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with Maple 

Preliminary Remarks

History

I began working on computer software for differential geometry and its applications to 
mathematical physics and differential equations in1989. Initial implementations were 
done by students at Utah State University.

At that time there were many software packages available which could only be used to 
solve very specialized problems. In addition, it was  practically impossible to pass results 
from one program to another.  

Reliability and documentation was also a major problem. 

The first publicly released version of the software was in 2001 -- called "Vessiot".

In 2005 Maple agreed to include my software as part of the Maple distributed library.

A massive amount of work was required to meet Maple standards for code, testing and 
documentation.

The first version of DG appeared in Maple,  Release 11, 2007.

Goals

At the outset my goals were:
to create a very flexible set of programs with which specialized applications can be 
easily constructed;
to adopt the conventions and language of modern differential geometry;
to create user-friendly input and output;  
to take advantage of Maple's superb ODE and PDE solvers;
to provide detailed, mathematically correct, documentation;
to provide introductory lessons and advanced special topic tutorials.

DifferentialGeometry In Maple

The DG package in Maple consists of the following components:

Calculus on Manifold:  Vector fields and differential forms, transformations;

Tensors:  Tensors, connections, curvature, spinors, NP-formalism;



LieAlgebras:  Basic operations with Lie algebras, Lie algebra cohomology, 
representations,  structure theory;

GroupActions: Lie groups, symmetries, invariant geometric objects, moving frames;

JetCalculus:  Jet spaces, variational bicomplexes, calculus of variations;

Library: Tables of Lie algebras, differential equations, solutions of the Einstein equations;

We shall demonstrate some of the capabilities of the DG software by performing some basic
computations with Lie groups and homogeneous spaces.

A Short Review of Homogeneous Spaces
1. A Lie group G is a group which is also a manifold and for which the operation of 
multiplication is smooth. 

2. Let  be a Lie group and  a manifold.  An action of  on  is a mapping

 
such that 

 , x 2M  

[ii]  or 

3. Let  act on . The isotropy sub-group at the point  is 
 

.

4. Let  act on . Then  is called a -homogeneous space if  acts transitively on , that 
is, for any two points , there is a  such that .

5. Let  be a closed sub-group of a Lie group . Then the coset space  
can be given a smooth manifold structure such that:

 the canonical projection map   is smooth. and 
smooth local cross-sections  can be defined in the neighorhood of each 
point.

6. There is a natural smooth action of   on  

7. If  is a -homogeneous space, then the map   induces a equivariant 
diffeomorphism  .

8.   invariant quadratic forms on  drop to  invariant quadratic forms on .

Worksheet Overview
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In this worksheet we shall demonstrate the capabilities of DG software package with the 
following compuations.

 For a given Lie algebra  and subalgebra , we construct the associated Lie group  and
the homogeneous space .
We calculate the  invariant quadratic forms on . We find the corresponding invariant 
symmetric tensors on G and push these down to invariant symmetric tensors on 

.
We show that the invariant metrics on  so constructed are solutions to the Einstein 
equations.
We identify the invariant metric in the mathematical physics literature.

These computations illustrute some of the commands in the following packages.

restart:with(DifferentialGeometry):

with(LieAlgebras):

with(Tensor): 

with(GroupActions): 

with(Library):

Part A. Algebraic Steps

Our goal is to construct a 4 dimensional homogeneous space for a 5-dimensional Lie group.

We begin by looking at the 5 dimensional Lie algebras available for our use.  

All 5-dimensional Lie algebras have been classified and the results of these classifications 
are contained in the DifferentialGeometry Library.  

The References command gives us a list of the articles and books whose results are in the 
DifferentialGeometry Library.

References(verbose);

Doubrov, 1

	  Classification of Subalgebras in the Exceptional 

Lie Algebra of Type G_2

	  Proc. of the Natl. Academy of Sciences of Belarus, 

Ser. Phys.-Math. Sci., 2008, No.3

Gong, 1

	  Classification of Nilpotent Lie Algebras of 

Dimension 7( Over Algebraically Closed Fields and R)
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	  PhD. Thesis,  University of Waterloo (1998)

Gonzalez-Lopez, 1

	  Lie algebras of vector fields in the real plane 

(with Kamran and Olver)

	  Proc. London Math Soc. Vol 64 (1992), 339--368

Kamke, 1

	   Differentialgleichungen

	   Chelsa Publ. Co. (1947)

Mubarakzyanov, 1

	  Lie algebras of dimmensions 3, 4

	  Izv. Vyssh. Uchebn. Zaved. Math 34(1963) 99

Mubarakzyanov, 2

	  Lie algebras of dimension 5

	  Izv. Vyssh. Uchebn. Zaved. Math 34(1963) 99

Mubarakzyanov, 3

	  Lie algebras of dimension 6

	  Izv. Vyssh. Uchebn. Zaved. Math 35(1963) 104

Olver, 1:

