s(t,0)a(t,0)? = s(0,0)a(0,0)2 = v(6)?,
a conserved quantity along the geodesic. We sub-
stitute s = 2—3 and k = 23—5 to get



CLt2 CL6CL9Q a6a9v9 CLSCLg

ag — 44— —
a 2v4 v v4

a(0,0) = v(0),

:O,

a nonlinear hyperbolic second order equation. Note
that wherever v = 0 then also a = 0 for all t. So
substitute a = vb. The outcome is

>
. (V)
(b3 = —5(53)99 — 20vg(b°) —

b(0,0) = 1.

3?)?)99

b3
2 Y

This is the codimension 1 version where
Burgers’ equation is the codimension O version.



Now the big surprise for the L2-metric:

Theorem. For cg,c1 € Imm(SL,R?) there exists
always a variation through immersions t — c(t,-)
with ¢(0,-) = cg and w(c(1,-)) = w(cq) for any given
immersions co and ¢1 such that Lhor(c) is arbitrarily
small.

Thus the distance dist> b On B; (51 R?) vanishes.
The simplest (L2-) metrlc GO is useless on shape
space.



The general almost local metric G?.
GE(h k) = [ | P(le, re(6))(h(0), k(0))ds.

The metric G® is invariant under the reparame-
tization group Diff(S1) and under the Euclidean
motion group.



We compute the G®-gradients of ¢ — GP(h, k):

dG®(c)(m)(h, k) = GP (KL (m, h), k)
= G¢ (m, HY (h, k),

1P, k)
b, k) &

(L, k) ([, o
+ 2 ((D2m).m) — 26(Dy(m) v)
+ (Ds(m),v)h
o 1
HE(hK) = 4o ( _ (mc /81<D(£, k) (h, k)ds)n

+ D? (azcb(e, k) (h, k)n) +

+ 2D (82<D(€, k)k{h, k)v) — Dy (CD(E, k)(h, k)v))



Conserved momenta for G? along any geodesic

t—c( ,t):
D (Le, ke) (v, c)|cg|® € X(SY)  reparam. mom.
/Sl D (le, ke)crds € R2 linear moment.
/Sl P (e, ke)(Jc,cp)ds € R angular moment.

Setting the reparametrization momentum to O and
doing symplectic reduction amounts exactly to in-
vestigating the quotient space

B;(S1,R?) = Imm(S1, R2)/ Diff(S1)

and using horizontal geodesics for doing so; a hori-
zontal geodesic is GP-normal to the Diff(S1)-orbits.
If it is normal at one time it is normal forever (since
the reparametrization momentum is conserved).



Horizontality for G?.
Te(c o DIff(S1)) = {X.¢cp : X € C*°(S1,R)}. Thus
the bundle of horizontal vectors is

Ne = {h € C®(S1,R?) : (h,v) = 0}
= {a.n € C®(S1,R?) : a € C®(S,R)}
A tangent vector h € T.Imm(S1, R?) = Cc°(S51 R?)
has an orthonormal decomposition
h="h'" 4+ ht € Te(co Diff T (SH)) & N,
hT = (h,v)v € Te(co DIff T (S1)),
h't = (h,n)n € NG,

into smooth tangential and normal components,
independent of the choice of ®(4, k).



Consider a path ¢t — ¢(+,t) in the manifold Imm(S1, R?)
It projects to a path woc in B;(S1,R?) whose energy
is called the horizontal energy of c:

BN () = L // P (Le, k) cr, n)2 dodt

5 et @) st
— 5 ¢, Ke HS
[a,b] xS1 \/1 _ |ng|2

Here the final expression is only in terms of the
surface S and its fibration over the time axis, and
is valid for any path ¢. This anisotropic area func-
tional has to be minimized in order to prove that
geodesics exists between arbitrary curves (of the
same degree) in B,;(S1,R?).




The horizontal geodesic equation.

Let ¢(0,t) be a horizontal geodesic for the metric
G®. Then ¢(0,t) = a(0,t).n(0,t). Denote the in-
tegral of a function over the curve with respect to
arclength by a bar. Then the geodesic equation for
horizontal geodesics is:

1

ay = ——
™ oo

< (—HLCD + /4:282CD> a?
— D? (82<b : a2) + 28, - aD2(a)

—281¢-@-a—|—(81¢-a2)-/{)




Curvature on B; for G?.

Let W (01,02) = h(01)m(62) — h(62)m(01)

sO that its second derivative

OoW (01,01) = Wo(01,01) = h(01)m'(61)—h'(61)m(671)
is the Wronskian of h and m.



RS (m, h,m,h) = GZ(Ro(m, h)m, h) =

D DD —2(DL)? — (Pak)?
:/ f<;CD2———I— 2 (2¢) (P2k)

) (01)Wa(61,601)2 doy

+/¢22(91)W22(91791)2 df1

+// cb/ Dy <b1<b2<b )(91)%(91,91)/W(gl,QQ)m(eg)degdel
+// CDEDCDQ B ¢12) (01)W22(91791)/W(91,02)l{,(92) db> do1

+ // Cblgel) (1 B ¢;'K(92)>W1(91,92)2 d92 d91

Do.k3 — Pk K2 PL.k\/ K2
+//( 4 _4+(2<D>+<8<D> )(91)
¢1(92)W(91 02)? df> db1

+ // Cbll (91) — ¢1(91)—(92)>
5(92)%(93)W(91, 62)W (01, 03) db> db dbs




Special case: the metric GA.
If we choose ® (4, ke) = 1 + Ax2 then we obtain
the metric we have investigated before:

Gl (h, k) = [ (1 + Awc(6)2)(h(6), k(8))ds

The horizontal geodesic equation for the GA-metric
reduces to

— jmca

_ 1 1. 2
T + Am%(
+ A(a®(—=DZ(re) + 5r2)
- 4D;(k)aDs(a) - 2reDs(a)?)



Along a geodesic t — c¢(t, ) we have the following
conserved quantities:

(14 Ar2) (v, ci)|egl? € X(SY)  reparam. mom.
/Sl(l + Amg)ctds € R? linear momentum

/51(1 + Ar2)(Jec, cp)ds € R angular momentum

Lipschitz continuity of v/¢: B; — Rxq.
For Co and Cy in B; = Imm /Diff(S1) we have for
A > O0:

Je(Cy) — e(Co) < —dlstB (STR2 (0. 0s).



Area swept out bound.
If c is any path from Cy to Cq, then

area of the region
swept out by the | < max Vee(t, ) - LI (o).
variation c

Maximum distance bound.

Consider ¢ < min{/A¢/4,¢3/%4/\/8} and let

n = 4(03/4A1/% 4 ¢1/%) Je. Then for any path c
starting at Cgy whose length Lhor is €, the final curve
lies in the tubular ne/ghborhood of Cy of width n.
More precisely, if we choose the path c(t,0) to be
horizontal, then

maxg |c(0,0) — c(1,0)]| < n.



Corollary.

For any A > 0, the map from B;(S1,R2?) in the GA
metric to the space Bfont(Sl,Rz) in the Frechet
metric is continuous, and, in fact, uniformly contin-
uous on every subset where the length ¢ is bounded.
In particular, GA is a separating metric on B;(S1,R?).
Moreover, the completion B;(S1,R?) of B;(S1,R?)
in this metric can be identified with a subset of
BI'P(51,R2).



Explicit equicontinuity bounds, under appropriate
parameterization.

Corollary.

If a path ¢(0,t),0 <t < 1 satisfies:

o |cp(0,t)| = £4(t)/2nm for all 0,t,

e (ct,¢cy)(0,t) =0 in a base point O for all t
o Jo,(1 4 Arg ) (et icg)|?d0/|cy| = L= for all t,
then

/
lc(01,t1) —c(02,t2)| < 2;X|91 — 02|+
3/4

T/ AV 4 g ALt — t2) (1)

whenever |[t1 — tp| < min(2\/A£mm,£3/2)/(8L).

min




A numerical simulation of the geodesic connect-
ing two circles. Minimize Eg‘{r(c) for variations ¢
with initial and end curves unit circles at distance
3 produced thg following image for the geodesic:

0.5

The geodesic joining 2 ‘random’ shapes of size
about 1 at distance 5 apart with A = .25 (using
20 time samples and a 48-gon approximation for
all curves).




The forward integration of the geodesic equation
when A = 0, starting from a straight line in the
direction given by a smooth bump-like vector field.
Note that two corner like singularities with curva-
ture going to oo are about to form.



Top Row: Geodesics in 3 metrics joining the same two ellipses. Ellipses
have eccentricity 3, same center and are rotated at 60° degree.

@, o o
3 OOOO = OOOO = 047470
O (@) =
0 0 0
S QQQ D QQQ N QQQ
N N §Q

Bottom Row: Geodesic triangles in B, formed by joining three ellipses at
angles 0, 60 and 120 degrees, for the same three values of A. Here the
intermediate shapes are just rotated versions of the geodesic in the top
row but are laid out on a plane triangle for visualization purposes.



The sectional curvature on B;

Ro(a, b, a,b) = G&(Rg(a,b)a,b) =

= /., (%(A# — 1) (ab — a'b)? + A(ab" — a”b)2) do

Ar2 — A2 4+ 2A2kK" — 4A2/<;’2

v — a'b)2de
+ Sl 1+ Ak? (a a’b)
_(Ax2 _ 1)2 AA2 k! 8A2 12
_ (Ar” — 1)° + 447k " W(a,b)2do
Sl 2(1 4+ Ar?)

—|—/51A W (a,b)' do

where W (a,b) = ab’ — a’b is the Wronskian of a and
b.