	  Equivalence, Invariants and Symmetry, 472--473

Petrov, 1:

	  Einstein Spaces

Stephani, 1:

	  Exact Solutions to Einstein's Field Equations, 2nd 

Edition (with Kramer, Maccallum, Hoenselaers, Herlt)

Turkowski, 1:

	  Low dimensional real Lie algebras

	  JMP(29), 1990, 2139--2144

Turkowski, 2

	  Solvable Lie Algebras of dimension six

	  JMP(31), 1990, 1344--1350
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Winternitz, 1:

	  Invariants of real low dimensional Lie algebras, 

(with Patera, Sharp and Zassenhaus)

	  JMP vol 17, No 6, June 1976, 966--994

The paper by Winternitz  Invariants of real low dimensional algebras contains a convenient 
list of all Lie algebras of dimension  <= 5 which we will shall use here. 

The indices by which these Lie algebras are labeled in the paper can be obtained using the
Browse command. 

Browse("Winternitz", 1);

Let us look at some of these Lie algebras in more detail:
Browse("Winternitz", 1,  [[5, 28], [5, 29], [5, 30], [5, 31]]

);

_______________________

_______________________

_______________________

_______________________
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We choose to work with the Lie algebra [5, 30]. 

We retrieve the Lie algebra structure equations (with the command Retrieve) for this algebra
and pass these structure equations to the DGsetup program to initialize the Lie algebra. 
This Lie algebra has a parameter . For simplicity, we shall set the parameter .

L, P := Retrieve("Winternitz", 1, [5, 30], Alg, parameters = 

"yes");

L := eval(L, P[1] = 2);

All calculation with the DG software begin with the DGsetup command. This is used to 
initialize manifolds, Lie algebras,  representations, etc.

DGsetup(L, verbose);
The following vector fields have been defined and protected:

The following differential 1-forms have been defined and protected:

Lie algebra: Alg

MultiplicationTable("LieTable");

Once the algebra is initialized, we can do all sorts of calculations and tests. For example, 
the Query command can be used to check many properties of Lie algebras

Query("Solvable");
true

Query([e1], "Ideal");
true

Now in order to construct  our 4 dimensional homogeneous space we need to choose a 1-
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dimensional subalgebra -- it will be the isotropy subalgebra at the preferred point.

The inequivalent 1 dim. subspaces of are:
  .

The subalgebra  is an ideal and will not lead to an effective action of  on 

We want our homogeneous space to admit a  invariant metric so let's calculate the
 invariant quadratics forms on . 

Only   works -- that is, only the vector space of  invariant quadratics forms 
contains  nondegenerate elements.

Qalg := evalDG([theta2 &t theta2 - theta1 &s theta3,  

theta3 &t theta3, theta3 &s theta5, theta5 &t theta5])

;

nops(Qalg);
4

LieDerivative(e4, Qalg);

The details are in the following subsection.

h Invariant Quadratic forms

The command InvariantGeometricObjectFields is a powerful geneal purpose command 
for calculating all kinds of invariant tensors, connections, etc.

Here we are going to use it to find invariant quadratic forms.

Case 1:  : Only degenerate forms

Q2 := GenerateSymmetricTensors([theta1, theta3, 

theta4, theta5], 2);

convert(InvariantGeometricObjectFields([e2], Q2),

DGArray);
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Case 2:  [Only degenerate forms]

Q3 := GenerateSymmetricTensors([theta1, theta2, 

theta4, theta5], 2):

convert(InvariantGeometricObjectFields([e3], Q3),

DGArray);

Case 3: 

S4 := GenerateSymmetricTensors([theta1, theta2, 

theta3, theta5], 2):

convert(InvariantGeometricObjectFields([e4], S4),

DGArray);

Case 4:  [Only degenerate forms]:
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Q5 := GenerateSymmetricTensors([theta1, theta2, 

theta3, theta4], 2):

convert(InvariantGeometricObjectFields([e5], Q5),

DGArray);

Part B. Constructing the homogeneous space

Next we construct the Lie group G for our Lie algebra Alg. 

First we define local coordinates for the group G. 

The command LieGroup in the GroupAction package implements Lie's 2nd and 3rd 
theorems (so far for solvable groups) and directly constructs a global Lie group whose Lie 
algebra is the given algebra Alg.

The LieGroup  command results a Maple structure called a module.  The module LG has 
various exports which provide the information about the Lie group.