Special case: the conformal metrics
P (L(c),k(c)) = P(4(c)), metric proposed by Menucci
and Yezzi and, for & linear, independently by Shah:

GP(h, k) = D (L) /Sl<h, k)ds = D(£)GO(h, k).

All these metrics are conformally equivalent to the
basic L2-metric GO.

As they show, the infimum of path lengths in this
metric is positive so long as ¢ satifies an inequality
d(¢) > C.¢ for some C > 0.



More precisely (Shah), if Area(c) is area swept over
by the path c,
dist¢(Cop,C1) = irgf Area(c)
V Ae. inf Area(c) < distGeAg(Co, Cq1) <
< V/Ae.etmax inf Area(c)



The horizontal geodesic equation reduces to:

ap = —Ea + al—cb (% (/ a2.ds> K — (/ Iﬁ:.a.ds) a>

If we change variables and write
b(s,t) = P4(t)).a(s,t), then this equation simpli-
fies to:




Along a geodesic t — c¢(t, ) we have the following
conserved quantities:

¢(€C)<v,ct>|c’(9)\2 € X(S1)  reparam. moment.
D (L) /Sl cids € R? linear moment.

d(Le) /Sl(Jc, c)yds € R angular moment.



Curvature on B; for the conformal metrics.
Sectional curvature has been computed by J. Shah.
Let g,h be orthonomal, then

Curv. in plane (g.h)

— g - (g.Ds(h) — h.Ds(g))2 + ——

81¢ <gz./<:2 —+ h2./<,2)

30192 — 2.9 [ 2
R N (O} +(h.n>)
-2 (D@2 + D2+ J1 2

Note that the first two Ilnes are p05|tive while the
last line is negative. The first term is the curvature
term for the HO-metric. The key point about this
formula is how many positive terms it has.



Special case: the smooth scale invariant met-
ric GS51

2
P (L, k) = €73+ AZ- gives the metric:

e

1
G (h, k =/ (— A )h,kd.
The beauty of this metric is that (a) it is scale

invariant and (b) log(¥) is Lipschitz, hence the in-
fimum of path lengths is always positive.



Horizontal geodesics in this metric as special case
of the equation for G%:

. 1 > ka2
YT 14 Atr)2 ( (-1+A40R)?) =

— 2A0%kDs(a)? — 4A0?Ds(rk)aDs(a)

+ (34 AWR)?) (ar) -0~ >(2) -

A2
— T(ﬁ;a)Q : /4:)

where the “overline” stands now for the average of
a function over the curve, i.e. [---ds/¥.




Since this metric is scale invariant, there are now
four conserved quantities, instead of three:

DL, k) (v, e)|d(O)° € X(SY)  reparam. mom.
/Sl (4, Kk)cpds € R? linear moment.

/Sl P, k)(Jc,cr)ds € R angular moment.

/Sl b, k){c,ct)ds € R scaling moment.



The Wasserstein metric and a related G®-metric.
The Wasserstein metric (also known as the Monge-
Kantorovich metric) is a metric between probability
measures on a common metric space. Let u and v
be 2 probability measures on a metric space (X, d).
Consider all measures p on X x X whose marginals
under the 2 projections are u and v. Then:

dwass(u,v) = inf [[ d(@,p)dp(a,y).

where inf is over all p with pry .(p) = pand pro . (p) =
V.

The Wasserstein norm is sandwiched between GE_1
and G®W for &y, = 3 + 50k2.



Immersion-Sobolev metrics on Imm(S1, R?) and
on Bi
Note that Dgs = |8z| IS anti self-adjoint for the metric

GO, i.e., for all h,k € C°(S1.R?) we have
/Sl <D5(h),k>ds — /51 <h —Ds(k)>ds
The metric:
GiMMn(p k) = /51 ((h, k) + A.(D"h, D"k)) .ds
= /Sl(Ln(h),Mds where
Ln(h) of Lypc(h) =14 (=1)"A.D2"(h)



Geodesics in the H'MM"_metric

(Ln(ct))t = —(Ln(ct), Ds(ct))v

C 2/{/ C
— | t| ( )n — <DS(Ct)7U>LnCt

A 27’L—1

+5 2 (“D)"THDI e, Diery(e)n
j=1




Existence of geodesics. Theorem

Letn>1. For each kK > 2n+ 1 the geodesic equa-
tion has unique local solutions in the Sobolev space
of H*-immersions. The solutions depend C>® on t
and on the initial conditions ¢(0, . ) and c¢(0, . ).
The domain of existence (in t) is uniform in k and
thus this also holds in Imm(S1, R2).

Sketch of Proof Flow equation of a smooth (C°)
vector field on the H2-open set U* x H*(S1 R?) in
the Sobolev space H*(S1,R?) x H*(S1,R?) where
Uk = {ce H* : |cg| > 0} C H* is H?-open.



ct =u=: X1(c,u)
ur =L (= (Lne(w), Do) Ds(©)

B |ct|2/<v(6) JDs(c) — (Ds(u), Dsc)u

+5. 2 (DD Tu, Diur(c) Ds(c)
=1
! 2n—1 _ '
+(-1"A. 3 DI ((Ds(w), De() D (w) )
j=1
—. XQ(Ca ’U,)



The conserved momenta of G'MM~™ along any
geodesic t — c(t, ):

(cg, Ln.c(ct))|(0)| € X(SY)  repar. moment.
/Sl Ln.c(cy)ds € R2 linear moment.

/51<JC7 Ln,c(ct)) ds € R angular moment.




Horizontality for G'™™" p € T.Imm(S,R?) is
G orthogonal to the Diff(S1)-orbit through ¢
if and only if

0= GIM " (h,(x () = [ | X(Lne(h), cq) ds

for all X € X(S1). So the G'MM:"_normal bundle is
given by

NP = {h e C®(S,R?) : (Lpc(h),v) = 0}.

The G™-orthonormal projection TcImm — N, de-
noted by h — ht = ALG" and the complemen-
tary projection h — h' € T.(c o Diff(S1)) are 1-
dimensional pseudo-differential operators.



They are determined as follows:

h' = X (h).v where (Lp.c(h),v) = (Ln.o(X(h).v),v)

Thus we are led to consider the linear differential
operators associated to Ly.¢

L), Lt 0c®(St) — o= (sh,

LI (f) = (Ln.o(f0),v) = (Lno(f.0),n),

Le (f) = (Lne(f0),n) = —(Ln.c(fn),v).
T he operator LCT is of order 2n and also unbounded,
self-adjoint and positive on L2(St,|cy|df). In par-
ticular, L/ is injective. LZL, on the other hand is of

order 2n — 1 and is skew-adjoint. For example, if
n = 1, then one finds that:

L] = —-AD?4+ (1 + Ar?).I
L+ = —2A.k.Ds — A.Ds(r).1



The operator L) : C*(81) — Cc>(S1) is invertible.
This is by deformation invariance of the index.

We want to go back and forth between the ‘natural’
horizontal space of vector fields a.n and the GIMmM,n_
horizontal vector fields {h | (Lh,v) = 0}: We use
Cp: C°(S1 R2) — ¢o°(81) given by

Ce(h) == (L. ) o L7,
a pseudo-differential operator of order -1 so that

an—+ C(a)v is H™M" horizontal



The restriction of the metric G'M™M” to horizontal
vector fields h; = a;.n 4+ b;.v can be computed like
this:

GIM™ (k1 ho) = [ (Lhy,ha).ds
— @ (LT + Lto C) ai.an.ds.

Thus the metric restricted to horizontal vector fields
is given by the pseudo differential operator L' =
LT+ Lto(NH 1oLt



The metric on the cotangent space to B;, is simple.
On the smooth cotangent space

C>°(S1 R2) =2 GY(T.Imm(S1,R2)) c D(S1)2

the dual metric is given by convolution with the
elementary kernel K.

Gi(ar,az) = //Slxsl Kn(s1 — s2).

(nc(s1),nc(52)).a1(s1).a2(s2).ds1dso.



Horizontal geodesics

For any smooth path ¢ in Imm(S1,R?) there exists
a smooth path ¢ in Diff(S1) with ¢(t, ) = Idg
depending smoothly on ¢ such that the path e given
by e(t,0) = c(t,p(t,0)) is horizontal: (Ln.c(et),eq) =
0.

We may specialize the general geodesic equation to
horizontal paths and then take the v and n parts
of the geodesic equation. For a horizontal path we
may write Ly c(ct) = an for a(t,0) = (Lnc(ct),n).
The v part of the equation turns out to vanish



identically and then n part gives us

2
Gy = _led] 2“(6) — (Dget,v)a+
2n—1
k(c) . - .
+=5- 2 (C1)"THDE ey, Dier)
j=1

A Lipschitz bound for arclength in G'MM.n

Vion) — o)l <« A0 distlicn, o)




The scale invariant Sobolov Hl-metric and its
relation to the Grassmannian of 2-planes in an in-
finite dimensional space, and Neretin geodesics.

1 .
Ge(h, k) = Alinoo ZGICmm,Scal,l(h, k)

1
= g(c) o1 <D3h, Dsk> ds
_ 1 2
=75 /51<h,—D8 k) ds

on Imm /translations or {c € Imm : ¢(1) = O}.