DGsetup([x1, x2, x3, x4, x5], G);
frame name: G

LG := LieGroup(Alg, G);

Here is the explicit formula for left multiplication in G of the group element with coordinates  
[x1, x2, x3, x4, x5] by the group element with coordinates [a1, a2, a3, a4, a5 ].

dotLeft := LG:-LeftMultiplication([a1, a2, a3, a4, a5]);
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Let's look at the left and right invariant vector fields and forms for this Lie group. These are 
calculated with the InvariantVectorsAndForms command.

XL, OmegaL, XR, OmegaR := InvariantVectorsAndForms(LG):

Here are the right invariant vector fields.
XR;

Here are the left invariant vector fields.
XL;

The command LieAlgebraData computes the structure equations for the right invariant 
vector fields XR.  These structure equations coincide with the structure equations for the 
Lie algebra which we started with.

LieAlgebraData(XR);

L;

The structure equations for the left invariant vector fields XR differ by just a sign. Because 
the coefficients of the vector fields XR contain transcendental functions we use an 
alternative calling sequence for the LieAlgebraData program.

LieAlgebraData(XL,initialpointlist = [[x1=0,x2=1,x3=0, x4 

=0, x5=0]]);

The left and right invariant vector fields for any Lie group commute.
Matrix(4,4, (i,j)->LieBracket(XL[i], XR[j]));
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The quotient of  by the 1 dimensional subgroup  generated by the vector field XL[4] is a 4
dimensional manifold.  

We call this manifold M and use coordinates [x, y, z, w] on M. 

The key step now is to calculate the coordinate formula for the projection map  

This projection map sends the group element g to the coset gH, that is,    .

Consequently, for any  in  we have that     and therefore the 
projection map  is invariant with respect to the right action of  on . 

The infinitesimal generation of this right action is the left invariant vector field Z = XL[4].  
Thus, if we set

it follows that component functions  are all invariants of the vector field Z.  

We can use the LieDerivative and pdsolve commands to find these invariants.
InvariantPDE := LieDerivative(XL[4], F(x1, x2, x3, x4, x5)

);

pdsolve(InvariantPDE);

Now we define the manifold  and the projection map .  Mappings are constructed with the
Transformation command.

DGsetup([x, y, z, w], M);
frame name: M

pi := Transformation(G, M,  [x = x3, y = x3*x4+2*x2, z = 

exp(x5), w = x4*x2+3*x1+(1/2)*x3*x4^2]);

Our next task to calculate the action of the Lie group G on the manifold M. For this we shall 
need a "cross-section" to the projection map , that is, a map
  

  such that   
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Such a map is easily calculated using the InverseTransformation command.

sigma :=  eval(InverseTransformation(pi), _C1 =0);

simplify(ComposeTransformations(pi, sigma));

The action of G on M is now computed as the composition of the projection map , the left 
multiplication map  of  to , and the cross-section .

mu := map(simplify,ComposeTransformations( pi, dotLeft, 

sigma));

This is our homogeneous space which we wanted to construct.

The infinitesimal generators  for the action of  on  are calculated using the
InfinitesimalTransformation command. 

Gamma := InfinitesimalTransformation(mu, [a1, a2, a3, a4, 

a5]);

Finally, we can check our answer.  The structure equations for the Lie algebra of vectors 
fields coincides with the Lie algebra we started with: 

LieAlgebraData(Gamma);

The isotropy subalgebra at the preferred point is  exactly 
pt := ApplyTransformation(pi, [x1 = 0, x2 = 0, x3 = 0,x4 =

0, x5 =0]);

Iso := IsotropySubalgebra(Gamma, pt);

Gamma[4];

Part C. An invariant metric on the homogeneous space M
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We return to the invariant symmetric rank 2 tensors on the Lie algebra which we calculated 
in Part A.

Qalg;

 We express these tensors in terms of the left invariant Maurer-Cartan forms   
to arrive at symmetric tensors on the Lie group .

o1, o2, o3, o4, o5 := op(OmegaL);

Qgroup := evalDG([-o1 &s o3 + o2 &t o2, o3 &t o3, o3 &s 

o5, o5 &t o5]);

Now we push these tensors on the Lie group down to tensors on the manifold using
PushPullTensor

Qmanifold := PushPullTensor(pi, sigma, Qgroup);

Here is the result we have been after -- a metric g on a 4 dimensional manifold  with the 
prescribed Lie algebra of Killing vectors!

g := DGzip([c1, c2, c3, c4],Qmanifold, "plus");

We check that the vectors fields , calculated in Part B, are Killing vectors for g.
Gamma;
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LieDerivative(Gamma, g);

In fact, we can use the KillingVectors program in the Killing package to calculate the Lie 
algebra of Killing vectors for the metric g. 