Geodesics in this metric

T— —%D;2<mcnc> ||ct||%;c - %Ds_l <|Dsct|2vc>
1

— — / I{C<Ct, ’I’LC> ds - Ct — Ds_l (<D80t7 UC>DSCt>
Ce

The conserved momenta of G'MM~” glong any
geodesic t — c(t, ):

—1

T )<c@,D§(ct)>|c’(9)] e (s repar. moment.
C
—1 > > -
0o Jst Di(c)ds=0 €R linear moment.
—1

ic, D?(cy))ds € R angular moment.
£(c) /st 7
—1

¢(c) /st




Thm. For each k > 3/2 this geodesic equation
has unique local solutions in the Sobolev space of
H¥*-immersions. The solutions depend C'°° ont and
on the initial conditions ¢(0, .) and ¢(0, .). The
domain of existence (in t)

is uniform in k and thus this also holds in Immy =
{c e Imm(SL,R?) : ¢(1) = 0}.



Sphere, Stiefel, and Grassmannian
Vi={f € C®®RR): f(z+2r) = Ff(z)}
below only —: odd case. +: even case.
1£]12 = J&™ f2 dx weak inner product on V.

Gr(2,V) Grassmannian of oriented 2-planes.
Tw Gr = L(W, W) with metric

[v]|2 =tr(v' ov) = [lv(e)||? + [[v(H)]?,

e, f orthonormal basis of W.

For W € Gr(2,V) let

Z(V)=A{z: f(x) =0Vf € W}.

Grl(2,V) = {W € Gr(2,V) : Z(W) = 0} open in
Gr(2,V).



T he Stiefel manifold St(2, V) of orthonormal pairs
in V.

St9(2,V) = {(e, f) € St : Z(e, f) = 0} open in St.
Tie.p) St = {(de,0f) € V2.0 = (e,de) = (f,0f) =
(e,0f) + (f,de)}

Metric [|(de, 5f)[|* = [|e]|* + |6 £]>.

St(2,V) C S(Vghen) sphere of radius 2.
Vopen — COO([O,QT('],R).



T he basic bijection

0
e, ) =c(0) = [ (e +if)?ds

2—fold Imm
] 0 open
d:S transl. scalings
2—fold Imm
] 0 odd
P St transl.,scalings
_ ~ Imm
.0 & dd
P Gr fransl.rot..scalings

P G /U(V)

B odd

transl.,rot.,scalings



Thm. & js an isometry from the natural metric on
St9 to Imm,qq/translations with the metric G.

Proof. ¢y = %(e +if)?2, ds = %\e + i f|2d6.
Sc =T y®.(0e,6f) = [P(Se +i6f)(e+ if)dx

__ ~(betid f)(etif)
D3(5C) — 2 |€+’Lf|2
|Ds(6¢)|% ds = (|de| + |6£]%)d0.




The dictionary between pairs (e, f) and immersions
c connects many properties. Curvature k works out
especially nicely. We list here some of the connec-
tions:

d
5 = leol = 5 + 77
)2
v = Ds(c) = (§2++Z§)2

and if Wy(e, f) = efg — fep is the Wronskian, then:
_<@+UV>_QWMaﬂ.
vy =
0

hence

2412 )y @+

W,
ole, f) for the curvature of c.

= 2(62 T 12)2




Reparameterizations

Let U(V) be the group of all unitary operatorson V
of the form f — \/?(fogp) for all smooth ¢ : R — R
with ¢/(z) > 0 and ¢(z + 27) = ¢(z) + 27, i.e. lifts
of & € Diff T (S1).

The infinitesimal action on V of a periodic vector
field X on R is f — 3Xg.f + X.fp.

Prop. ®(c,f) o3 =P (\/¢/(cop),\/¢'(foy)).

A tangent vector (de,df) € T(, 5y St is
perpendicular to the rotation orbits iff

(e,df)y = (f,de)y = 0.

It is perpendicular to the reparameterization orbit
iff Wy(e,de) + Wy(f,6f) =0

where Wy(a,b) = a.by — ay.b is the Wronskian.



Neretin geodesics on Gr(2,V)
Y.A.Neretin: On Jordan angles and the triangle inequality in Grassmann
manifolds, Geom. Dedicata 86 (2001)

If Wo, W1 € Gr(2,V), use the singular value decom-
position of the orthonormal projection p : Wy —
W1. This gives ONB (€9, fO) of Wy and (el, f1) of
W1 such that p(e®) = cos(p)el, p(f9) = cos(vy) f1,
eO1 f1 and fOLel for

0 <y, <7w/2 — the Jordan angles.

The metric is then given by

dist (WO, W) = /2 4 42




and the geodesic by

W(t) = <

e(t) =

F&) =

sin((1 - )9) ¢

sin()

Sin((1 = )¥) 0

sin()

sin(ty) 1
(&

sin(yp)

sin(te) .1

sin(p)

f

\

/

~”




We apply this to compute the distance between
curves in Immgq /(sim) and B; oq/(sim). We write

Opcd = TO(Q)eiO‘O(Q) and 9ycl = r1(9)ei0‘1(9). We put

0 __ 0 0 __ : 0
e’ = ,/2rgCos % f~ =/2rosin 7,
_ 1 — ) 1
el = ,/2rq cos = L = \/2rq sin R

lifting the curves to 2-planes in the Grassmannian.
The 2 x 2 matrix M(c9,¢l) of the orthogonal pro-

jection from the space {e°, fO} to {&l, f1} in these
bases is:

0,1 @@ a 0,1 @ gin &
<f512 rOrl.cos%cosLdf [ 2 r.r.c0525|n2d0>

0 .1 gin&° al 0.1 gin 2 gin
Jo:2VrPurl singcosSdl [ 2vVro.rt.sin & sin & db



Notations:
Cyt = /Sl Vr9.r1 cos O‘O%al do
=5 (M (% e 11) F M(?, ct)a2)
S+ = /Sl \/ rO 1 sin O‘Ogo‘l do

=5 (M ()21 + M(P, cM12)

We have to diagonalize this matrix by rotating the
curve ® by a constant angle 89, i.e., the basis
{e0, fO) by the angle 39/2; and similarly ¢! by a
constant angle 31. So replace a® by a® — 89 and
al by al — 81 such that (for both signs)

0= /Sl V701 sin <(O‘O =) i (ol — 51)) 4o

= S4t. cos% — C'x.sin w




Thus
Bo £ 1 = 2arctan (S+/Cy) .

In the newly aligned bases, the diagonal elements of
the matrix will be the cosines of the Jordan angles.
T he following lemma gives you a formula for them:

__[(a b _ 1 _ 1
If M = (C d)’ Ct =5(aFd), St = 5(cxb), then

the singular values of M are:

JC2 452 +,/c3 4 53




T his gives the formula

Dod,rot(coacl)2 —
— arccos? (\/Sf_ + Cf_ —+ \/Sg —+ CE)
+ arccos? <\/SE + c? — \/Sf_ + Cﬁ_)

This is the distance in the space
Immgg(St,C)/(transl, rot., scalings).



Horizontal Neretin distances.

If we want the distance in the quotient space

B; od/(transl, rot., scalings) by the group

Diff(S1) we have to take the infimum of this dis-
tance over all reparametrizations.

To simplify, we assume that the initial curves cO
are parametrized by arc length so that 70 = 1 =

1/2m.

1



Then consider a reparametrization ¢ &€ Diﬂ’(Sl) of
one of the two curves, say 9 o ¢:

Dsim,aifr(c”, ¢')* = inf (arccos®(Ae(c? 0 ¢, ¢1))

+ arccos?(A (c” o ¢, cl)))

where now

(0 g, cl) =1/S2(¢) + C2(6) +1/S2(6) + C3(0)
M(P o0, ct) =1/S2(6) + C2 () — \/S3.(¢) + C2($)
St(9) = %/Sl \/ggsin (O‘Oog)io‘l do,
Ci(e) := %/Sl \/ggcos (O‘Oog)io‘l do.




To describe the inf, we can use that geodesics in
B; are horizontal geodesics in Imm.

Consider the Neretin geodesic t — {e(t), f(t)} in
Gr(2,V) described above

\

( _sin((L —=t)p) o, sin(ty) 3
W — e(t) = Sin(o) e” 4+ Sin() €
= (1) = SN =Dw) o sin(ie) >
TO="an T T T
fo

I
/ 0] _ n0 1 nl
80 —_ % COS (Oé Og) ﬁ 61 — L cOS o 2,8 7

 (0a)_ 30 1l
foz\/%SIn(a (g) g flzﬁsmo‘ 2[3,

where the rotations 8° and 8! must be computed
from @ o ¢ and ¢!




The geodesic is perpendicular to all Diff(S1)-orbits
if and only if the sum of Wronskians vanishes:

0 = Wy(e?, e:(0)) + Wy(f°, f:(0)) =
_ 1 Pe (a%0¢)—3° .\ al—pt
— \/@{gbee(sin ¢e COoSs 5 COS 5
—_wf sin (O‘Oog)_ﬁo sin #)
Siny
— </590z9 (Sll:p@b cos (2 °¢) B° gin @ _ﬁl
Sin g

€ Q-0 0 al—pl
+¢9(a90¢)(5|:f¢ sin (&7 ¢) 5~ cos 5

T P °¢) 0 gip o 51)}
Slﬂ’(bf




This is an ordinary differential equation for ¢ which
is coupled to the (integral) equations for calculat-
ing the @B's as functions of ¢. If it is non-singular
(i.e., the coefficient function of ¢yy does not van-
ish for any 0) then there is a solution ¢, at least
locally. But the non-existence of the inf described
for open curves above will also affect closed curves
and global solutions may actually not exist. How-
ever, for closed curves that do not double back on
themselves too much geodesics do seem to usually
exist.



A
v

The generic way in which a family of open immersions Crosses
the hypersurface where Z #= (). The parametrized straight line
in the middle of the family has velocity with a double zero at

the black dot, hence is not an immersion.



100-fold ﬁrﬁde

This is a geodesic of open curves running from the curve with the kink
at the top left to the straight line on the bottom right. A blow up of the
next to last curve is shown to reveal that the kink never goes away — it
merely shrinks. Thus this geodesic is not continuous in the Cl-topology
on Bopen. The straight line is parametrized so that it stops for a whole

interval of time when it hits the middle point and thus it is Cl-continuous
in ImMopen-

<




A great circle geodesic on Byy. The geodesic begins at the circle at the
top left, runs from left to right, then to the second row and finally the
third. It leaves Byg twice: at the top right and bottom left, in both of
which the singularity of the first figure occurs in 2 places. The index of
the curve changes from +1 to —3 in the middle row.



Curvature. Let W € Gr(2,V) be a fixed 2-plane.
Let n : V — V be the isomorphism which equals
—1 on W and 1 on W+ satisfying n = n~1. Then
Gr is the symmetric space O(V)/(O(W) x O(W))
with involutive automorphism o : O(V) — O(V)
given by o(U) = n.Un. For the Lie algebra in the
V = W @ W-L-decomposition we have

96 ) )=6)

Here z € L(W,W),y € L(W,W-L). The fixed point
group is O(V)? = O(W) x O(W).



The reductive decomposition g =¢ 4 p is given by

(G 7 ) ={6 0)mew]

n {(‘y) —gT) Ly € L(W, WH}

For the sectional curvature we have (where we as-
sume that Y7, Y5 is orthonormal):

kspan(Yl,YQ) = —B(Y>2, [[Y1,Y2], Y1])
= tryy (ya y2yi y1 + Y2 Y1Y1 Y2 — 2Y3 Y1y5 Y1)
= 3llvav1 — viv2llf20wwy

+ Slly2yi — ylyg||%2(WL7WL) > 0.

where L2 stands for the space of Hilbert-Schmidt
operators. Note that there are many orthonormal



pairs Y71,Y> on which sectional curvature vanishes
and that its maximum value 2 is attained when y;
are isometries and yo> = Jy; where J is rotation
through angle /2 in the image plane of y;.



We obtain the expression of the curvature in Imm/(sinr
. 2
Imm,sim _
Ty = (/Cdet(Dshl,Dshg)ds)

n // 14 COS(a;w) —a(y))

CxC

—(Dsho(x), Dsh1(y)

n // 1 — COS(a(Qa:) — oz(y)).

2
: ( (Dsh1(x), Dsha(y)) > ) ds(x)ds(y)

CxC

det(Dshi(x), Dsho(y)) ’
(oD By ) de@is



A major consequence of the calculation for the cur-
vature on the Grassmannian is:

Thm. The sectional curvature
on B;/(sim) is > 0.

Proof. We apply O’'Neill’'s formula to the Rieman-
nian submersion

r:Grl — G0 /U(V) £ B;/ Difft(s1)
Grl /U (V) _ .Gr%, +h h
b (X Y) = K (xxher, yher)
+ %”[Xhor,Xhor]vqu”Q >0
where XN°" is a horizontal vector field projecting to

X at #(W). The horizontal and vertical projections
exist and are pseudo differential operators.



We have explicit formulas for the O'Neill term and
thus for the sectional curvature lc's?’p‘égs('}?l)@) at a
curve C € B;/(sim) and tangent vector h;. We also
have an explicit upper bound for this as a function
of h1. This shows that geodesics have at least a
small interval before they meet another geodesic.
The size of this interval can be controlled by an
upper bound that involves the supremum norm of

the first two derivatives of hj.

See the paper for this.



Some numerical experiments:

Curve evolution with and without the closedness

constraint. Lower and upper bounds for the geodesic
distance: 0.443 and 0.444



ed WG Nl
ed WG G

Curve evolution with and without the closedness
constraint. Lower and upper bounds for the geodesic
distance: 0.462 and 0.464
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Curve evolution with and without the closedness
constraint. Lower and upper bounds for the geodesic
distance: 0.433 and 0.439
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Curve evolution with and without the closedness

constraint. Lower and upper bounds for the geodesic
distance: 0.498 and 0.532
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Curve evolution with and without the closedness
constraint. Lower and upper bounds for the geodesic
distance: 0.513 and 0.528



Shape spaces as quotients of diffeo-
morphism groups.

Sobolev metrics on Diff(R?) and its quotients
Emb(S1,R?) and B.(S1,R?)
Right invariant metric on the Lie group Diff(R?)
induced by the inner product

HY(X,Y) = /R (LX,Y)da where
L=Lp,=(1-AA)", A = 9% + 0%.

with fundamental solution Lg,(F4,) = do given
by

1 - 1
e — Z<.’,C,€>
Fan(@) === [ ,e e X
_ C n—1 |33|
—A(n—l)/2|x| K —1(\/2)7



for the classical modified Bessel functions K.



The geodesic equation on Diff(R?) is V.Arno'ld’s
equation EPDIfF:

t— o(t, ) e Diff(R?)
v(t) = (Bpp) o™t € X(R?), w(t) = L(v(t)),

ou ou; Ov
Z—|—Z:< ﬁx;_l_uj agg)—l—le’Uuz—O




The quotient Emb(S1, R?).

Diff (R2) — Emb(S1, R?)

p +— o1, Where 7 : Sl c R2,

If c= o1, the fiber through ¢ is

pAY i Ypoi=1i} = {1y Yoc=c}.p.

The tangent space to the fiber is (right translated
by ¢)

{X € X(R?) : X oc=0]}.

The horizontal subspace is the translate by ¢ of
1Y @ Jp2(LY,X)dxr =0, if Xoc=0}.

If Y is C°° then Y = 0. S0 we need

LY = c«(p(0).ds) for p € C*(S1 R?), a distribution
carried by c¢. Thus

Y(z) = [s1 F(z —c(0))p(0) ds



Y(z) = [q1 F(z —c(0))p(0)ds
Mapped to T. Emb we get

(Y 00)(60) = [ | F(e(8) = e(61))-p(81).1¢/(61)|d6y
=: (Fe*p)(0) where
Fo(01,62) := F(e(81) - e(62))

is an elliptic pseudo differential operator kernel of
order —2n + 1 which is real and positive, so the
operator p — F¢ *x p is self-adjoint and positive, so
injective, and by index deformation it is bijective
between the Sobolev spaces on Sl The inverse
operator (F.x+ )~1 has kernel L.(6,601) which is a
pseudo differential operator kernel of order 2n — 1.



Write h = Y oc € T Emb and express the horizontal
lift Y =Y, in terms of h:

h=Y,oc=F x* (cx(p.ds)) = Fexp SO p= Lcxh

Y =Y, = F % (cx((Lc* h).ds))
Y, () = /S1 F(z — c(6)).
[ Le(8.61)R(61)1¢/(01)|d6s |¢'(9) 6

Finally the metric:

e (k) = [

_ //Slxsl Le(0,01)(h(071), k(0))dsq ds.

5 <LYh, Yk>d£U



We can now compute K and H and the geodesic
equation. It becomes simpler if written for the 1-
current L¢ x ¢ = p.|cg| =: ¢:

ai(60) = — | | F(60,61)(a(00), a(01)) by

where Fé(@l, 92) = grad F(C(@l) — 6(92)).

EXxistence of geodesics. Theorem.

Let n > 1. For each k > 2n — & the geodesic equa-
tion has unique local solutions in the Sobolev space
of H’“—embeddings. The solutions are C°° int and
in the initial conditions ¢(0, . ) and ¢(0, .). The
domain of existence (in t) is uniform in k and thus
this also holds in Emb(S1, R?).



Conserved momenta: Along a geodesic c,
G(CjifF’n(CQ.X, Ct) _
://1 Le(0,01){cg(01) X (01),ct(0))ds1 ds
Slxsi

IS conserved for every vector field X on Sl the
conserved reparametrization momentum is

<697 LC * Ct> — <697 Q>
Also ff(Sl)Q LC(Q,Ql)Ct(9)>d81 ds = fsl q(@) ds is the
conserved linear momentum.

//51><51 Lc(0,01)(Jc(01),ct(0))ds1ds =

= [, (Je(0),q(0))ds

IS the conserved angular momentum.



Horizontal geodesics.

A field h along c is horizontal if (L¢*h,cg) = 0. For
a horizontal path we have (q,cy) = 0, so let ¢ = a.n.
Then the horizontal geodesic equation is

a't(e) — <Qt7n><9) —
— —/51<FC’(9,91),n(9)>5(9)5(91)<n(9)»”(91>>d91

Note that also n = Jcy/|cy| appears. It is a strange
equation, but it is well-posed byt the theorem above.



Geometry of landmark space
and of spaces of currents



The diffeomorphism group

Diff = Diffg(R™): the regular Lie group of all dif-
feomorphisms which are rapidly falling towards the
identity.

Its Lie algebra is the space Xg(R"™) of all smooth
vector fields which decrease rapidly, with the neg-
ative of the usual bracket as Lie bracket.

We consider Xg(R") as pre Hilbert space HY with
inner product

(X,Y) 1 = /R (LX,Y)dz

where L : Xg(R™) — Xg(R™) is an invertible lin-
ear (elliptic) scalar differential operator or pseudo-
differential operator which is self-adjoint with re-
spect to the weak inner product

0] _
GO(X,Y) _/Rn<X,Y> da



on Xg(R™) and which is applied to each component
of a vector field separately.