The result is a  5 dimensional algebra thereby proving that  is the full infinitesimal isometry 
algebra of the metric g. 

KV := Killing:-KillingVectors(g);

GetComponents(KV, Gamma, method = "real", trueorfalse = 

"on");
true

Part D.  Physical properties of the invariant metrics

We calculate the Einstein tensor of our metric. By subtracting an appropriate cosmological
term, we conclude that our metric is a pure radiation solution.

Ein := EinsteinTensor(g);

evalDG(Ein - Lambda*InverseMetric(g));
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evalDG(Ein - 12/c4*InverseMetric(g));

Note that  is a null vector. This means that g is a .

TensorInnerProduct(g, D_w, D_w);
0

We find that the Petrov type of our metric is "O".
PetrovType(g);

"O"

Part E. Classification of the invariant metric.

Is our  pure radiation solution a new solution to the Einstein equations or does it exist in the
literature?

We are constructing a very detailed and accurate data base of known solutions and a 
Maplet to search this database.

Library:-GRExactSolutionsSearch();

So the one candidate we found is in the Exact Solutions Books, Chapter 12, equation 38.
Here is the metric.

g38 := Retrieve("Stephani", 1, [12, 38, 2], output = [N, 

"Fields"])[1];

And finally, let us find an explicit diffeomorphism relating these two metrics. We use the 
EquivalenceOfMetrics command (still under development) and set the infolevel for this 
command to 2 so we can see what the program is doing.

infolevel[GroupActions:-EquivalenceOfMetrics]:=2;

Phi, SideConditions := GroupActions:-EquivalenceOfMetrics

(g, g38, parameters = {c1, c2, c3, c4});

Finding Killing vectors  for  metric 1.

Finding Killing vectors  for  metric 2.

Finding isometry Lie algebra  for  metric 1.

Finding isometry Lie algebra  for  metric 2.
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Finding isomorphism between isometry algebras.

Finding diffeomorphisms  which mapKilling vectors for metric 1

to Killing vectors for metric 2.

Finding diffeomorphism which pulls metric 2 back to metric 1.

_EnvExplicit := true:

g1 := PushPullTensor(InverseTransformation(Phi), g);

subs(SideConditions, g1);

g38;

Perfect.

Note: The Exact Solutions book contains a small error with regards to the metric . 
The assertation is made that all such metrics are of type N.

Summary
In this worksheet  we 

picked a Lie algebra from a database;
chose a subalgebra of this Lie algebra and constructed the corresponding homogeneous 
space;
found the invariant metrics on this homogeneous space
showed that these metrics solve the Einstein equations
located this solution is the literature.
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Lie's Theorem for Solvable Lie Algebras

Fundamental Computational Problems in Lie Theory and Transformation 
Groups

Ten years ago all of the following problems were beyond the reach of 
every computer algebra system.

1. Let be a (finite dim.) Lie algebra. Find a (local) Lie group   whose Lie algebra is .  
(Lie's 2nd and 3rd Theorems).

2. Let  be a (finite dim.) Lie algebra of vector fields on a manifold . Find a Lie group  and
a group action of  on  whose infinitesimal generators are . 

3. Let  act on . Find the  invariant functions, tensors, connections, distributions , etc.

4. Let  act on a fiber-bundle . Calculate the differential invariants on .

5. Let  be a principal  bundle. Calculate the horizontal lifts of curves on . (Lie 
equations)

6. Use Lie group methods to robustly integrate ODE and other finite-type differential 
systems (Example follows).

7. Let  and  be two Lie algebras. Determine if they are isomorphic and, if so, find an 

explicit isomorphism .

8. Let  and  be two Lie algebras of vector fields on manifolds  and . Determine if 

they are equivalent, that is, if there is a diffeomorphism  such that 
(equivalence problem for infinitesimal group actions).

9. Let  and  be metrics on manifolds  and . Determine if they are equivalent, that is,

if there is a diffeomorphism  such that   (equivalence problem for 
metrics). 

10. Classify the subalgebras of a given Lie algebra.

But now good progress is being made, 
thanks to a combination of advances in both theory and software.

Lie's Theorem:  Every representation  



(3.3)(3.3)

(3.2)(3.2)

(3.5)(3.5)

(3.1)(3.1)

(3.4)(3.4)

  of a solvable Lie algebra admits a 
common eigenvector, that is, there is a  such that 

 for all  .

In this talk, I'll talk about the surprising role that Lie's theorem in these fundamental 
problems.

Load packages
restart: with(DifferentialGeometry): 

with(Library): 

with(LieAlgebras):

with(GroupActions):

with(LieAlgebraRepresentations):

Motivational Example 1

Maple uses several different approaches to integrate scalar ODE. 