For example:
For the Laplacian A = 2822 and constant A, let

(_A)‘a‘“ e
L=@-any= |o%loz! (1 — oz)!a2

(—A)artTTan]

= 3 o701 .. p2on
a1_|_m_|_an§loz1!...ozn!(l—al)!...(l—an)! "
The Fourier transform is Lu = (1 + AlEID)a(e).
Thus the fundamental solution K of LK = ¢ in the

space S'(R™) of tempered distributions is
1 - 1
K(z) = / RICRS; d"e
(2m)" JRn (14 €12)!
which can be expressed in terms of the classical
modified Bessel functions K;_1(|z|/v/A). It satisfies




(L= u)(z) = fpn K(z—y)u(y)d™y for each tempered
distribution wu.



Or:

We consider a kernel function K : R" xR™ — R with
good properties (for example smooth and rapidly
decreasing off the diagonal) and its associated op-
erator K(f)(z) = Jpn K(z,y)f(y)dy which we as-
sume to be invertible on C(R") on the space of
of smooth functions with compact support, and
then we put L = K1,



Landmark space as homogeneus space

A landmark q = (q1,...,qy): N-tuple of distinct
points in R™.

Land® (R”)N: the open subset of all landmarks.
¢® = (¢9,...,4%) a fixed standard template land-
mark.

Then we have the the surjective mapping

ev o : Diff(R") — Land",
o evo(p) = 0(g°) = (paD), .-, p(a)).
The fiber of ev o over a landmark ¢ = ©0o(q®) is
{¢ €DIfF(R™) : p(¢°) = q} =
= g 0 {p € DIfF(R™) : v(¢°) = ¢°}
= {p € DIff(R") : ¢(q) = q} o po;
We shall use the latter representation.



The tangent space to the fiber is
{X owp: X € %S(Rn),X(qz) = 0 for all ’L}

A tangent vector Y o pg € Ty, Diff g(R™) is Géo_
perpendicular to the fiber over q if

/n(LY,X> dzr =0 VX with X(q) = 0.

If we require Y to be smooth then ¥ = 0. So we
assume that LY =}, P;.04,, a distributional vector
field (current) with support in gq. Here P; € T, R".
But then

Y(z) = L_l(ZPZ-.cSqZ.) = /Rn K(z —vy) ZPi.cSqZ.(y) dy

= ZK(CE —q;).P;



Tpo eV (Y 0 0) =Y (ai)i = >_(K(a — a:)-P)



Consider a tangent vector P = (P,) € TyLand".
Its horizontal lift with footpoint ¢g is P"°" o ¢q
where the vector field Ph°" on R” is given as follows:
Let K—1(¢):; be the inverse of the (N x N)-matrix

K(q)ij = K(g; — gj). Then
PY"(2) =Y K(z — ¢;) K ()i P
(%
L(P""(2)) =Y 6(z — ¢;)) K (q) P
1,]
Note that P"°" is a vector field of class H2!—1



The Riemannian metric on Land? induced by the
gl-metric on Diffg(R™) is

(P Q) GL (Phor Qhor) — / <L(Phor> Qhor>

Rn

=/ ( > e = 0K 0P X2 K = ) K )
= Z K™ (@)ijK (g — ar) K~ (Q)kl<Pjan>
1,7,k,l
So the metric is given by:

g (P,Q) =Y. K@) (P, Q)

k.l

Recall: K~ 1(q);, is the inverse of the (N x N)-
matrix K(q)i; = K(g; — q5)-



Lemma Let X,Y € Xg(R™) be a vector fields with
support in a compact box B C R"™. Let q1,92,q3, ...
be an equidistributed sequence in B: For each
Borel subset U C B we require

i #{I SN g €Uy _ Vol(U)
N—o00 N o VO'(B).
For each N consider the initial part ¢ = (q1,...,qn)

as a point in the landmark space La nd® of N points
in R™. Then we have

2 N
vo]'é? K™ H(a)i,$X (0:), Y (g)) =

i,j=1

lim
N —o0

= [ (LX,Y)dx.
RTL



The geodesic equation on T*Land® (R").
Elements of the cotangent bundle
T*LandV (R™) = Land® (R") x ((R™)V)*
are denoted by

1

Q
(¢,a) = [ (q1,---,an), | :
aN

q% qjlv oz% a}L

q? q}{, ozjlv a%\f

and we shall use this as global coordinates.
The metric looks like

(") e, B) = Z K(q)ij{ai, Bj),
0]
K(q)ij = K(q; — q;).



We consider the the energy function

E(Qa Oé) — %(QL)cj_l(aaa) — %ZK(Q)Z]<O‘Z7ﬁj>
¥,J
= 13" K(9)ij{ay, B))
]
and its Hamiltonian vector field (using R"-valued
derivatives to save notation)

N
1 0K (q)ij{cu,a5) 0 OK(q)ij{c,a;) O
Hp(q,a) = szk;l ( ok Dar — 94 8ozk)'
al 9
=) (K(Qk:_%)aza + grad K (g — qx) (o, ag) k)
ik=1 Oa

So the geodesic equation is the flow of this vector



field:

g = > K(g —qr)’
i

& =3 (aF, ') grad K (g¢; — q1,)

7

A covariant formula for curvature and its rela-
tions to O'Neill's curvature formulas.

Mario Micheli in his 2008 thesis derived the the
coordinate version of the following formula for the
sectional curvature expression, which is valid for
closed 1-forms «, 3 on a Riemannian manifold (M, g),
where we view g : TM — T*M and so g~ ! is the



dual inner product on T*M. Here of = g 1(a).

g"(R(of, o, 8°) = —1lld(g™ (o, B))]2
+ 291 (d(lel®), d118112))
+ Zg([a B, [of, 51)
— Safa®(|18)1%) — 26684 (J|ell®)
+ L(atst + Blat)g (o, B)




Mario’s formula in coordinates.

Assume that a = aydzt, B8 = B;dx* where the coeffi-
cients «;, 8; are constants, hence «, (3 are closed.
Then of = g¥q;0;, 8% = ¢¥/3;0; and we have:

4g(R(a*, 1B, of)
= (B — aB;) - (B — oy B;)-

. . 1 P t kl . k .t l
- (29”(9”9,’%[ s —2939% 9% — 399" Papeg” g )




Covariant curvature and O’Neill’s formula,
finite dimensional.

Let p: (E,grp) — (B,gp) be a Riemannian submer-
sion between finite dimensional manifolds, i.e., for
each b€ B and = € Ep := p—1(b) the gg-orthogonal
splitting

Tz B = T:I;(Ep(a;.))EBTx(Ep(x))L =. T:B(Ep(x))@HO":c(P)

has the property that Tp : (Horz(p),9r) — (1},B, gB)
is an isometry. Each vector field X € X(F) is
decomposed as X = XNOr 4+ XVer into horizontal
and vertical parts. Each vector field £ € X(B)
can be uniquely lifted to a smooth horizontal field

¢hor e F(Hor(p)) C X(E).



O’Neill’s formula says that for any two horizontal
vector fields X, Y on M and any x € E, the sectional
curvatures of £ and B are related by:

Ip(z) (R (0 (X), px (V) ) (Y ), s (X))
= go(RY (Xz, Ya)Ya, Xo) + 3| [X, Y]77||2.

Comparing Mario's formula on E and B gives an
immediate proof of this fact. Namely: If a €
Ql(B), then the vector field (p*a)f is horizontal
and we have Tpo (p*a)? = af o p. Therefore (p*a)?
equals the horizontal lift (a!)"°". For each z € E
the mapping (Txp)* : (T;(x)B,ggl) — (T;E,gél) is
an isometry. We also use:

()t (*3)1MN2 = p*|l[af, 8112,



Curvature via the cotangent bundle Mario's for-
mula for closed 1-forms «,3 on landmark space,

where oz,ti = 3, K(qr — ¢;)a'. We shall use constant
1-forms below.

4gL <R(Ozﬁ, ﬁﬂ)aﬁ, Bﬁ) —
= —2a5a*(||B|1?) = 26°6* (|| a?) + 2(a*BF + BFaf)g~ (o, B)
— [ld(g~ (e, D7 + g7 (d(||04\|2), d(HﬁHQ)) + 39([04ﬂ, B3, [Oéﬁ,ﬂﬁ])
= < —2 Z <de : (de(CIi — q;)(dai, dar) (K (@)u — K (@) 1) (K(q@)ix — K () jx)

,7,k,l
+ dK (g — ;) (dax) (dm% ) (da) (K (@i — K (@)

— dK (g — qx)(dg) (K(q) ;1 — K(q)kl)) ’ dqj>

+ Z K(q)(dK (g — q;), dK (qr — @1)){daq;, dq;) {dqy, dq;) (R3124 + R1324)
ikl

+ 3 Z K qQ)u (K(Q)kj - K(Q)m’) dK (qr — ¢i)(dg;)

k’l?ihj’m?n



(K(@)kn — K(q)mn) <dqi, dK (g — qm) (dgn) dqm>) ((enB)y®(anp))



Notation for the coordinate formula:

A indices of landmark points in R"
a,b,c,--- elements of A
a, B =A{ada € A}, {B.la € A}, cotangent vectors to L
of, B = the dual tangent vectors, e.g.

of, =Y K(P,— P)oy
b

K (%) = k(||Z]|), the kernel defining the metric
T
E

dop = || Pa — Byl|, Uap = (P — By)/dap,

the unit vector between landmarks

Kab — k(dab)a v[<ab — DK(PCL - Pb) — k,(dab)ﬁab
I’Ev// — k”(dab> . 1

ab k/2(dab) dabk/(dab)

note: VK (Z) = k'(||Z|)




Four expressions in the skew form a A G:

Tab,cd(, B) = (o, VKq) By — (Ba, VEca)
O'ch(Oé, B) — Z(Kac — Kad)aab,cd(aa 6)

= (a} — o, VE.3) By — (67 — 8% VEua)
(Note that the terms in angle brackets are discrete strains)

Tab,cd(aa B) = <(Oéa ® Be) — (Ba ® o), (o ® Ba) — (B ® ad)>>
(Bracket in R" ® R", points a,b on left, ¢,d on right)

mia(e 8) = ((af — o)) @ (8] — 8D — (8] — B) ® (o — ad),
Oéb®5d—5b®04d>



With these notations, we get the following formula:

R(a, B,0,8) =3 Kpyloia(a, B), oipala, 8))
bd

_|_ %Z((O—zcb(a’ 6) — O';Cd(aa /8)) 7O-Cd,bd(a7 /6)>

bed
/
kbd

=312 ol BlF+3)_~ - il B)
b cd ¢

B %Z(Kab — Kog — Koy + ch) <VKCLC7 VKbd> ) TabaCd(a’ 6)
abed




Sobolev metrics on Diff(R?) and its quotients
Emb(S1,R?) and B.(S1,R?)
Right invariant metric on the Lie group Diff(R?)
induced by the inner product

H'(X,Y) = /R2<LX, Y) da where
L=La,=(1-AA)", A =07+ 9%.

with fundamental solution Ly (K4 ,) = do given
by

1 : 1
— i(x,&)
_ C n—1 |CE|
- A(n—l)/Q"x| -Kn—l(ﬁ)a

for the classical modified Bessel functions K.



The geodesic equation on Diff(R?) is V.Arno'ld’s
equation EPDIfF:

t— o(t, ) e Diff(R?)
v(t) = (Bpp) o™t € X(R?), w(t) = L(v(t)),

ou ou; Ov
Z—|—Z:< ﬁx;_l_uj agg)—l—le’Uuz—O




The quotient Emb(S1, R?).

Diff (R2) — Emb(S1, R?)

p +— o1, Where 7 : Sl c R2,

If c= o1, the fiber through ¢ is

pAY i Ypoi=1i} = {1y Yoc=c}.p.

The tangent space to the fiber is (right translated
by ¢)

{X € X(R?) : X oc=0]}.

The horizontal subspace is the translate by ¢ of
1Y @ Jp2(LY,X)dxr =0, if Xoc=0}.

If Y is C°° then Y = 0. S0 we need

LY = c«(p(0).ds) for p € C*(S1 R?), a distribution
carried by c¢. Thus

Y(z) = [g1 K(z —c(0))p(0) ds



Y(z) = [q1 K(xz —c(0))p(0) ds
Mapped to T. Emb we get

(Y 0)(0) = [ | K(e(8) = e(62)).p(61).I¢ (61)] a1
=: (K¢*xp)(0@) where
Ke(01,02) 1= K (c(01) — c(62))

is an elliptic pseudo differential operator kernel of
order —2n + 1 which is real and positive, so the
operator p — K. xp is self-adjoint and positive, so
injective, and by index deformation it is bijective
between the Sobolev spaces on Sl The inverse
operator (Kex )1 has kernel L¢(6,61) which is a
pseudo differential operator kernel of order 2n — 1.



Write h = Y oc € T.Emb(SL1,R?) and express the
horizontal lift Y = Y} in terms of h:
h=Y,0oc= K x(cs(p.ds)) = Kexp SO p= Lexh

Y =Y, = K * (c«((L¢ * h).ds))
Yy (z) =
= [ K@= c®). [ | Le(6,01)h(81)[c(61)]d01]c/(8)]do

Finally the metric:

G (k) = |

_ //Slxsl Le(0,01)(h(071), k(0))dsq ds.

This formula looks innocent, but there is an in-
version of the (nice) operator K.+ in it to get
LC* — (Kc* )_1

2<LYh7 Yk>dx



We can now compute K and H and the geodesic
equation. It becomes simpler if written for the 1-
current L¢ x ¢ = p.|cg| =: a

ai(fp) = — /Sl K (00, 01){a(00), a(61)) db1

where Ké(@l, 92) = grad K(C(@l) — 0(92)).

EXxistence of geodesics. Theorem.

Let n > 1. For each k > 2n — & the geodesic equa-
tion has unique local solutions in the Sobolev space
of H’“—embeddings. The solutions are C°° int and
in the initial conditions ¢(0, . ) and ¢(0, .). The
domain of existence (in t) is uniform in k and thus
this also holds in Emb(S1, R?).



Conserved momenta: Along a geodesic c,
G(CjifF’n(CQ.X, Ct) _
://1 Le(0,01){cg(01) X (01),ct(0))ds1 ds
Slxsi

IS conserved for every vector field X on Sl the
conserved reparametrization momentum is
(cg, L¢ * ct) = (cg, ).

Also ff(Sl)Q LC(Q,Ql)Ct(Q»dSl ds = fS1 04(9) ds is the
conserved linear momentum.

//51><51 Lc(0,01)(Jc(01),ct(0))ds1 ds =

= [, (7e(0), a(8))ds

IS the conserved angular momentum.



Horizontal geodesics.

A field h along c is horizontal if (L¢ * h,cy) = O.
For a horizontal path we have (a,cy) = 0O, so let
a = a.n. [ hen the horizontal geodesic equation is

at(e) — <C¥t,n>(9) —
= — [, (0(6,01), n(8))a(0)a(61) (n(6), m(61)) ¥y

Note that also n = Jcy/|cy| appears. It is a strange
equation, but it is well-posed by the theorem above.



Requirements for infinite dimensional manifolds
Let (M,qg) be a weak Riemannian manifold mod-
elled on convenient locally convex vector spaces.
For x € M the metric g, : TxyM — T;M is usually
only injective (weak metric). The image g(T' M) C
T*M is called the smooth cotangent bundle asso-
ciated to g. Now Ql(M) := I'(g(TM)) and of =
g la e X(M), X" = gX are as above. The exterior
derivative restricts to

d: Qi (M) — Q2(M) =T (L2, (TM;R))

since the embedding g(TM) C T*M is a smooth

fiber linear mapping.



Further requirements need to be imposed on (M, g).
g . TM — T*M is only injective in general, so the
Levi-Civita covariant derivative might not exist in
TM. Existence of V9 is equivalent to: The metric
itself admits gradients with respect to itself: We
express this is locally. So let for the moment M
be a ¢*°-open subset of a convenient vector space
Vis- Then we assume that we can write

Dy, 792(X,Y) = g2(Z,9rady g(z)(X,Y))
— gx(gradgg(a:)(Z,X),Y)

where gradj g,gradog: M X Vs X Viyr — Vi,
(z,X,Y) — gradi o g(z) (X, Y),

are smooth and bilinear in X, Y € V).

T hen the derivation of Mario’s formula goes through
and the final formula for curvature holds in both the
finite and infinite dimensional cases.




Some constructions above encountered a second
problem: they lead to vector fields whose values do
not lie in T, M, but in the Hilbert space completion
Ty M with respect to || |lg,- To manipulate these
as in the finite dimensional case, we need to know
that Ugzeps T M forms a smooth vector bundle over
M. In other words, in each coordinate chart on an
open subset U C M, TM| is a trivial bundle U x V
and all the inner products g;,x € U define inner
products on one and the same topological vector
space V. We assume that they are all bounded
with respect to each other, so that the completion
V of V with respect to g, does not depend on z
and Upep ToM 2 U x V.



This means that Ugeps T M forms a smooth vector
bundle over M with trivialisations the linear exten-
sions of the trivialisations of the bundle T'TM — M.
These two properties will be sufficient for all the
constructions we need so we make them into a def-
inition:

Definition. A convenient weak Riemannian mani-
fold (M, g) will be called a robust Riemannian man-
ifold if

(1) The metric g admits gradients in the above
two senses,

(2) The completions T, M form a vector bundle as
above.



Covariant curvature and O’Neill’s formula in
infinite dimensions. Let p: (E,g9g) — (B,gp) be a
Riemann submersion between infinite dimensional
robust Riemann manifolds: i.e., for each b € B
and z € E, := p~1(b) the tangent mapping Typ :
(T:FE,9r) — (1,B,gp) is a surjective metric quo-
tient map so that

|&llgp 1= Inf{ Xy € TuE : Tup.Xu = &}.

The infinimum need not be attained in T F but
will be in the completion TyE. The orthogonal
subspace {Yz : gp(Yz,T:(E,)) = 0} will therefore
be taken in Tx(Ey) in TR E.




If o = gB(ag, ) € gg(TyB) C Ty B is an element
in the gg-smooth dual,

then p*ay := (Tup)*(ew) = gp(af, Top ) : TuE —
R is in T7;M but in general it is not an element
in the smooth dual gg(T:FE). It is, however, an
element of the Hilbert space completion gg(T,FE)
of the gp-smooth dual gp (T, E) with respect to the
norm || HgEl' and the element

gEl(p*ozb) =: (p*ayp)? is in the || | gz-completion
T,E of T E. We can call gEl(p*ozb) =: (p*oy)! the
horizontal lift of of = g5*(ay) € T,B.



The metric (gg)z can be evaluated at elements in
the completion 1T,E. Moreover, for any smooth
sections X,Y € (TE) the mapping

gE(X,Y) M — R

is still smooth, by the smooth uniform boundedness
theorem.



Lemma. If«a is a smooth 1-form on an open subset
U of B with values in the gg-smooth dual gg(TB),
then p*« is a smooth 1-form on p~Y(U) Cc E with
values in the || ||g51-comp/etion of the gg-smooth

dual gg(TE). Thus also (p*a)! is smooth from E
into the gp-completion of T'E, and it has values in
the gg-orthogonal subbundle to the vertical bundle
in the gp-completion. We may continuously ex-
tend Typ to the || ||gz-completion, and then we
have Tpo (p*a)? = alop. Moreover, the Lie bracket
of two such forms, [(p*a)t, (p*B)Y], is defined. The
exterior derivative d(p*«) is defined and is applica-
ble to vector fields with values in the completion
like (p*B)*.