One approach is based upon the symmetries of the ODE and repeated reduction of order. 

This approach is used to integrate the following ODE.
PDEtools[declare]([y(x), u(t)]);

Retrieve("Kamke", 1, [7, 16])[1];

DE1 := 3*(diff(y(x), x, x))*(diff(y(x), x, x, x, x))-5*(diff

(y(x), x, x, x))^2;

ans1 := dsolve(DE1);

Let us make a simple change of variables   y = exp(u).
DE2 := simplify(PDETools:-dchange({x = t, y(x) = exp(u(t))}, 

DE1, [t, u(t)]));
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ans2 := dsolve(DE2):

Just by looking to the length of  we see that the result must be very complicated.  
length(ans1), length(ans2);

ans2:

PDEtools[undeclare]([y(x), u(t)], quiet):

Can we use some geometric methods to make the ODE integrator less sensitive to 
coordinate transformations?

Motivational Example 2
Let  be an -dimensional Lie algebra with structure constants .  Then Lie's Third 
(Second?) Theorem asserts that there is, at least locally, a Lie algebra of  pointwise 
independent vector fields  on an -dimensional manifold  with structure constants .

 Cartan gave 2 different proofs of  this  theorem.  A elegant proof appears late (1946, 1951) 
in Cartan's career and is given in Flanders, page 108.  

Here is an example of the implementation of this proof by Cartan.

First we initialize a 4 dimensional Lie algebra.
LD:= Retrieve("Winternitz", 1, [4, 8], Alg1); 

DGsetup(LD);
Lie algebra: Alg1

Here is the manifold upon which we shall define our vector fields.
DGsetup([x1, x2, x3, x4], M);

frame name: M

Here is the realization of this Lie algebra as a Lie algebra of vector fields, using the 
algorithm of Cartan (1946, 1951). 

Gamma1 := LiesThirdTheorem(Alg1, M, method = "Cartan", 

output = "vectors");
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Check it.
LD;

LieAlgebraData(Gamma1);

Are the vector fields in  smooth at the origin? -- yes -- but very complicated. 

Much earlier, in 1906, Cartan gave another proof of this theorem, using the structure theory
for Lie algebras. Here is the results of this implementation.

Gamma2 := LiesThirdTheorem(Alg1, M, method = "Solvable", 

output = "vectors");

Check it.
LieAlgebraData(Gamma2);

Here is a second example.
LD2 := Retrieve("Winternitz", 1, [5, 21], Alg2); 

DGsetup(LD2);
Lie algebra: Alg2

DGsetup([x1, x2, x3, x4, x5], N);
frame name: N

The results are not useful.
Gamma3 := LiesThirdTheorem(Alg2, N, method = "Cartan", 

output = "vectors"):

length(Gamma3);
10401

Gamma3:

Gamma4 := LiesThirdTheorem(Alg2, N, method = "Solvable", 

output = "vectors");
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Motivational Example 3

Here we consider the isomorphism problem for Lie algebras.
We start with a simple example of a 4 dimensional Lie algebra.

LD1 := Retrieve("Mubarakyzanov",1, [4,7], Alg1);

DGsetup(LD1);
Lie algebra: Alg1

Let's "mix" up these structure equations by changing bases  for these two Lie algebras.
The Lie AlgebraData command will recompute the structure equations with respect to the 
new basis. 

LDX := LieAlgebraData([e4, e3 - e4 ,e2 + e1, e1], AlgX);

LDY := LieAlgebraData([ e1, e2 + e1, e3, e4 + e1 ],

AlgY);

DGsetup(LDX, [p], [chi]);
Lie algebra: AlgX

DGsetup(LDY, [q], [sigma]);
Lie algebra: AlgY

Here are the structure equations for  and .
MultiplicationTable(AlgX, "LieTable");

MultiplicationTable(AlgY, "LieTable");



Alg2 O Alg2 O 

(5.13)(5.13)

(5.8)(5.8)

(4.13)(4.13)

(5.15)(5.15)

AlgY O AlgY O 

(5.12)(5.12)

(5.10)(5.10)

AlgY O AlgY O 

(3.5)(3.5)

AlgY O AlgY O 

(4.4)(4.4)

(5.14)(5.14)

(5.11)(5.11)

AlgY O AlgY O 

Alg2 O Alg2 O 

AlgY O AlgY O 

(5.9)(5.9)

Now let's use a direct approach to find an isomorphism by solving :

.

phi := FindIsomorphism(AlgX, AlgY, method = 

"direct");

Check it  -- for example --  

ApplyHomomorphism(phi, LieBracket(p1, p2));

LieBracket(q4, q3 - q4);

Good -- these are equal, as required.

Now let's try a move complicated example.

LD2 := Retrieve("Mubarakyzanov", 3, [6, 72], Alg2);

DGsetup(LD2);
Lie algebra: Alg2

LDX2 := LieAlgebraData([ e6 -e2 +e1, e4, e3 - e4 ,

e2 + e1, e3- e2, e5], AlgX2);

LDY2 := LieAlgebraData([e1 + e5, e3 - e5 ,e2 + e1, 

e4 + e1 + e6, e6 - e5, e5 ], AlgY2);
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DGsetup(LDX2, [p], [chi]);
Lie algebra: AlgX2

DGsetup(LDY2, [q], [sigma]);
Lie algebra: AlgY2

The direct approach leads to a dense set of 90 quadratic equations for 36 unknowns -- this 
is too hard to solve.

#t := time():

#FindIsomorphism(AlgX2, AlgY2, method = "direct");

#(time() - t)/60;

Now let's try a different approach where we shall use Lie's Theorem to change bases to put 
the structure equations for both Lie algebras into a simpler form.

phi := FindIsomorphism(AlgX2, AlgY2);

Use the Query command to check that  is a homomorphism. Check also that  is injective.
 Query (phi, "Homomorphism");

true

HomomorphismSubalgebras(phi, "Kernel");

Notes on Lie's Theorem 

Acrobat("C:\\Documents and 

Settings\\Ian\\Desktop\\Srni2010\\Worksheets\\NotesOnLieTheore

mPresentation.pdf");
1076

An Illustrative Example

We illustrate the algorithm described in the last section (using the  representation).  

First we define the algebra we shall use.
restart: with(DifferentialGeometry): 

with(Library): 



1 Solvable Algebras

Definition: A Lie algebra g is solvable if it admits a descending chain of subalgebras

g = g0 ⊃ g1 ⊃ g2 . . . { 0},

with gk+1 an ideal in gk and gk/gk+1 abelian.

Example: The set of upper triangular matrices.

Theorem: Every Lie algebra g admits a Levi decomposition

g = s× r,

where s is semi-simple and r is the radical - the largest solvable ideal in g.

Semi-simple algebras have been completely classified. No such classification of solvable algebras is possible.

2 Lie’s Theorem

Lie’s Theorem: Let ρ : g → gl(V ) be a representation of a solvable algebra. Then there exists v ∈ V such
that for all x ∈ g

ρ(x)(v) = λxv or x · v = λxv.

The vector v ∈ V is a common eigenvector for ρ.

Corollary: There is a basis for V in which the matrices ρ(x) are upper triangular.

Corollary: Change gk+1 an ideal in gk to gk+1 an ideal in g .

Corollary: The only irreducible representations of a solvable algebra are 1-dimensional.

3 Proof 1

Step 1. Pick a codimension 1 ideal h ∈ g and proceed by induction on dimension.

x · v0 = λxv0 for all x ∈ h

Choose a y ∈ g with y /∈ h.

Step 2. Calculate
W = { v ∈ V |x · v = λxv for all x ∈ h }.

Prove that W is a non-empty, y-invariant subspace.

Step 3. Calculate an eigenvector for the restriction of y to W

Comments. From the viewpoint of symbolic implementation there are two difficulties.

1. One has to solve an eigenvalue-eigenvector problem for each dimension of g.

2. There are many choices to make at each step of the induction. Different choices give different final
answers.

3. Worst case – g is abelian.

1



4 Proof 2

Note that if x · v0 = λxv0 and y · v0 = λyv0 ,then

[x, y] · v = x · (y · v)− y · (x · v)
= x · (λyv0)− y(λxv0) = 0.

Step 1. Calculate the derived series, defined by g(0) = g and

g(i+1) = [g(i), g(i)].

The g(i) are ideals and g is solvable iff g(p) = 0 for some p.

Step 2. Define subspaces of V by

N (i) = {v ∈ V |x · v = 0 for all x ∈ g(i)} i ≥ 1.

N (1) ⊂ N (2) ⊂ · · · ⊂ N (p) ⊂ N (p+1) = V.

The subspaces N (i) are ρ invariant and this already puts ρ in block triangular form (unless the algebra is
abelian).

Step 3. Repeat the calculation of Step 1 for each quotient representation N (i+1)/N (i).
Example. Suppose dim V = 10. We compute (for example)

N (1) = {v1, v2, v3},
N (2) = {v1, v2, v3, v4, v5},

V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10}.

Then the matrices ρ(x) all look like A3×3 ∗ ∗
0 B2×2 ∗
0 0 C5×5

 .

The matrices A3×3, B2×2, C5×5 all give new representations ρ̃a of g. Re-calculate the N -flags.