That the Lie bracket is defined, is also a non-trivial



statement: We have to differentiate in directions
which are not tangent to the manifold.



Theorem. Letp: (FE,grp) — (B,gg) be a Riemann
submersion between infinite dimensional

robust Riemann manifolds. Then for 1-forms

a, B € Q;(B) O’Neill’s formula holds in the form:

gp(RP(af, 896", oF) =
= gp(RP((p* )", (")) (p"B)*, (p*)")
+ 21k, (" 317,




Curvature computations

In terms of the dual momenta

o= (Lexh)ds = (Lex h)|cg| dO

in L. x T-Emb(S1,R?) ¢ D/(S1)?2 ® R?, the metric
looks particularly simple:

(G o B) = [[ | Ke(8,6:1)(a(61), B(0))

We use again the cotangent expression of curvature
for constant (not depending on ¢) 1-forms «, 3 in
Le+ C°(S1 R?) c D'(S1)2 @ R2, where of = K. x a,
etc

4G9 (R(of, ok, BF) =
= G 1 (d([la]l®), d([I81?)) — 1d(G~ (e, BN + 3G ([, 8], [, B))
— 205 (||8]17) — 286" (||all?) + 2(a*8* + B*ah) G (o, B)



Gdiﬂ:n(R(aﬂ B]j)aﬂ ,Blj) —

— //// det ( Oé(@1),0¢(92)> <O{(91),ﬁ(92)>)
(51" a(03),8(04)) (B(63),5(04))
(grad K(c(61) — c(62)),grad K (c(63) — c(64)))
- (Ke(01,03) — 2K (61,04) + K.(62,64))

+3 / (51)?Lc(63,04)
([ ((grad Ke(0a) = c(82)).04(65) = ai(01)) 300
~ (grad K (e(6s) — e(01)), 5(63) — B(61))a(61),
/S ((grad K (e(0a) — (62)), 0 (02) — 0(62))5(62)
<grad K (e(8) = e(01)), 8(63) — F(01))a (1)) )
+ [ (20800,802) K e0r) 020

(a(61) — a(62), f (61) — a*(62))



— 2(a(01), a(02)) d*K (c(01) — c(62)) (B (61) — B*(62), B*(61) — B*(62
+ 4(a(01), B(62)) d?K (c(61) — c(02)) (a* (1) — a*(62), B*(01) — B* (62



High dimensional shape space
Imm(M, N)/Diff(M).

M, a compact smooth connected manifold of di-
mension m > 1.

(N, g) a connected Riemannian manifold of dimen-
sion n > m.

Diff(M), the regular Lie group of all diffeomor-
phisms of M.

Diffz,(M ), the subgroup of diffeomorphisms fixing
xog € M.

Emb = Emb(M,N), the manifold of all smooth
embeddings M — N.



Imm =Imm(M, N), the manifold of all smooth im-
mersions M — N.



IMMefree = IMMysee (M, N), the manifold of all smooth
free immersions M — N (those with trivial
isotropy group for the right action of Diff(M)
on Imm(M,N)).

Be = Be(M,N) = Emb(M, N)/ Diff(M), the mani-
fold of submanifolds of type M in N, base of
a smooth principal bundle.

B; = B;(M,N) = Imm(M, N)/Diff(M), an infinite
dimensional ‘orbifold’.

B; y = B; (M,N) = Imm¢(M,R?)/Diff(M), a man-
ifold, the base of a principal fiber bundle.



Free immersions

An immersion f : M — N is called free if Diff(M)
acts freely on it, i.e., fop = f for ¢ € Diff(M)
implies ¢ = 1Id. We have the following results:

o If o € DIiff(M) has a fixed point and if

fow=f for any immersion f then o = Id.

o If for f € Imm(M,N) there is a point x € c¢(M)
with only one preimage then f is a free immersion.
There exist free immersions without such points.

We might view Imm (M, N) as the nonlinear Stiefel
manifold of parametrized submanifolds of type M
in N and consequently B; ;(M, N) as the nonlinear
Grassmannian of unparametrized submanifolds of
type M.



Non free immersions. Since M is compact, the
orbit space B;(M, N) =Imm(M, N)/ Diff(M) is Haus-
dorff. For any immersion f the isotropy group
Diff(M), is a finite group which acts as group
of covering transformations for a finite covering
qr - M — M such that f factors over qr to a free
immersion f: M — N with foqr=Ff.

For each f € Imm there exist a slice Q(f) in a
strong sense:

e Q(f) isinvariant under the isotropy group Diff (M) ¢.
o If (Q(f)op)NQ(f) # 0 for ¢ € DiIff(M) then ¢ is
in the isotropy group ¢ € Diﬂ’(M)f.

e Q(f) o DIiff(M) is an invariant open neighbour-
hood of the orbit f o DiIff(M) in Imm(M,N) ad-
mitting a smooth retraction r onto the orbit. The

fiber r—1(f o ¢) equals Q(f o).



We do not have a principal bundle and thus no
principal connections, but we can prove the main

consequence, the existence of horizontal paths, di-
rectly:

Lemma. For any smooth path f in

Imm(M, N) there exists a smooth path ¢ in Diff (M)
with o(t, ) =1dy; depending smoothly on f such
that the path h given by h(t,0) = c(t,p(t,0)) is
horizontal: g(hy,Th) = 0.



VVolumes of an immersion. For an immersion
f € Imm(M,N), we consider the volume density
volI(f) = vol(f*g) € Vol(M) on M given by
vol9(f)ly = \/det((f*g)ij)|dul A Adu™|

for any chart (U,u : U — R™) of M.

Lemma. The derivative of vol9 : Imm(M,N) —
Vol(M) is

dvold(f)(h) = — Tr/9(g(S7, b)) voI(f*g)+
+ div/ IR T (F*g)) vol (f*g).

The second summand vanishes when integrated
over M.



The metric on Imm. Let h,k € C]?O(M, TN) be
tangent vectors with foot point f € Imm(M,N),
i.e., vector fields along f. We consider the follow-
ing weak Riemannian metric on

Imm(M, N), for a constant A > 0O:

G4 (h, k) =
= [ L+ AT ISRy )oh k) vol (779)

where ||Trf*9(Sf)||gN(f) is the norm of the mean
curvature. The metric G4 is invariant for the action
of Diff(M). This makes the map =« : Imm(M,N) —
B;(M,N) into a Riemannian submersion (off the
singularities of B;(M,N)).



The tangent vectors to the orbits are

T¢(f o DIff(M)) = {Tf€: &€ X(M)}. The bundle
N — Imm(M, N) of tangent vectors normal to the
Diff (M )-orbits is independent of A:

Ny = {h € C®(M,TN) : g(h,Tf) = 0}
= [(f*(TN|p/T.TM)) = F(f*TN/TM),

the space of sections of the normal bundle.
A tangent vector

h € Tylmm(M,N) = C;?O(M,TN) = (f*T'N) has
an orthonormal decomposition

h=nh'+ ht € Ty(f o DIff T(M)) &N

into smooth tangential and normal components.



The metric G4 on Imm(M, N) is invariant under
Diff(M) and induces a metric on the quotient B;(M, N
For any Fy, F1 € B;, consider all liftings fg, f1 € Imm
such that

w(fo) = Fp,7(f1) = Fy7 and all smooth curves t —
f(t, )inImm(M,N) with f(0,-) = fgand f(1,:) =
f1. Thelength of t — w(f(¢,-)) in B;(M,N) is given
by

LR () = Loa(n(f(t,-)) =
1
s / \/G;?(f) (Tfﬂ'.ft, Tfﬂ'.ft) dt = \/G (ft ) ) dt

= [([ 4+ AT oS IRg i 1 volls g>) ”

In fact the last computation only makes sense on
B; (M, N) but we take it as a motivation.



The metric on B;(M,N) is defined by taking the
infimum of this over all paths f (and all lifts fg, f1):

disteis(F1, F2) = inf L2l ().

Theorem. For fg, f1 € Imm(M, N) there exists al-
ways a path t — f(t,-) inImm(M, N) with f(0,-) =
fo and 7(f(1,-)) = w(f1) such that LhOf(f) is arbi-
trarily small.

So the lowest order metric is not suitable for vision.
Sketch the proof!



Lipschitz continuity of vVol9 : B;(M,N) — Rx>q.
For Fyp and Fy in B;(M,N) =Imm(M, N)/Diff(M)
we have for A > O:

VVoII(Fy) —/Vol9(Fp) < ﬁdistgg(ﬂ, ).



Area swept out bound. If f is any path from Fj
to F41, then

<(m + 1) — volume of the region svvept) -

out by the variation f

< max/Vold (£(t, 1)) LIH(F).

Together with Lipschitz continuity this shows that
the geodesic distance L?A separates points at least
on Be(M,N), if A > 0.



Horizontal energy of a path as anisotropic vol-
ume We consider a path ¢ — f(¢t, ) inImm(M,N).
It projects to a path wo f in B; whose energy is:

Eoa(rof) =3 /Gﬁ(f)(Tw.ft,Tw.ft)dtz
=3 [ put i =

b
=3 [ | QAT SN IDg(S, £ vol () d.

We now consider the graph v : [a,b] X M > (t,z) —
(t, f(t,z)) € [a,b] x N of the path f and its image ',
an immersed submanifold with boundary of R x N.