{v1, v2, v3} = {{w1, w2}, {w3}},
{v4, v5} = {{w4}, {w5}},

{v6, v7, v8, v9, v10} = {{w6, w7, w8}, {w9, w10}},

with

A3×3 =

∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

 , B2×2 =
[
∗ ∗
0 ∗

]
, C5×5 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 ∗ ∗

 .

Step 3. Divide and conquer. The procedure stops when the matrices ρ̃a(x) all commute. Then eigenvalue
computations are required.

Comments.

1. In many cases no eigenvectors need to be computed at all!

2. The flag N (i) is canonical.

2
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with(LieAlgebras):

with(GroupActions):

with(LieAlgebraRepresentations):

DGsetup(Retrieve("Mubarakyzanov", 3, [6, 43], Alg))

; 
Lie algebra: Alg

LD := LieAlgebraData([e6, e5 + e4, e4 + e6, e3, e2, 

e1], Alg1);

DGsetup(LD);
Lie algebra: Alg1

We will use the profile command to track calls tothe NullSpace and Eigenvalues commands. 
We shall also use the infolevel command to follow the progress of the algorithm.

The  option abelian = "no"  for the command SolvableRepresentation stops the algorithm 
from making any calls to the Eigenvalues command. 

profile(LinearAlgebra:-NullSpace, LinearAlgebra:-

Eigenvalues);

infolevel[SolvableRepresentation] := 3:

Basis := SolvableRepresentation(Alg1, abelian = 

"no", output = ["Basis", "Partition"]);

Partition = [1 .. 6]

   P = [[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 

0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0,

1]]

   Triangularize  block 1 .. 6

Partition = [1 .. 2, 3 .. 4, 5 .. 6]

   P = [[0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, -1, 0, 

0, 0], [1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0,

0]]

   Triangularize  block 1 .. 2

   The following matrices commute

      M = [[-1, 0], [-1, -1]]

      Characteristic Polynomial  = 1+_t^2+2*_t

Partition = [1 .. 2, 3 .. 4, 5 .. 6]

   P = [[0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, -1, 0, 

0, 0], [1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0,

0]]
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   Triangularize  block 3 .. 4

Partition = [1 .. 2, 3 .. 3, 4 .. 4, 5 .. 6]

   P = [[0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, -1, 

0, 0], [1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0,

0]]

   Triangularize  block 5 .. 6

Check it.   All the ad matrices should be block upper triangular (with blocks of size [2,1,1,1])
DGsetup(LieAlgebraData(Basis[1], NewAlg2));

Lie algebra: NewAlg2

Adjoint();

showprofile();

function           depth    calls     time    time%         

bytes   bytes%

--------------------------------------------------------------

-------------

NullSpace              1        7    0.111   100.00       

1328692   100.00

Eigenvalues            0        0    0.000     0.00           

 0     0.00

--------------------------------------------------------------

-------------

total:                 1        7    0.111   100.00       

1328692   100.00
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Let's try again - this time using the Eigenvalue command to fully triangularize the 
representation.

Basis := SolvableRepresentation(Alg1, abelian 

= "yes", output = ["Basis", "Partition"]);

Partition = [1 .. 6]

   P = [[1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 

0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0,

1]]

   Triangularize  block 1 .. 6

Partition = [1 .. 2, 3 .. 4, 5 .. 6]

   P = [[0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, -1, 0, 

0, 0], [1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0,

0]]

   Triangularize  block 1 .. 2

Partition = [1 .. 1, 2 .. 2, 3 .. 4, 5 .. 6]

   P = [[0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, -1, 0, 

0, 0], [0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0,

0]]

   Triangularize  block 3 .. 4

Partition = [1 .. 1, 2 .. 2, 3 .. 3, 4 .. 4, 5 .. 6]

   P = [[0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, -1, 

0, 0], [0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0,

0]]

   Triangularize  block 5 .. 6

showprofile();

function           depth    calls     time    time%         

bytes   bytes%

--------------------------------------------------------------

-------------

NullSpace              1       15    0.174    84.88       

2729588    86.99

Eigenvalues            1        1    0.031    15.12        

408244    13.01

--------------------------------------------------------------

-------------

total:                 2       16    0.205   100.00       

3137832   100.00

Check it. All the ad matrices should be upper triangular. 
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DGsetup(LieAlgebraData(Basis[1], NewAlg2));
Lie algebra: NewAlg2

Adjoint();

unprofile();

infolevel[SolvableRepresentation] := 0:

Application 1 (Lie's Third Theorem)

The Maurer-Cartan forms for a solvable Lie algebra are easily integrated when the adjoint 
representation is upper triangular.

ChangeFrame(NewAlg2);
NewAlg2

MultiplicationTable("ExteriorDerivative");

DGsetup([x1, x2, x3, x4, x5, x6], M);
frame name: M
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LiesThirdTheorem(NewAlg2, M, output = "forms");

Application 2 (Isomorphisms of Solvable Lie Algebras)

Let    be an isomorphism between two solvable Lie algebras. Then  preserves  
corresponding filtrations --   

This dramatically simplifies the algebraic equations for finding .

It also implies that there is a quasi--normal form for solvable algebras.  

Application 3 (Canonical coordinates for simple G spaces)

Let  be a Lie group acting regularly on a manifold .  A slice  is a (local) cross-section to
the orbits on which the isotropy subalgebras are equal. Actions with slices  are called simple
G spaces. In this case we have (locally)

This, together with results given in Applications 1 and 2,  leads to the idea of canonical 
coordinates for solvable simple G spaces.

Here is an example. We define 3 infinitesimal transformation groups .
The corresponding abstract Lie algebras are all isomorphic and we have adjusted the bases
for these infinitesimal groups to have identical structure equations.

DGsetup([x, y, z, w], M);
frame name: M

Gamma1 := evalDG([z*D_x, y*D_y/w+D_w, -y*z*D_y/w-z*D_w, 

x*(z+1)*D_x/z+D_z]);

Gamma2 := evalDG([x*D_x, 2*w*z*D_y+w^2*z*D_w/y, -2*w^3*

z^3*D_y/y-w^4*z^3*D_w/y^2, x*ln(x)*D_x+y^2*D_y/(w^2*z^2)

+y*D_z/(w^2*z)]);
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Gamma3 := evalDG([D_x+D_z, D_x/w, -sin(y)*D_x/w, (z-sin

(y))*D_x+D_y/cos(y)+(z-sin(y)+1)*D_z]);

The  new command AdaptedActionCoordinates gives a transformation bringing these 
actions to a canonical form: 

DGsetup([x1, x2, x3, x4], N):

phi1 := GroupActions:-AdaptedActionCoordinates(Gamma1, [x 

= 0, y = 0, z = 1, w = 1], N);

phi2 := GroupActions:-AdaptedActionCoordinates(Gamma2, [x 

= 1, y = 1, z = 1, w = 1], N);

phi3 := GroupActions:-AdaptedActionCoordinates

(Gamma3, [x = 1, y = 0, z = 0, w = 1], N);

Here are the canonical forms:
Pushforward(phi1, InverseTransformation(phi1), Gamma1);

Pushforward(phi2, InverseTransformation(phi2), Gamma2);

Pushforward(phi3, InverseTransformation(phi3), Gamma3);

Perfect -- virtually identical.

Application 4 (ODE Integration )

Finally, we return to the problem of scalar ODE integration. We saw that Maple would
correctly integrate a certain 4th order ODE but that problems arose if we made a simple 
change of variables.  

Remarkably,  we can use the ideas developed in this lecture to effectively undo this change 
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of variables.

Here is the differential equation.
de2 := -3*(diff(u(t), t, t))*(diff(u(t), t, t, t, t))+18*

(diff(u(t), t, t, t))*(diff(u(t), t, t))*(diff(u(t), t))-9*

(diff(u(t), t, t))^3+18*(diff(u(t), t, t))^2*(diff(u(t), t))

^2+9*(diff(u(t), t, t))*(diff(u(t), t))^4-3*(diff(u(t), t))

^2*(diff(u(t), t, t, t, t))-2*(diff(u(t), t, t, t))*(diff(u

(t), t))^3+2*(diff(u(t), t))^6+5*(diff(u(t), t, t, t))^2;

We calculate its symmetry algebra using a command from the PDEtools package.
Symmetries := PDEtools:-Infinitesimals(de2);

Convert to standard DG format.
DGsetup([t, u], P);

frame name: P

Gamma := convert([Symmetries], DGvector);

Calculate the structure equations
LD := LieAlgebraData(Gamma, alg);

DGsetup(LD);
Lie algebra: alg

Calculate the Levi decomposition.
Levi := LeviDecomposition();
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LieAlgebraData(Levi[1], alg2);

DGsetup(%);
Lie algebra: alg2

SolvableRepresentation(alg2);

Calculate the canonical coordinates for the radical.
DGsetup([s, v], Q);

frame name: Q

Rad := evalDG([Gamma[1], Gamma[5], Gamma[2] + Gamma

[3]]); 

phi := GroupActions:-AdaptedActionCoordinates(Rad, [t =0, u =

0], Q);

Perfect -- this is exactly the transformation used to arrive at de2. 
 simplify(PDETools:-dchange({t = s, u(t) = log(v(s))}, 

de2, [s, v(s)]));