EX(mof) =
—1 Fa057y2
=3 | AT D20

175112
¢1 + I1£7H112
This is intrinsic for the graph I‘f and the fibration

pri : R x N — R. To find a geodesic between the

shapes 7(f(a, )) and w(f(b, )) we look for an
immersed surface which is critical for Ehor This is

a Plateau-problem with anisotropic volume.

_vol(v}(di2 + ¢))



The geodesic equation of G° in Imm(M, N)

Vi fr+ divI I i — g(FE, TR T9(ST)) it
+ 37 1. 9rad”9(| £)12) + 31172 T 9(sT) = 0




We restrict to geodesics t — f(¢, ) in Imm(M,N)
which are horizontal: g(f;, Tf) = 0. Then f,' =

and f; = fti, so the equation splits into a verti-
cal (tangential) part which vanishes identically, and

a horizontal (normal) part which is the geodesic
equation in B; for GO:

Vo g — g, THT9(ST)) fit
+ 3£l T 9(sT) = 0.




The sectional curvature for G° in B;(M,N)

G?(R(m, h)m, h)
Im||2||r]|2 — G9(m, h)?%
We get then for z,y € I'(Ny):

Rf(a:,y,:c,y) — G?(Rf(xay)xay) —
=/Mvol(f*g)<

—3Tr(L o L) (2 A y) <0
— ZI Tr(@)y — Tr(L)=| <0
+ 3z Ayl|?) Tro(s)|1? >0

+ g(RI(z,y)x,y)
+ ||z A y||? Ric(TM, span(z, y))

— 39z, Vo) — 9y, V) 1S <0



®/\2N(f)> = 0.

+ HlzAVEiy —y A VL:"”SQW
Corollary. If M has codimension 1 in N then
all sectional curvatures are non-negative. For any
codimension, sectional curvature in the plane spanned

by x and y is non-negative if x and y are parallel,
ie., tAy=0in N°T*N.



Vanishing geodesic distance on groups
of diffeomorphisms:
(N, g) a connected Riemannian manifold.

Diff.(N) the group of all diffeomorphisms with com-
pact support on N,

Diffg(INV) the subgroup of those which are diffeotopic
in Diffc.(N) to the identity; this is the connected
component of the identity in Diff.(/N), which a reg-
ular Lie group. The Lie algebra is X.(IN), the space
of all smooth vector fields with compact support
on N. Moreover, Diffg(IN) is a simple group (has
no nontrivial normal subgroups).



The right invariant HO-metric on Diffg(N) is then
given as follows, where h,k : N — TN are vector
fields with compact support along ¢ and where X =
hop 1Y =Fkop1ecXx.(N):

GO k) = [ g(h. k) vol(p*g)
— /Ng(X 0w, Y op)p*vol(g)

= [ 9(x.Y)vol(g)

Theorem. Geodesic distance on Diffg(IN) with
respect to the HO-metric vanishes.
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Geodesics and sectional curvature on Diff(NV):
For a right invariant weak Riemannian metric G
on an (possibly infinite dimensional) Lie group the
geodesic equation and the curvature are given in
terms of the dual operator (if it exists) ad(X)* of
the adjoint ad(X) : g — g on the Lie algebra by:
following formulas:

u = —ad(u)*u, u=gop

4G(R(X,Y)X,Y) =3G([X,Y],[X,Y])
—2G(X,[Y,[X,Y]]) — 2G(Y, [X,[Y, X]])
+ 4G (ad(X)*X, ad(Y)*Y)
— G(ad(X)*Y 4+ ad(Y)*X,ad(X)*Y 4+ ad(Y)*X)



In our case, for Diffg(N), we have
ad(X)Y = —[X, Y]
GO(X,Y) = /Ng(X, Y) vol(g)
GO(ad(V)*X, 2) = GO (X, —[Y, Z]) =
= [ (v X + (57 Ly )X +diVI(V)X, Z)vol(9)
ad(Y)* = Ly + g~ "Ly (9) + divI(Y) = Ly + B(Y),

where the tensor field
BY)=g¢1Ly(9) +divi(Y): TN — TN
is self adjoint with respect to g.



Thus the geodesic equation for GO is

u = —(g7 " Lu(9)) (u) — divi(u)u = —B(u)u,
U = ¢ O go_l.
The main part of the sectional curvature is given
by:
A4G(R(X,Y)X,Y) =

= [ (<18COY = BONX + X, V|2
— 49([B(X), BO)]X, Y)) vol(g)

So sectional curvature consists of a part which is
visibly non-negative, and another part which is dif-
ficult to decompose further.



Example. For (N,g) = (R,can) or (S, can) the
geodesic equation is Burgers’' equation, a com-
pletely integrable infinite dimensional system,

—1
uy = —3uzx U, U= @prop -,

to which corresponds vanishing geodesic distance.
and we get GO(R(X,Y)X,Y) = — [[X,Y]?dx so
that all sectional curvatures are non-negative.



Example. For (N, g) = (R™ can) or ((S1)", can):
(@d(X)Y)F =D ((a:X")Y' — X' (8Yh))

G%(ad(X)Y, 2) :/ (dX.Y —dY.X, Z)dx
R"

_ /R D Y’f((akxi)zi + (9, X)) 7 + Xi(c‘?iZk)>dm
<ad<X>ZkZ>k =
= Z((akxi)zi + (8:;XH 2% + X@'(az-Z’“)),
so that jche geodesic equation is given by
du® = —(ad(u) 'u)k =

the n-dimensional analogon of Burgers’' equation,
called the basic Euler-Poincaré equation (EPDIfF)



by Holm. Also here we have vanishing geodesic
distance.



Stronger metrics on Diffg(V).

A very small strengthening of the weak Riemannian
HO9%-metric on Diffg(N) makes it into a true met-
ric. We define the stronger right invariant weak
Riemannian metric by the formula:

GA(h, k) = /N(g(X, Y) + Adivg(X). divg(Y)) vol(g).

Theorem. For any distinct diffeomorphisms g, p1,
the infimum of the lengths of all paths from g to
©1 With respect to G4 is positive.



Example We consider the groups Diff.(R) or Diff(S1)
with Lie algebras X¥.(R) or X¥(S!) with Lie bracket
ad(X)Y = —[X,Y] = X'Y — XY’. The G%-metric
equals the Hl-metric on X.(R), and we have:

GAX,Y) = /R (XY + AX'Y")da
= /]RX(l —8323)Yd:1:,
ad(X)* = (1 —92) 12X’ + X8,)(1 — A82)
so that the geodesic equation in Eulerian represen-
tation u = (9rp) 0 =1 € X(R) or X(S1) is
Oru = —ad(u)*u
= —(1- 8%)_1(31&/ — 244" — Ad"w),



which for A = 1 is the Camassa-Holm equation,
another completely integrable infinite dimensional

Hamiltonian system. Here geodesic distance is a
metric.



Virasoro-Bott group. Let Diff denote any of the
groups Diff(S1), Diffc(R) (diffeomorphisms with
compact support), or Diffg(R). Then

c : Diff x Diff — R
o(p,8) - = 5 [109((p o) )dlog ()
= [109(¢ 0 ¥)dlog(s)

satisfies c(p, 1) = 0, ¢(d,v) = 0, ¢(p,Id) = 0,
and is a smooth Hochschild group cocycle, i.e.,

c(p2, p3)—c(p1092, p3)+c(p1, poopz)—clp1, v2) = 0,
called the Bott cocycle.



The corresponding central extension group R X
Diff, called the Virasoro-Bott group, is a regular
Lie group with operations

NN p o1 o1
A=, 0 ) O =
for o,y € Diff and o, € R.



The Lie algebra of the Virasoro-Bott Lie group is
the central extension R x, X of X, called the Vira-
soro Lie algebra, with bracket:

)G =G =y )

W(X,Y) = w(X)Y = / X'dy’ = / X'V dp =

XYy’
p— %/det <X/, Y”) dCB,
is the Gelfand-Fuchs Lie algebra cocycle
w:XxX— R, which is a bounded skew-symmetric

bilinear mapping satisfying the cocycle condition
w([X,Y],Z) +w(lY, Z], X) + w([Z,X],Y) = 0.

It is a generator of the 1-dimensional bounded Cheval-
ley cohomology H2(3€, R) for any of the Lie algebras



X =%(SD), %:(R), or S(R)&,.



We shall use the L2-inner product on R x,X, where
X =X(S1), Xc(R),S(R)Oy:

<<§>’ (%»O ‘= [ XY dx + ab.
Integrating by parts we get

(aa (D), = (e )

— / (X'YZ = XY'Z +eX'Y") da

0

— / (2X'Z + XZ' 4+ XY dx

(a5 () . wnere

xX\",z 2X'Z 4+ X7+ X"
ad(") ()= o )



The HO geodesic equation on the Virasoro-Bott
group (Ovsienko-Khesin):

(1) =20 (?) () = (2" ) e

at a a 0]
w(t)y _ o () o)
laty) =%(a() o)
o P@oeT
"la(s) = alt) + c(p(2), o))
. ( prop 1 )
e [

Thus ais aconstant in time and the geodesic equa-
tion is hence the Korteweg-de Vries equation

ut + 3uzu + augrr = O.



with its natural companions

_ /@tm%pm
Yt = U O Y, ar = a + x
29033



I do not know whether the right invariant L2-metric
on the Virasoro-Bott group has vanishing geodesic
distance?

On Mondays I think: YES

On Tuesdays I think: NO



At the end of last main lecture:

Many thanks to the organizers (except one of them)
for a great conference, and for the fine weather and
great snow.
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